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Intrinsically disordered regions (IDRs) are characterized by their lack
of stable secondary or tertiary structure and comprise a large part of
the eukaryotic proteome. Although these regions play a variety of
signaling and regulatory roles, they appear to be rapidly evolving at
the primary sequence level. To understand the functional implica-
tions of this rapid evolution, we focused on a highly diverged IDR in
Saccharomyces cerevisiae that is involved in regulating multiple con-
served MAPK pathways. We hypothesized that under stabilizing
selection, the functional output of orthologous IDRs could be main-
tained, such that diverse genotypes could lead to similar function
and fitness. Consistent with the stabilizing selection hypothesis, we
find that diverged, orthologous IDRs can mostly recapitulate wild-
type function and fitness in S. cerevisiae. We also find that the
electrostatic charge of the IDR is correlated with signaling output
and, using phylogenetic comparative methods, find evidence for
selection maintaining this quantitative molecular trait despite un-
derlying genotypic divergence.
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Current predictions suggest that close to 40% of all proteins in
eukaryotic organisms are either entirely disordered or con-

tain sizeable regions that are disordered, meaning they do not
autonomously fold into defined secondary or tertiary structures
(1, 2). These intrinsically disordered regions (IDRs) are thought
to have important implications for protein function (3, 4) and are
known to play regulatory roles, often through short linear motifs
(SLiMs) that control protein–protein interactions, localization,
degradation, and posttranslational modifications (5, 6). Although
proteome-wide studies have provided in silico evidence for con-
servation of length (7) and composition (8) in some IDRs, reports
of increased rates of insertions and deletions (9–13) and amino acid
substitutions (14) in IDRs are indicative of their rapid evolution
compared with ordered regions. In addition, although some SLiMs
are indeed conserved in IDRs (15–17), others appear in clusters
where precise position and number are not conserved (18–20).
Although it is reasonable to assume that conservation of sequence
in IDRs is indicative of functional conservation of SLiMs, it is more
difficult to interpret the functional consequences of IDRs that are
highly diverged at the sequence level: These may represent either
nonfunctional sequences evolving in the absence of constraint or
weakly constrained functional elements that are gained or lost in a
compensatory manner [undergoing evolutionary turnover (as de-
scribed in refs. 18, 21)], such that they are not conserved at the
amino acid sequence level.
Like IDRs, noncoding DNA often shows relatively rapid evolu-

tion and weak constraints at the sequence level (22). Interestingly,
IDRs show other parallels with noncoding DNA (18, 23, 24). For
example, nonconserved clusters of phosphorylation sites in IDRs are
reminiscent of nonconserved transcription factor binding sites in
enhancers. Although these enhancers and the binding sites within
them are not conserved, they can lead to the same expression pat-
terns (25). Preservation of expression patterns despite underlying
sequence divergence in these regions is thought to result from sta-
bilizing selection on quantitative phenotypes (21). Stabilizing selec-

tion could allow for quantitative phenotypes to be maintained within
an optimal range while allowing tolerance of mutations or insertions
and deletions, as these individually exert weak functional and se-
lective effects (21, 26). Although it is likely that some of these highly
diverged IDRs, like noncoding regions, are either nonfunctional or
sites of lineage-specific evolution (27), at least a portion of these
IDRs may be performing quantitative functions that are under sta-
bilizing selection (28).
In this study, we investigate whether the observed molecular

divergence in IDRs implies functional divergence or whether the
diversity in these regions could accumulate while functional output
is preserved under stabilizing selection. Under stabilizing selection,
we expect that diverged, orthologous IDRs have similar functional
outputs and confer similar fitness. To test this, we take advantage
of a model IDR that plays roles in multiple signaling pathways in
Saccharomyces cerevisiae. We show that orthologous disordered
regions can recapitulate wild-type morphology and quantitative
regulatory function. This represents in vivo evidence that disor-
dered signaling protein regions that are highly divergent at the
primary sequence level can perform similar functions and confer
similar fitness. We also find that the basal net charge of the IDRs is
correlated with the signaling output and, by applying phylogenetic
comparative methods to the basal net charge in these IDRs, find
evidence for selection on this quantitative molecular trait.

