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Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve
the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to
enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which
is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised
Discriminant Analysis, which is called combined low-rank and 𝑘-nearest neighbor (LRKNN) graph. In our LRKNN graph, we
map the data to the LR feature space and then the 𝑘NN is adopted to satisfy the algorithmic requirements of SDA. Since the
low-rank representation can capture the global structure and the 𝑘-nearest neighbor algorithm can maximally preserve the local
geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on
several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform
other commonly used baselines.

1. Introduction

For the real-world data mining and pattern recognition
applications, the labeled data are very expensive or difficult
to obtain, while the unlabeled data are often copious and
available. So how to improve the learning performance
using the copious unlabeled data has attracted considerable
attention [1, 2]. Semisupervised dimensionality reduction can
be directly used in the whole dataset which does not need
training set and testing set [3].

Illuminated by semisupervised learning [4–6], Semisu-
pervised Discriminant Analysis (SDA) is first proposed by
Cai et al. [2]. It can easily resolve the out-of-sample problem
[7]. In SDA algorithm, the labeled samples are used to maxi-
mize the different classes reparability and the unlabeled ones
to estimate the data’s intrinsic geometric information. From
then on, many kinds of semisupervised LDA were proposed.
Zhang and Yeung proposed SSDA [3] using path-based
similarity measure. In a similar way, SMDA [8] and UDA
[9] execute LDA under semisupervised setting manifold

regularization. And [6] utilizes unlabeled data to maximize
an optimality criterion of LDA and uses the constrained
concave-convex procedure to solve the optimization problem
and so forth.

Although these methods perform semisupervised LDA
in different ways, they all need the geometric relationships
between the whole data by constructing a regularized graph.
The graph remarkably impacts the performance of these
methods. However, little attention has been paid to graph
constructor methods. So in this paper we study the reg-
ularized graph construct problem of SDA [2]. Below we
summarize our main contributions in this paper.

(i) Inspired by low-rank representation (LRR) [10] and
the 𝑘-nearest neighbor algorithm, we construct a
novel graph called combined low-rank and 𝑘-nearest
neighbor graph. LRR jointly obtains the represen-
tation of all the samples under a global low-rank
constraint.Thus it is better at capturing the global data
structures.
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(ii) Since 𝑘NN is used to satisfy the algorithmic require-
ments of SDA, the affinity of local geometrical struc-
ture can be maximally preserved after using the
LRKNN graph.

(iii) Extensive experiments on real-world datasets show
that our proposed LRKNN regularized graph can sig-
nificantly boost the performance of Semisupervised
Discriminant Analysis.

The rest of the paper is organized as follows. We briefly
review the related work in Section 2. We give the preliminary
in Section 3. We then introduce the combined low-rank and𝑘-nearest neighbor graph construct framework in Section 4.
Then Section 5 reports the experiment results on real-world
database tasks. In Section 6, we conclude the paper.

2. Related Work

This paper proposes a combined low-rank and 𝑘-nearest
neighbor graph to boost the performance of Semisupervised
Discriminant Analysis. Our work is related to both Semisu-
pervised Discriminant Analysis improvement techniques
and graph conductor design.We briefly discuss both of them.

Cai et al. [2] proposed a semisupervised dimensionality
reduction algorithm SDA, which captures the local struc-
ture for data dimensionality reduction. Zhang and Yeung
proposed SSDA [3] using path-based similarity measure to
capture global manifold structure of the data. The works in
SMDA [8] and UDA [9] also perform semisupervised LDA
with manifold regularization. Nie et al. [11] proposed an
orthogonal constraint semisupervised orthogonal discrimi-
nant analysis method. Zhang et al. [1] utilized must-link con-
straints or cannot-link constraints to capture the underlying
structure of dataset. Song et al. [5] utilized labeled data to
discover class structure and utilized unlabeled data to capture
the intrinsic local geometry. Probabilistic Semisupervised
Discriminant Analysis (PSDA) algorithm is presented by Li
et al. [12], which utilizes unlabeled samples to approximate
class structure instead of local geometry. In the work [13],
Dhamecha et al. presented an incremental Semisupervised
Discriminant Analysis algorithm, which utilizes the unla-
beled data for enabling incremental learning. The work [14]
developed a graph-based semisupervised learning method
based on PSDA for dimensionality reduction.