Results
An IDR in the Adaptor Protein Ste50 That Is Involved in Multiple
Signaling Pathways Is Highly Diverged at the Primary Amino Acid
Sequence Level. We chose to focus our study on an IDR in the
adaptor protein Ste50 that is involved in several highly studied
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MAPK signaling pathways in S. cerevisiae (Fig. 1A). We chose this
IDR in part because it is situated between two highly conserved
protein domains: the Sterile Alpha Motif (SAM) and the Ras
association (RA) domain (29–31) (Fig. 1B). We can therefore
confidently identify the orthologous protein sequence in other
hemiascomycete species, even though the primary amino acid
sequence has diverged rapidly (Fig. 1B). We find that the Ste50
IDR shows only 27.76% (SD = 11.94%) average pairwise percent
identity (Fig. 1C), which is similar to scrambled IDR sequences
(Materials and Methods), which show 24.40% pairwise percent
identity (mean of 100 simulations), and the 24.26% (SD = 12.27%)
pairwise percent identity that we get from aligning randomly chosen
nonhomologous disordered regions of the same length as the Ste50
IDR (Materials and Methods). The divergence of the Ste50 IDR also

appears to saturate with divergence time (Fig. S1). This rapid di-
vergence is not due to overall divergence of the Ste50 protein, as the
adjacent structured domains show strong conservation at the pri-
mary amino acid level [SAM, 43.02% (SD = 9.92), and RA domain,
83.61% (SD = 5.28) pairwise percent identity].
The Ste50 IDR also represents a good candidate for evolu-

tionary analysis because it contains a cluster of MAPK consensus
phosphorylation sites (S or T, followed by a P) that contribute to
signal modulation of MAPK pathways (32–34). Evolutionary
turnover within clusters of phosphorylation sites in disordered
regions is thought to be widespread (19, 28, 35–37), and the
alignment of Ste50 shows that MAPK consensus sites differ in
position, spacing, and number, consistent with evolutionary
turnover of these sites within the IDR (Fig. 1B).
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Diverged Orthologous IDRs Recapitulate Multiple Signaling Functions
in S. cerevisiae. Phosphorylation of the MAPK consensus sites in
the Ste50 IDR results in attenuation of signaling by dissociation
of the signaling complex from the membrane (33). Phospho-
proteomic studies also indicate phosphorylation of a subset of
these sites in standard growth conditions (19, 38–43), which we
refer to as basal phosphorylation. To test the function of this
region in S. cerevisiae, we therefore made an unphosphorylatable
mutant, where each consensus site was mutated to alanine (re-
ferred to as 5A mutant) (Materials and Methods). Previous
studies have shown that this mutant is defective in Hog1 sig-
naling dynamics and displays increased basal expression of
FUS1, presumably because of overactive effector kinases Fus3
and Kss1 (32, 33). To determine whether or not diverged se-
quences are divergent in function, we swapped orthologous IDR
sequences from two yeast species (Candida glabrata and
Lachancea kluyveri) into S. cerevisiae (Materials and Methods)
and quantified the function of these chimeric Ste50s compared
with the wild-type and 5A mutant (Fig. 2A).
Interestingly, we noticed that the 5A mutant displays abnor-

mal morphology in a small subset of cells (Fig. 2A, zoomed-in
micrograph and Fig. S2, wide field of view), which, to our
knowledge, was previously unreported. We therefore first tested
whether the chimeric Ste50 proteins could rescue these abnor-
mal morphologies. We quantified morphology using the length
of the major axis (a measure to capture the elongated shape of
the abnormal cells) as well as circularity (a measure to capture
the irregular, noncircular shape of the abnormal cells) (see
Materials and Methods for details). Along these dimensions, the
vast majority of cells fall into two clear clusters based on their
shape: nonbudding cells, which are highly circular and have a
small major axis length, and budding cells, which are less circular
and have a higher major axis length (Fig. 2B). We defined the
cells that fell outside of these clusters as “abnormal” cells and
quantified the fraction of abnormal cells for each genotype (Fig.
2C). We found 6.3% (SD = 1.3%) abnormal cells in the 5A
mutant population, compared with less than 2% (SD ≤ 1.5)
abnormal cells for the wild-type strain and the orthologous, di-
verged IDRs (Fig. 2C). We therefore conclude that the diverged
IDRs quantitatively recapitulate wild-type morphology.
We then sought to quantify the basal activity of the Fus3 and

Kss1 MAPKs, as the IDR is known to be involved in negative
regulation of these kinases (32, 33). We quantified basal MAPK
signaling by using a genomically integrated GFP reporter driven by
the FUS1 promoter (pFUS1), a transcriptional target of Ste12, the
effector of Fus3 and Kss1 signaling (44, 45). As expected, we
found that the 5A mutant had significantly higher levels of basal
pFUS1-GFP expression compared with the wild type in flow
cytometry analysis (Fig. 2D) (Materials and Methods). This is
consistent with the IDR being important for negative regulation of
basal Fus3 and Kss1 signaling, as suggested by previous studies
(32, 33). In contrast, we found that the diverged, orthologous
IDRs mostly recapitulated wild-type basal pFUS1 expression.
The Ste50 IDR has also been shown to modulate the dynamics

of Hog1 activity following activation by osmotic stress. Previous
studies have shown that Hog1 is active for a longer amount of time
when the five phosphorylation sites in the Ste50 IDR are mutated
to alanine—this is thought to happen because of relaxed negative
feedback on the HOG (High Osmolarity Glycerol) pathway (32,
33). Based on previous work (46), we used Hog1-GFP nuclear
localization as a proxy for Hog1 activity. To eliminate experimental
day-to-day variation in the length of Hog1 activity following stim-
ulation, we devised an assay through which we could directly
compare Hog1 signaling for different IDR genotypes in an iden-
tical environment (Fig. 2E, Top). To do so, we constitutively
expressed different fluorescent proteins in wild-type and experi-
mental (i.e., 5A or orthologous IDR) strains to differentially label
IDR genotypes in each experiment. We were thus able to coculture

strains and, following addition of stimulus, captured Hog1 nuclear
localization for single cells with different IDRs in the same field of
view through time-lapse imaging (see Materials and Methods for
details). As expected, Hog1 in the 5A mutant displayed a signifi-
cantly slower return to baseline activity compared with the wild
type, as evidenced by a longer duration and magnitude of Hog1
nuclear localization (Fig. 2E). However, the diverged orthologous
IDRs recapitulated the wild-type signaling dynamics, showing no
significant deviation from wild type in the duration and magnitude
of Hog1 localization.

Diverged Orthologous IDRs Rescue Fitness in S. cerevisiae. Having
established that the diverged IDRs from other species could per-
form the known signaling functions of the S. cerevisiae IDR, we
tested whether they were able to support wild-type growth and re-
production. We therefore quantified the fitness of the genotypes
carrying diverged orthologous IDRs. For this we used a quantitative
competitive growth assay, where we directly competed the wild-type
strain against all experimental strains (Fig. 3A; see Materials and
Methods for details). We did this by labeling the wild type with one
fluorescent protein (ymCherry or mTagBFP2) and the experimen-
tal strains with a different fluorescent protein (ymCherry or
mTagBFP2) and measuring growth of serially diluted, cocultured
cells over time. We found that although the 5A mutant displayed a
significant fitness defect compared with the wild-type strain (mean
selection coefficient of –0.038, SE = 0.005), the diverged IDRs
displayed a much lower fitness defect compared with the wild-type
strain (mean selection coefficient of –0.014, SE = 0.004 for
C. glabrata and –0.012, SE = 0.002 for L. kluyveri) (Fig. 3B). This is
consistent with these IDRs recapitulating not only the function of
the S. cerevisiae IDR in vivo but also recapitulating most of the
fitness of the wild-type IDR (see Discussion).