Our work is also related to another line of research, the
graph conductor design. There are many methods proposed
for graph construction, including 𝑘-nearest neighbors based
method and 𝜀-ball based method [15] which are two most
popular methods for graph adjacency construction. Based
on these two methods, various approaches such as heat
kernel [15] and inverse Euclidean distance [16] are used
to set the graph edge weights. However, all these methods
are to find pairwise Euclidean distances, which are very
sensitive to data noise.Moreover, since only the local pairwise
relationship between data points is taken into account, the
constructed graph cannot reveal sufficiently the clustering
relationship among the samples. Yan et al. proposed an 𝑙1-
graph via sparse representation [10, 17]. An 𝑙1-graph over
a dataset is derived by encoding each datum as a sparse

representation of the remaining samples. In the work [18],
Zhuang et al. proposed a novel method to construct an
informative low-rank graph (LR-graph) for semisupervised
learning. And Gao et al. proposed a novel graph construction
method via group sparsity [19]. Li and Fu [20] developed
an approach to construct graph-based on low-rank coding
and 𝑏-matching constraint and proposed a novel supervised
regularization based robust subspace (SRRS) approach via
low-rank learning [21]. Zhao et al. proposed a novel approach
to construct a sparse graph with blockwise constraint for
face representation, named SGB [22]. A sparse and low-rank
graph-based discriminant analysis (SLGDA) is proposed,
which combines both sparsity and low rankness to maintain
global and local structures simultaneously [23]. In the work
[24], Li and Fu incorporated KNN constraint and 𝑏-matching
constraint into the low-rank representation model as the
balanced (or unbalanced) graph. We focus on constructing
a novel graph for SDA, capturing the data using LRR and
then utilizing the KNN algorithm to satisfy the algorithmic
requirements of SDA.

The work that is most closely related to ours is the low-
rank kernel-based Semisupervised Discriminant Analysis
[25], which is my previous research. The LRR is used as the
kernel in the KSDA [2]. In our current work, we proposed
a novel graph for Semisupervised Discriminant Analysis,
which is called combined low-rank and 𝑘-nearest neighbor
(LRKNN) graph. In our LRKNN graph, the 𝑘NN is adopted
to satisfy the algorithmic requirements of SDA. Since the
low-rank representation can capture the global structure and
the 𝑘-nearest neighbor algorithm canmaximally preserve the
local geometrical structure of the data, therefore the LRKNN
graph can capture not only the global structure but also the
local information of the data, which can largely improve the
performance of the SDA.

3. Preliminary

3.1. Overview of SDA. Given a set of samples [x1, . . . , x𝑚,
x𝑚+1, . . . , x𝑚+𝑙], where 𝑁 = 𝑚 + 𝑙, the first 𝑚 samples are
labeled [y1, . . . , y𝑚], and the remaining 𝑙 are unlabeled ones.
They all belong to 𝑐 classes. The SDA method [2] hopes to
find a rejection matrix a, which motivates presenting the
prior assumption of consistency by a regularized term. The
objective function is as follows:

a = argmax
a

a𝑇S𝑏a
a𝑇S𝑡a + 𝛼𝐽 (a) , (1)

where S𝑏 and S𝑡 are the between-class scatter and total class
scatter matrix. And S𝑤 is defined as the within-class scatter
matrix.

The parameter𝛼 in (1) balances themodel complexity and
the empirical loss. The regularized term supplies us with the
flexibility to incorporate the prior knowledge in the appli-
cations. We aim at constructing 𝐽(a) graph combining the
manifold structure through the available unlabeled samples.

Given a set of samples {x𝑖}𝑚𝑖=1, we can construct the graph
G to represent the relationship between nearby samples by𝑘NN. Then put an edge between 𝑘-nearest neighbors of
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each other. The corresponding weight matrix S is defined as
follows:

S𝑖𝑗 = {{{
1, if x𝑖 ∈ 𝑁𝑘 (x𝑗) or x𝑗 ∈ 𝑁𝑘 (x𝑖)0, otherwise, (2)

where 𝑁𝑘(x𝑖) denotes the set of 𝑘-nearest neighbors of x𝑖.
Then 𝐽(a) term can be defined as follows:

𝐽 (a) = ∑
𝑖𝑗

(a𝑇x𝑖 − a𝑇x𝑗)2 S𝑖𝑗
= 2∑
𝑖

a𝑇x𝑖D𝑖𝑖x
𝑇
𝑖 a − 2∑

𝑖𝑗

a𝑇x𝑖S𝑖𝑗x
𝑇
𝑗 a

= 2a𝑇X (D − S)X𝑇a = 2a𝑇XLX𝑇a,
(3)

where D is a diagonal matrix whose entries are column (or
row since S is symmetric) sum of S; that is, D𝑖𝑖 = ∑𝑗 S𝑖𝑗. The
Laplacian matrix [10] is L = D − S. We can get the objective
function of the SDA with the regularizer term 𝐽(a):

a = max
a

a𝑇S𝑏a
a𝑇 (S𝑡 + 𝛼XLX𝑇) a . (4)

By maximizing the generalized eigenvalue problem, we can
obtain the projective vector a.

S𝑏a = 𝜆 (S𝑡 + 𝛼XLX𝑇) a. (5)

3.2. Low-Rank Representation. Yan and Wang proposed the
low-rank representation and used it to construct the affinities
of an undirected graph (here called LR-graph) [10]. It jointly
obtains the representation of all the samples under a global
low-rank constraint, and thus it is better at capturing the
global data structures [16].

LetX = [x1, x2, . . . , x𝑛] be a set of samples; each column is
a sample which can be represented by a linear combination in
the dictionaryA [26]. Here, we select the samples themselves
X as the dictionary A:

X = AZ, (6)

where Z = [z1, z2, . . . , z𝑛] is the coefficient matrix with each
z𝑖 being the representation coefficient of x𝑖. LRR seeks the
lowest rank solution by solving the following optimization
problem [26]:

min
Z

rank (Z)
s.t. X = AZ. (7)

The above optimization problem can be relaxed to the
following convex optimization [27]:

min
𝑍

‖Z‖∗
s.t. X = AZ. (8)

Here, ‖ ⋅ ‖∗ denotes the nuclear norm (or trace norm) [28]
of a matrix, that is, the sum of the matrixes singular values.
By considering the noise or corruption in our real-world
applications, a more reasonable objective function is

min
Z,E

‖Z‖∗ + 𝜆 ‖E‖𝑙
s.t. X = AZ + E, (9)

where ‖ ⋅ ‖𝑙 can be the 𝑙2,1-norm or 𝑙1-norm. In this paper
we choose 𝑙2,1-norm as the error term measurement which
is defined as ‖E‖2,1 = ∑𝑛𝑗=1√∑𝑛𝑖=1([E]𝑖𝑗)2. The parameter𝜆 is used to balance the effect of low rank and the error
term.The optimal solutionZ∗ can be obtained via the inexact
augmented Lagrange multipliers (ALM) method [29, 30].

3.3. 𝑘-Nearest Neighbor Algorithm. The samples x𝑖 and x𝑗
are considered as neighbors if x𝑖 is among the 𝑘-nearest
neighbors of x𝑗 or x𝑗 is among the 𝑘-nearest neighbors of
x𝑖. There are different methods to assign weights for W. The
following are three of them.

(i) Inverse of Euclidean distance [16] (here we call it
KNNE to distinguish different ones):

W𝑖𝑗

= {{{
x𝑖 − x𝑗

−2 , if x𝑖 ∈ 𝑁𝑘 (x𝑗) or x𝑗 ∈ 𝑁𝑘 (x𝑖)0, otherwise.
(10)

(ii) 0-1 weighting [15] (here we call it KNNB), where it is
used in the original SDA:

W𝑖𝑗 = {{{
1, if x𝑖 ∈ 𝑁𝑘 (x𝑗) or x𝑗 ∈ 𝑁𝑘 (x𝑖)0, otherwise. (11)

(iii) Heat kernel weighting [15] (here we call it KNNK):

W𝑖𝑗

= {{{{{{{
exp(−x𝑖 − x𝑗

22𝜎2 ) , if x𝑖 ∈ 𝑁𝑘 (x𝑗) or x𝑗 ∈ 𝑁𝑘 (x𝑖)
0, otherwise,

(12)

where 𝑁𝑘(x𝑖) denotes 𝑘 neighbor neighbors of x𝑖
in (10), (11), and (12). Using this regularization (12),
the affinity of local geometrical structure can be
maximally preserved.