Basal Net Charge of Diverged Sequences Is Correlated with Functional
Output. Despite the sequence divergence of this IDR in ortholo-
gous yeast proteins, the IDRs we tested were able to mostly re-
capitulate function and fitness in S. cerevisiae. This led us to ask if
there are certain features in the sequence that are contributing to
function and are therefore likely to be under selection. Although
we know that the five MAPK consensus phosphorylation sites are
important for function in S. cerevisiae (32, 33), the L. kluyveri IDR
only has two consensus sites (Fig. 1B) and has a similar functional
output (basal FUS1 signaling and morphology) to S. cerevisiae
(Fig. 2). Further, the C. glabrata and L. kluyveri IDRs conferred
almost identical fitness in the S. cerevisiae background despite the
former having five consensus phosphorylation sites and the latter
having two (Fig. 3B). Taken together, these results suggest that the
number of MAPK consensus phosphorylation sites alone does not
explain the functional output of the Ste50 IDR. However, the
multiply-phosphorylated Ste50 IDR’s interactions with mem-
brane-bound Opy2 (33) are reminiscent of the Ste5 disordered
signaling region in S. cerevisiae, whose multiple MAPK consensus
phosphorylation sites are thought to electrostatically modulate its
interactions with the membrane (47). Net charge is also thought to
be a general functional property of IDRs (5, 48) and has been
shown to modulate conformational and binding properties of other
intrinsically disordered proteins (49–51). We therefore speculated
that the salient sequence feature influencing the functional output
of the Ste50 IDR could be its net charge.
Because our simplest quantitative measure of functional out-

put is the basal expression of pFUS1, we correlated this with the
basal net charge for each of the IDRs that we tested in our
previous experiments (Fig. 4, blue points). We calculated the
basal net charge of each IDR by considering its net charge (sum
of positive and negatively charged residues) including basal
phosphorylation at up to two SP sites, as mass spectrometry
studies have found that up to two serines are phosphorylated in
this IDR under basal conditions in S. cerevisiae (as reported in
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refs. 19, 38–43). Therefore, if the IDR has two or more SP sites,
we assume that two of these serines are phosphorylated under
basal conditions and add a charge of –4 (–2 for each phos-
phorylation site) to the net charge of the IDR (see Materials and
Methods for details). To test the hypothesis that two SP sites are
phosphorylated under basal conditions and contribute to net
charge, we constructed an S. cerevisiae IDR where three out of five

[S/T]P MAPK consensus phosphorylation sites were mutated to
alanine, but two of the [S/T]P MAPK consensus phosphorylation
sites were mutated to double glutamic acids (EE), as phospho-
charge mimics (see Fig. S3A). By our calculation, this IDR has
the same basal net charge as the basally phosphorylated wild-type
S. cerevisiae IDR. We find that this IDR (which we refer to as “WT-
charge”) has wild type-like pFUS1 expression levels (Fig. S3B) and
wild type-like morphology (Fig. S3C), supporting our assertion that
basally phosphorylated sites in the Ste50 IDR contribute to net
charge, which is associated with wild-type function.
To further test the correlation between basal net charge and

functional output in the form of pFUS1 expression, we engineered
a series of IDRs broadly falling into the following categories: point
mutations in the S. cerevisiae IDR, more examples of orthologous
IDRs, and chimeric IDRs (Fig. S4). We also tested 16 other se-
quence features that could potentially impact the functional out-
put of these IDRs (Fig. S5) but only found a strong and significant
positive correlation (R2 = 0.69, Bonferroni corrected P = 0.001)
between the basal net charge of these sequences and their func-
tional output (Fig. 4, black points). The positive relationship be-
tween charge and signaling is similar to previous evidence from
Ste5 suggesting that an increase in negatively charged residues
weakens the interaction of the disordered region with the mem-
brane, thus decreasing signal. Taken together, these data suggest
that the amino acid composition of these sequences can modulate
the functional output of the IDRs via the basal net charge.