4. Proposed Algorithm

4.1. Combined Low-Rank and 𝑘-Nearest Neighbor (LRKNN)
Graph Constructor Algorithm. How to find an appropriate
subspace for classification is an important task, which we
called dimensionality reduction. The dimensionality reduc-
tion is aimed at finding labeling of the graph, which is con-
sistent with both the initial labeling and the data’s geometry
structure (edges and weightsW).
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Input: The whole dataset [x1, . . . , x𝑚, x𝑚+1, . . . , x𝑚+𝑙], where 𝑙 samples are labeled
and𝑚 are unlabeled ones.
Output: The classification results.
Step 1. Map the labeled and unlabeled data X to feature space by the LRR algorithm.
min
Z,E

‖Z‖∗ + 𝜆 ‖E‖2,1 s.t.X = AZ + E
Step 2. Obtain the symmetric graphW by 𝑘-nearest neighbor algorithm.

W𝑖𝑗 = {{{{{{{
exp(−z𝑖 − z𝑗

22𝜎2 ) , if z𝑖 ∈ 𝑁𝑘 (z𝑗) or z𝑗 ∈ 𝑁𝑘 (z𝑖)
0, otherwise.

Step 3. Implement the SDA algorithm for dimensionality reduction.
Step 4. Execute the nearest neighbor approach for the final classification.

Algorithm 1: Procedure of SDA using combined low-rank and 𝑘-nearest neighbor graph.
These proposed SDA methods always analyze the rela-

tionship of the data using the mode one-to-others. For exam-
ple, the most common 𝑘-nearest neighbor graph only shows
the edges and the weight graph should be 1, or the 𝑙𝑙𝑒-graph
and the 𝑙1-graph (SR-graph) determine the graph structure
weights by the limitation of 𝑙2-norm or the 𝑙1-norm. And the𝑙1-graphs lack global constraints, which greatly reduce the
performance when the data is grossly corrupted. To solve this
drawback, Liu et al. proposed the low-rank representation
and used it to construct the affinities of an undirected LR-
graph [26]. LR-graph jointly obtains the representation of all
the samples under a global low-rank constraint, and thus it is
better at capturing the global data structures [31].

Since the LR-graph, 𝑙1-graph, and 𝑙𝑙𝑒-graph are asymmet-
ric matrix, in order to satisfy the algorithmic requirements of
SDA, similar graph symmetrization process was often used
in the previous works; that is, W = W + W𝑇. Since the
LRR is good at capturing the global data structures and the
local geometrical structure can be maximally preserved by
the 𝑘-nearest neighbor algorithm, here, we proposed a novel
solution which uses 𝑘-nearest neighbor algorithm to satisfy
the algorithmic requirements. So the combined LRKNN
method can improve the performance to a very large extent.
Heat kernel weighting [15] is used here.

4.2. SDA Using Combined Low-Rank and 𝑘-Nearest Neigh-
bor Graph. Graph structure remarkably impacts the perfor-
mance of these SDA-likely methods. However, little attention
has been paid to graph constructor methods. So in this paper
we present a novel combined low-rank and 𝑘-nearest neigh-
bor graph algorithm,which largely improves the performance
of SDA.

Firstly, map the labeled and unlabeled data to the LR-
graph feature space. Secondly, obtain the symmetric graph
by 𝑘-nearest neighbor algorithmwhere heat kernel weighting
is used. By choosing appropriate kernel parameter, it can
increase the similarities among the intraclass samples and the
differences among the interclass samples. Then implement
the SDA algorithm for dimensionality reduction. Finally exe-
cute the nearest neighbormethod for the final classification in
the derived low dimensional feature subspace.The procedure
is described as follows in Algorithm 1.

5. Experiments and Analysis

To examine the performance of the LRKNN graph in SDA
algorithm, we conducted extensive experiments on several
real-world datasets. In this section, we introduce the datasets
we used and the experiments we performed, respectively;
then we present the experimental results as well as the
analysis. The experiments are conducted on machines with
Intel Core CPUs of 2.60GHz and 8GB RAM.

5.1. Experiment Overview

5.1.1. Datasets. We evaluate the proposed method on 4 real-
world datasets including three face databases and the USPS
database. In these experiments, we normalize the sample to a
unit norm.

(i) ORL Database [10]. The ORL dataset contains 10 different
images of each for 40 distinct subjects. The images are taken
at different times, varying the lighting, facial expressions,
and facial details. Each face image is manually cropped and
resized to 32 × 32 pixels, with 256 grey levels per pixel.

(ii) Extended Yale Face Database B [32]. This dataset now
has 38 individuals and around 64 near frontal images under
different illuminations per individual. Each face image is
resized to 32 × 32 pixels. And we select the first 20 persons
and choose 20 samples of each subject.