Selection Maintains Functional Output Despite Divergence at the
Primary Sequence Level. We next wanted to understand whether
selection is preserving the function of these IDRs, despite the
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apparent divergence at the level of the primary amino acid se-
quence. Because the basal net charge of the IDRs is strongly
correlated with their functional output (Fig. 4), we considered this

to be a quantitative trait on which selection could act. Stabilizing
selection is expected to decrease trait variance by removing extreme
phenotypes from the population (52–54). We therefore used a
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phylogenetic comparative approach to test for reduced trait vari-
ance, which indicates selective constraint to preserve basal net
charge across species (Fig. 5A). To do so, we applied a Brownian
motion (BM) model (55) (Materials and Methods) to estimate the
evolutionary variance of basal net charge and compared it to a null
expectation of disordered region evolution without selection on
basal net charge.
To obtain an expectation for the evolution of basal net charge

in the absence of selection on basal net charge, we simulated
molecular evolution of the Ste50 IDR. To do so, we used a
simulator that includes disordered region-specific substitution
patterns as well as position-specific local evolutionary rates, such
that SLiMs in disordered regions are preserved in the simula-
tions through purifying selection (16, 56) (Materials and Meth-
ods). In using this simulation as a null expectation, we do include
selection that can be inferred from the multiple sequence
alignments but do not include additional selection on basal net
charge. Thus, our null expectation includes selection, and devi-
ations from it imply additional selection that is not apparent in
sequence alignments (Discussion).
We then compared the variance in the basal net charge

inferred using the BM model on these simulated sequences to
that inferred for the real Ste50 IDR alignment. We found that
the variance of the real Ste50 IDR sequences was lower than all
simulated sequences (Fig. 5B, turquoise plots). Lower variance
in basal net charge for Ste50 implies evolutionary constraint on
basal net charge, consistent with stabilizing selection.
To confirm that the findings were not a result of unrealistic as-

sumptions in our simulations, as a negative control, we also per-
formed the analysis with positive and negative charges reassigned to
four different residues (asparagine, glycine, threonine, alanine) than
those known to be charged under physiological pH conditions
(glutamic acid, aspartic acid, lysine, arginine) and assuming basal
phosphorylation of two “scrambled” phosphorylation sites (“PSX”
motifs, where X is any amino acid other than proline). We found
that the evolutionary variance in these negative controls (scrambled
charged residues and phosphorylation motifs) was not different
from the null expectation (Fig. 5B).
We conducted the same analysis on Ste5, the previously

mentioned signaling protein known to rely on net charge for
functional output (47). If selection is acting to preserve basal net
charge in the Ste5 disordered region, we also expect reduced
evolutionary variance relative to simulations. We find similar
results for Ste5 as for Ste50 (Fig. 5B, gray plots), consistent with
selection preserving its function, and suggesting that the phylo-
genetic comparative approach may be a general method to de-
tect selection on basal net charge in diverged disordered regions.

Discussion
To date, experimental studies of protein evolution have focused
on structured classes of proteins such as enzymes, where point
mutations in the primary amino acid sequence are consistently
coupled with functional divergence (57). However, the functional
consequences of evolutionary divergence in IDRs of proteins
have remained largely unexplored, save for two in vitro studies
(58, 59).
In this study, we show that highly diverged, orthologous IDRs can

perform similar signaling functions and confer similar fitness to a
wild-type IDR in S. cerevisiae.To do so, we took advantage of several
quantitative signaling assays, including a dynamic fluorescence–
microscopy experiment that allows comparison of different genotypes
in coculture. This allows for quantitative comparisons of signaling
dynamics by controlling for imaging and culture conditions.
Using these quantitative assays, we found that the orthologous

IDRs did not precisely recapitulate wild-type signaling and fit-
ness in S. cerevisiae. Although we chose an IDR that is involved
in conserved signaling pathways, there could be coevolution of
the orthologous IDRs with other proteins in their native sig-

naling pathways or with the rest of the orthologous protein itself.
Thus, inserting the orthologous IDRs in a S. cerevisiae context
could be slightly detrimental to their function. This is an im-
portant caveat for experimental studies where protein regions
are expressed outside their native context.
We found evidence that the electrostatic charge of the Ste50

IDR is correlated with signaling output of the mating pathway.
Although previous studies had identified the phosphorylation
sites in this region as being important for signaling (32, 33), we
found no correlation between just the number of MAPK con-
sensus sites in the IDR and the functional output we tested. We
speculate that the phosphorylation sites contribute to the net
charge of the region and allow the cell to modulate the charge of
the region in response to signals. This is consistent with the
model for the evolution of phosphorylation sites as a mechanism
for modulation of charge (60). The importance of the basal net
charge of the Ste50 IDR in signaling function is also consistent
with recent studies suggesting that “cryptic” electrostatic prop-
erties encoded in amino acid sequences of IDRs are important
for their function (61, 62). We speculate that the charge of the
Ste50 IDR affects interactions with the cell membrane, as has
been demonstrated for Ste5 (47), but understanding the precise
biophysical and biochemical properties of the Ste50 IDR that
translate charge into signaling output is an important area for
further study.
By treating the charge as a quantitative trait (52), we were able

to apply phylogenetic comparative methods (53, 55, 63) to the
disordered protein sequences and found evidence that these
electrostatic properties are likely under stabilizing selection.
Because disordered regions show little conservation at the se-
quence level, functional prediction methods based on amino
acid sequence similarity have limited power. We believe that
phylogenetic comparative methods represent an alternative ap-
proach to detect functional features within disordered regions.
Selection on quantitative traits is often inferred using the
Ornstein–Uhlenbeck (OU) model, a stochastic model that in-
cludes the tendency of a trait to evolve toward an adaptive
optimum (53). However, due to the limitations of the OU model
(64), we used the simpler approach of testing for reductions in
trait variance to infer selection (54).
To test for selection, we compared real to simulated protein

sequences. Evidence for selection may be represented by any
disparity between these and real protein sequences. It is important
to note that our simulations do include selection to preserve short
conserved motifs (through position-specific rates) as well as se-
lection to retain the amino acid frequencies of disordered regions
(through disordered region-specific substitution models) (16, 56).
Therefore, when we find evidence for selection, it is specifically
evidence for conservation beyond what can be expected based on
our models of disordered sequence evolution alone. Thus, we
believe the reduction in variance observed in real proteins relative
to simulated proteins is sufficient to conclude that the evolution of
net charge within these disordered regions is selectively constrained.
We propose that this is an example of a quantitative trait under
stabilizing selection, in which the molecular phenotype of net charge
is maintained within an optimal range.
Our results suggest the following picture of disordered region

evolution: Rapid evolution within IDRs introduces many mutations
of individually small fitness effects, creating slight perturbations in
net charge that fall within the nearly neutral range. These mutations
contribute to a significant amount of protein sequence divergence.
However, stabilizing selection will remove mutations that perturb
quantitative traits such as net charge beyond an acceptable range,
leading to reduced evolutionary variance. This reflects a form of
mutation-selection balance and offers an explanation for the exis-
tence of highly divergent genotypes within disordered regions, de-
spite functional constraints. Although mutational input in IDRs
is sufficient to generate abundant variation between species, our
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results are evidence of stabilizing selection constraining a molecular
phenotype despite this variation.

Materials and Methods
Ste50 Alignment and Quantification of Divergence. The multiple sequence
alignment for the Ste50 protein and its orthologs (MUSCLE) (65) as well as
their illustrated phylogenetic relationship (Fig. 1B) were acquired from the
Yeast Gene Order Browser (YGOB) (66) and visualized using Jalview (67).
Boundaries for the Ste50 IDR (A.A. 151–251) were acquired using disorder
predictions from DISOPRED3 (68). IDR boundaries for the Ste50 orthologs
were determined via multiple sequence alignment, using the boundaries
from the S. cerevisiae Ste50 IDR. All pairwise percentage identities were
calculated using Jalview (67), which calculates the pairwise percent identity
as the number of identical residues divided by the number of aligned resi-
dues for each pairwise realignment. For the set of randomly scrambled IDRs,
the amino acids in the IDRs from Ste50 and each of its orthologs were
randomly scrambled 100 times (leaving the remainder of each protein
unscrambled), and the average percent identity of each pairwise alignment
was calculated (distribution of these averages is plotted in Fig. 1C). For the
comparison of pairwise percent identity to random sequences, we calculated
the pairwise percent identity of 19 (same number as the YGOB orthologs)
random IDRs in the yeast proteome that had the same length as the Ste50
IDR (YBL081W, YBR033W, YBR081C, YDR282C, YDR527W, YIL105C, YJL090C,
YLL027W, YLR399C, YML045W, YMR266W, YMR277W, YNL047C, YNL288W,
YOR153W, YOR316C, YPL053C, YPL270W, and YPR115W).