(iii) CMU PIE Face Database [2]. It contains 68 subjects with
41,368 face images. The face images were captured under
varying poses, illuminations, and expressions. The size of
each image is resized to 32 × 32 pixels. We select the first 20
persons and choose 20 samples of per subject.

(iv) USPS Database [33]. The USPS handwritten digit
database is a popular subset containing 9298, 16 × 16 hand-
written digit images in total. Here, we randomly select 300
examples for the experiments.

5.1.2. Comparative Algorithms. In order to demonstrate how
the SDA dimensionality reduction performance can be
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Table 1: Classification accuracy of different methods on real-world databases.

Graphs LRKNN LR SR-𝑘NN SR LLE-𝑘NN LLE KNNK KNNB
ORL 0.865 0.753214 0.824643 0.8175 0.830357 0.84 0.712444 0.696483
YaleB 0.901786 0.620357 0.811786 0.750714 0.751429 0.778214 0.645828 0.612487
PIE 0.752692 0.667308 0.736923 0.733462 0.749231 0.698846 0.674269 0.559724
USPS 0.722857 0.69381 0.711429 0.67381 0.72 0.702857 0.580313 0.510963

improved by the combined LRKNN graph, we list out several
graphs also including combined SR and LLE with the KNNK
algorithm and the separate algorithm (without 𝑘NN) SR,
LLE, and the KNNK for comparison. For the separate LR,
SR, and LLE algorithm, the previous symmetrization process
W = W + W𝑇 is used here to satisfy the algorithmic
requirements of SDA, which is used in previous works.

(i) SR-Graph [29]. SR-graph considers the reconstruction
coefficients in the sparse representation by solving the fol-
lowing problem: â = argmin𝑎‖y − Xa‖1. The graph weight
is defined asW𝑖𝑗 = |𝑎𝑖𝑗|.
(ii) LLE-Graph [34]. LLE-graph considers the situation of
reconstructing a sample from its neighbor points and then
minimizes the 𝑙2 reconstruction error.

min ∑
𝑖

x𝑖 −∑
𝑗

W𝑖𝑗x𝑗

2 ,

s.t. ∑
𝑗

W𝑖𝑗 = 1. (13)

W𝑖𝑗 = 0 if x𝑗 does not belong to the neighbors of x𝑖. The
number of the nearest neighbors is set to 4.

(iii) KNNK Graph [29]. We adopt Euclidean distance as our
similarity measure and use a Gaussian kernel to reweight
the edges. The number of the nearest neighbors is set to 4.
Similarly, the original SDAusingKNNB graph is also set to 4.

5.2. Experiment 1: Performances of SDA Using Different Regu-
larized Graphs. To examine the effectiveness of the proposed
combined LRKNN graph for SDA, we conduct experiments
on the four databases. In our experiments, we randomly
select 30% samples from each class as the labeled samples to
evaluate the performance with different numbers of selected
features. The evaluations are conducted with 20 independent
runs for each algorithm.We average them as the final results.
First we utilize different graph construction methods to get
the 𝐽(a) term, and then we implement the SDA algorithm
for dimensionality reduction. Finally, the nearest neighbor
approach is employed for the final classification in the derived
low dimensional feature subspace. For each database, the
classification accuracy for different graphs is shown in Fig-
ure 1. Table 1 shows the performance comparison of different
graph algorithms. Note that the results are the best results
of all these different selected features mentioned above. The
bold numbers represent the best results of different graph
algorithms. From these results, we can observe the following:

(i) In most cases, our proposed LRKNN graph con-
sistently achieves the highest classification accuracy
compared to the other graphs. The results indicate
that the classification accuracy is much higher than
the other graph algorithms. So it improves the classi-
fication performance to a large extent, which suggests
that LRKNN graph is more informative and suitable
for SDA.

(ii) In most conditions, the performance of the combined𝑘NN algorithm is always superior to the separate
algorithm (without 𝑘NN), which means that our
proposed graph construct methods combined 𝑘NN
algorithm is extremely effective, especially for the
LRR algorithm.

(iii) Since the SR-graph (𝑙1-graph) lacks global constraints,
the performance improvement is not obvious even if
it is combined with the 𝑘NN algorithm.

(iv) In some cases (maybe some certain enough high
dimensionality), the traditional construct graph
methods such as 𝑘NN-graph and LLE-graph may
achieve good performances in some databases, but
they are not as stable as our proposed algorithm.

Table 2 shows the execution time of the eight methods
mentioned. We compute the total time with 20 independent
runs for 10 features. And Table 2 gives the average runtime
of the 20 runs for 10 features. We can see that although our
algorithm is slower than the traditional 𝑘NN algorithms, the
performance is much better than these baseline algorithms at
an acceptable runtime.

5.3. Experiment 2: Parameters Settings. We examine the effect
of the heat kernel parameters 𝜎 in LRKNN, SR-𝑘NN, LLE-𝑘NN, and KNNK graph. We vary the graph parameters 𝜎
and examine the classification accuracy on the four databases.
We also select 30% samples from each class to evaluate the
classification performance. The evaluations are conducted
with 20 independent runs and the averaged results are
adopted. We adopt the average results of the 10 different
numbers of selected features mentioned in Section 5.2 as the
final result, which are shown in Figure 2. We can see that the
classification accuracy is influenced by the kernel parameters.

We also evaluate the performance of different nearest
neighbor numbers for the LRKNN graph, namely, the value 𝑘
for the 𝑘NN algorithm. Here we conduct the experiments on
the ORL database and Extended Yale Face Database B. The
procedure is the same as the experiments above. We adopt
the average results of the 20 different runs as the final result,
which are shown in Figure 3.We can see that the classification
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Figure 1: Classification accuracy of different graphs with different selected features.

Table 2: Run time of different methods on real-world databases (unit (s)).

Graphs LRKNN LR SR-𝑘NN SR LLE-𝑘NN LLE KNNK KNNB
ORL 17.5078083 17.16502055 18.81038385 18.745907 2.20949085 2.1973647 2.1734913 2.1167409
YaleB 17.0695632 16.6934086 18.54172935 18.2687115 1.80366055 1.75954255 1.7359231 1.70582745
PIE 16.77245375 16.61093775 18.33027985 18.4719838 1.9091679 1.8791345 1.8077919 1.80170705
USPS 6.0444118 6.1392268 4.1187905 3.94524935 1.12164545 1.11113225 1.12937165 1.1236474

accuracy is improving by the increasing of numbers of nearest
neighbors. And when the nearest neighbors reach some
numbers like 3 or 4, the performance has a slight decrease,
since here we choose 4 as the number of nearest neighbors in
our experiments.

5.4. Experiment 3: Influence of the Label Number. We evaluate
the influence of the label number in this subsection. The
experiments are conducted with 20 independent runs for
each algorithm. We average them as the final results. The
procedure is the same as the experiments in Section 5.2. The
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Figure 2: Classification accuracy of different graphs with varying kernel parameters 𝜎.

bold numbers represent the best results. And the percentage
number after the database is the label rate. For each database,
we vary the percentage of labeled samples from 20% to 50%
and the recognition accuracy is shown in Table 3, fromwhich
we observe the following.

In most cases, our proposed LRKNN graph consistently
achieves the best results, which is robust to the label per-
centage variations. And it is worth noting that even in very
low label rate our proposed method can achieve high clas-
sification accuracy, while some other compared algorithms
are not as robust as our LRKNN algorithm especially when
the label rate is low. Thus, our proposed method has much
superiority compared with the traditional construct graph
methods. Sometimes these traditional methods may achieve
good performances in some databases with high enough label
rate. But they are not as stable as our proposed algorithm.

Since the labeled data is very expensive and difficult, our
proposed graph for SDA algorithm is more robust and
suitable for the real-world data.

5.5. Experiment 4: Performance of LRKNN Graph with Dif-
ferent Weight Methods. We evaluate the performance of
the different weight methods mentioned in Section 5.2 for
our LRKNN graph. We conduct 20 independent runs for
each algorithm. We average them as the final results. The
procedure is the same as the experiments in Section 5.2.
For each database, we show the performance for the three
weight methods (KNNE, KNNB, and KNNK) of 𝑘NN for
our LRKNN graph in Figure 4, from which we observe the
following.

Overall, the KNNK based LRKNN graph achieves the
best results compared with the other two 𝑘NNmethods. And
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Figure 3: Classification accuracy of LRKNN with nearest neighbor numbers 𝑘.
Table 3: Classification accuracy of different graphs with different label rates on four databases.