We also calculated dN/dS ratios for the IDR, SAM domain, and RA domain
(Fig. S6). To do this, we first used PAL2NAL (69) to obtain a codon alignment
based on the protein alignment and DNA sequences of Ste50 for the Saccha-
romyces sensu stricto species available from YGOB (S. cerevisiae, Saccharomyces
mikatae, Saccharomyces kudriavzevii, and Saccharomyces uvarum). We then
used the PAML CODEML package (70) on the respective alignments and the
corresponding species topology tree and estimated the dN/dS ratio across the
respective trees using the M0 model and the F1 × 4 codon frequency model.

Strain Construction and Growth Conditions. All strains (Table S1) were con-
structed in the S. cerevisiae BY4741 ssk22Δ0::kanMX4 ssk2Δ0 background
(ssk2 and ssk22 were knocked out to disable the partially redundant SLN1
branch of the HOG pathway, as Ste50 is only active in the SHO1 branch) (71).
Mutagenized IDRs, chimeric IDRs, and reporters were constructed using Gibson
cloning (72) and standard site-directed PCR mutagenesis and confirmed by
Sanger sequencing. IDRs from orthologous proteins were amplified from pu-
rified genomic DNA of C. glabrata, L. kluyveri, Zygosaccharomyces rouxii,
Lachancea waltii, Lachancea thermotolerans, and Kluyveromyces lactis (see Fig.
S4 for IDR a.a. boundaries for each species). All transformations were per-
formed using the standard lithium acetate procedure (73). Genomic integration
of IDR transformants was done using the seamless Delitto Perfetto in vivo site-
directed mutagenesis method (74) at the endogenous Ste50 IDR locus and
confirmed by Sanger sequencing. Genomic integration of the pFUS1-GFP re-
porter was done at the HO locus using a selectable marker (URA3) and con-
firmed by PCR. Genomic integration of pRPL39-ymCherry and pRPL39-mTagBFP2
was done at the pCAN1 locus using a selectable marker (LEU2) and confirmed by
PCR and/or microscopy. Hog1 was tagged with yemGFP at the C terminus using
Delitto Perfetto and confirmed by Sanger sequencing.

All experiments were performed on log-phase cells grown at 30 °C in rich
(YEP) or synthetic complete (SC) media lacking appropriate nutrients to
maintain selection of markers, unless otherwise stated. Two percent (wt/vol)
glucose was used as the carbon source for all strains. Where necessary,
Geneticin (G418) or 5-Fluoroorotic acid (5-FOA) (75) was used for selection or
counterselection, respectively.

Confocal Microscopy and Image Analysis. All images were acquired on a TCS-
SP8 confocal microscope (Leica).

For the morphology experiment, cells were imaged in brightfield on
standard, uncoated glass slides. For quantification of morphology, single cells
in micrographs were segmented using the thresholding function in ImageJ
(76) applied to brightfield images (see Fig. S2 for example images) slightly
below the focal plane. The features of each segmented cell, particularly the
length of the major axis and circularity, were quantified in ImageJ, and
Gaussian mixture modeling (using the “mclust” package in R) (77) was used
to recognize budding cell (long major axis, lower circularity) and non-
budding cell (shorter major axis, high circularity) clusters for each replicate
experiment, which included four micrographs for each of the four geno-
types. In each replicate (16 images), we automatically identified 271–532
cells of each of the four genotypes.