Graphs LRKNN LR SR-𝑘NN SR LLE-𝑘NN LLE KNNK KNNB
ORL (20%) 0.739063 0.564375 0.695 0.659688 0.675938 0.694063 0.438489 0.432261
ORL (30%) 0.865 0.753214 0.824643 0.8175 0.830357 0.84 0.696483 0.712444
ORL (40%) 0.9275 0.8575 0.9075 0.915417 0.916667 0.917083 0.889171 0.880085
ORL (50%) 0.9615 0.929 0.9535 0.959 0.953 0.944893 0.941861 0.9615
YaleB (20%) 0.872188 0.436875 0.704063 0.613438 0.645 0.684688 0.421005 0.435515
YaleB (30%) 0.901786 0.620357 0.811786 0.750714 0.751429 0.779286 0.612487 0.645828
YaleB (40%) 0.915833 0.742917 0.875417 0.840833 0.832083 0.829167 0.741223 0.789611
YaleB (50%) 0.9385 0.7805 0.931 0.892 0.8835 0.8925 0.824813 0.902639
PIE (20%) 0.623333 0.521667 0.622333 0.594667 0.594667 0.578667 0.376174 0.464566
PIE (30%) 0.752692 0.667308 0.736923 0.733462 0.749231 0.698846 0.559724 0.674269
PIE (40%) 0.820909 0.761364 0.839091 0.839091 0.852273 0.815455 0.72197 0.846924
PIE (50%) 0.885 0.833889 0.888333 0.881667 0.867222 0.908269 0.855231 0.875
USPS (20%) 0.685 0.684583 0.664167 0.685417 0.675417 0.609583 0.389417 0.41954
USPS (30%) 0.722857 0.69381 0.711429 0.67381 0.72 0.702857 0.510963 0.580313
USPS (40%) 0.793667 0.788333 0.787778 0.793333 0.790556 0.78 0.744394 0.765773
USPS (50%) 0.830667 0.844667 0.835333 0.828 0.827333 0.849333 0.86419 0.862344

we can see that in some datasets the performance gap of
the three 𝑘NN methods is very small, while in some other
datasets the performance gap ismuch bigger, since the KNNE
and KNNB cannot capture the local structure very well in
some datasets. They are not as stable as KNNK algorithm,
since here we choose the heat kernel weighting method for
LRKNN graph.

5.6. Experiment 5: Robustness to Different Types of Noises. In
this test we compare the performance of different graphs in
the noisy environment. Extended Yale Face Database B is
used in this experiment. The Gaussian white noise, “salt and
pepper” noise, and multiplicative noise are added to the data,

respectively. The Gaussian white noise is with mean 0 and
different variances from 0 to 0.1. The “salt and pepper” noise
is added to the image with different noise densities from 0 to
0.1. And multiplicative noise is added to the data 𝐼, using the
equation 𝐽 = 𝐼+𝑛∗𝐼, where 𝐼 and 𝐽 are the original and noised
data and 𝑛 is uniformly distributed random noise with mean
0 and varying variance from 0 to 0.1.

The number of labeled samples in each class is 30%.
The experiments are conducted 20 runs for each graph. We
average them as the final results.The procedure is the same as
the experiments in Section 5.2. The bold numbers represent
the best results. For each graph, we vary the parameter of
different noise.The results are shown in Tables 4, 5, and 6. As



Computational Intelligence and Neuroscience 9

4 6 8 10 12 14 16 18 202
Numbers of selected features

0.4

0.5

0.6

0.7

0.8

0.9

1
Te

st 
ac

cu
ra

cy

LRKNNE
LRKNNB
LRKNNK

(a) ORL database

4 6 8 10 12 14 16 18 202
Numbers of selected features

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Te
st 

ac
cu

ra
cy

LRKNNE
LRKNNB
LRKNNK

(b) Extended Yale Face Database B

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st 

ac
cu

ra
cy

4 6 8 10 12 14 16 18 202
Numbers of selected features

LRKNNE
LRKNNB
LRKNNK

(c) CMU PIE face database

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Te

st 
ac

cu
ra

cy

4 6 8 10 12 14 16 18 202
Numbers of selected features

LRKNNE
LRKNNB
LRKNNK

(d) USPS database

Figure 4: Classification accuracy of three weight methods for LRKNN graph.

we can see, the results of our method are stable for Gaussian
noise, “salt and pepper” noise, and multiplicative noise. And
because of the robustness of the low-rank representation to
noise, our method LRKNN is much more robust than other
graphs.With the different kinds of gradually increasing noise,
some kinds of methods’ performance fall a lot, while our
method's performance is robust and decrease little with the
increasing noises.

6. Conclusions

In this paper, we propose a novel combined low-rank and𝑘-nearest neighbor graph algorithm, which largely improves
the performance of SDA. The LRR can naturally capture

the global structure of the data. And the 𝑘-nearest neighbor
algorithm can maximally preserve the local geometrical
structure of the data. Therefore, it can largely improve the
performance using the 𝑘NN algorithm to satisfy the SDA’s
algorithmic requirements. Empirical studies on four real-
world datasets show that our proposed LRKNN graph for
Semisupervised Discriminant Analysis is more robust and
suitable for the real-world applications.
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Table 4: Classification accuracy of different graphs with varying variance Gaussian noise.

Gaussian 0 0.02 0.04 0.06 0.08 0.1
LRKNN 0.901786 0.856786 0.845 0.851071 0.841071 0.826786
LR 0.620357 0.544643 0.543214 0.552857 0.543929 0.535357
SR-𝑘NN 0.811786 0.785714 0.799286 0.788214 0.780357 0.776786
SR 0.750714 0.558571 0.572857 0.588214 0.621429 0.629643
LLE-𝑘NN 0.751429 0.741071 0.724643 0.735 0.726429 0.727857
LLE 0.779286 0.725 0.713214 0.713214 0.717143 0.716429
KNNK 0.612487 0.547453 0.542545 0.548299 0.553657 0.556745
KNNB 0.645828 0.579001 0.571481 0.573906 0.563472 0.575386

Table 5: Classification accuracy of different graphs with varying densities “salt and pepper” noise.

“Salt and pepper” 0 0.02 0.04 0.06 0.08 0.1
LRKNN 0.901786 0.881786 0.842857 0.831786 0.799286 0.760714
LR 0.620357 0.559643 0.524286 0.505 0.493214 0.47
SR-𝑘NN 0.811786 0.803571 0.778571 0.755357 0.735714 0.710714
SR 0.750714 0.738214 0.680357 0.6425 0.617143 0.61285
LLE-𝑘NN 0.751429 0.732857 0.655357 0.559286 0.496071 0.455357
LLE 0.779286 0.737143 0.670714 0.569286 0.508571 0.472143
KNNK 0.612487 0.551039 0.504207 0.466663 0.442531 0.43228
KNNB 0.645828 0.586118 0.536622 0.498804 0.484881 0.468962

Table 6: Classification accuracy of different graphs with varying variance multiplicative noise.

Multiplicative 0 0.02 0.04 0.06 0.08 0.1
LRKNN 0.901786 0.883571 0.886071 0.881786 0.873214 0.855357
LR 0.620357 0.597143 0.579643 0.566786 0.545 0.536429
SR-𝑘NN 0.811786 0.804286 0.779286 0.750357 0.75 0.719286
SR 0.750714 0.7225 0.657857 0.574286 0.52 0.47
LLE-𝑘NN 0.751429 0.731071 0.645357 0.548214 0.510714 0.447857
LLE 0.779286 0.724643 0.658214 0.566786 0.507857 0.472143
KNNK 0.612487 0.551147 0.508219 0.466734 0.4441 0.423919
KNNB 0.645828 0.587767 0.528635 0.498222 0.481003 0.476331

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (no. 51208168), Tianjin Natural Science
Foundation (no. 13JCYBJC37700), Hebei Province Natural
Science Foundation (no. E2016202341, no. F2013202254,
and no. F2013202102), and Hebei Province Foundation for
Returned Scholars (no. C2012003038).

References

[1] D. Zhang, Z.-H. Zhou, and S. Chen, “Semi-supervised dimen-
sionality reduction,” in Proceedings of the 7th SIAM Interna-
tional Conference on Data Mining (SDM ’05), pp. 629–634,
SIAM, Minneapolis, Minn, USA, April 2007.

[2] D. Cai, X. He, and J. Han, “Semi-supervised discriminant anal-
ysis,” in Proceedings of the IEEE 11th International Conference
on Computer Vision (ICCV ’07), pp. 1–7, IEEE, Rio de Janeiro,
Brazil, October 2007.

[3] Y. Zhang and D.-Y. Yeung, “Semi-supervised discriminant
analysis using robust path-based similarity,” in Proceedings of
the 26th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’08), pp. 1–8, Anchorage, Alaska, USA, June
2008.
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