Abnormal cells (and missegmented objects) were exclusively assigned to
the budding cell cluster by theGaussianmixturemodel due to their elongated
shape. To identify these abnormal cells, we quantified the Mahalanobis
distance of each cell in the budding cell cluster to the center of that cluster
(identified independently in each replicate, which includes all four geno-
types). The 10% most distant cells to the center of the budding cell cluster
were classified as being abnormally shaped (for each replicate). We divided
the number of abnormally shaped cells by the total number cells of that
genotype and reported the average over the three replicates in Fig. 2C.

To control for possible variation in the fraction of budded cells for each
genotype (for example, due to cell cycle effects of the mutations, or other
types of variation) that could lead to a bias to identify abnormal cells, we also
computed the percentage of budded cells classified as abnormal for each
genotype and found the same results as reported above: The 5A strain has a
significantly higher fraction of abnormal cells than the WT or orthologous
IDR strains.

For the dynamic Hog1 signaling assay, cocultured Hog1-GFP–tagged wild-
type and experimental strains (expressing constitutive ymCherry and
mTagBFP2, respectively) (Strain Construction and Growth Conditions) were
imaged simultaneously on glass dishes coated with 0.1 mg/mL conA as a
binding agent (to allow for continuous imaging of the same cells in media
over time) (as described in ref. 78). Briefly, glass dishes were spotted with
conA solution for 15 min, after which point the conA was aspirated and the
spot was washed with sterile water. Once the conA spot was dry, the cells
were incubated on the conA spot for 10 min, excess cells were washed off,
and the dish was filled with SC media lacking histidine and leucine (the same
media in which the cells were cultured). Hog1-GFP was visualized in the cells
at baseline levels every 5 min for 10 min, after which NaCl (dissolved in
media) was added to the dish on the microscope stage to a final concen-
tration of 0.5 M, serving as the stimulus for the HOG pathway. After addi-
tion of NaCl, the same cells were imaged every 5 min for 60 min. Eight evenly
spaced z slices covering ∼6 microns in the z plane were imaged, and the
maximum projections of these z stacks were used for downstream analysis.
After visualization of Hog1-GFP using the 488-nm laser, the 558-nm and
405-nm lasers were switched on to identify the genotype of the cells [wild-
type or experimental IDR, based on which fluorescent tag (mCherry or
mTagBFP2) was being constitutively expressed]. We sequentially switched on
the lasers in this way to prevent the cells from exposure to blue (UV) light
during the experiment.

Automated segmentation and quantification of Hog1-GFP time-lapse
microscopy images was done using previously describedmethods (79). Images
were manually filtered to remove out-of-focus or missegmented cells as well
as buds lacking nuclei. Normalized spatial spread (79) of Hog1-GFP fluores-
cence was used as a measure of nuclear localization. We plotted this mea-
sure over time for each cell and reported the average area under the curve
in Fig. 2E. All comparisons are made between cocultured cells that were
imaged on the same dish and in the same field of view.

Quantification of Basal FUS1 Expression. Flow cytometry was performed on a
MACSQuant VYB (Miltenyi Biotec Inc.). GFP expression of the integrated
pFUS1-GFP reporter (Strain Construction and Growth Conditions) was
quantified for 50,000 cells per biological replicate. All GFP intensity values
were normalized to the geometric mean wild-type GFP intensity value of the
day the experiment was run. Normalized geometric mean GFP intensity
values are reported in Fig. 2D.

Quantitative Fitness Assay. The quantitative fitness assay was adapted from ref.
80. Briefly, individual strains were grown for 48 h at 30 °C in 5 mL of cultures
on a rolling wheel. To start the competitive fitness experiment, equal pro-
portions of wild-type and experimental strains (constitutively expressing
ymCherry or ymTagBFP2) were mixed in deep 96-well blocks (100 μL of a single
ymCherry expressing strain and 100 μL of a single ymTagBFP2 expressing strain
into 600 μL of distilled water) at a final 1,024-fold dilution. The cells were then
serially diluted 1,024-fold every 24 h. With an estimated 2 × 108 yeast cells per
mL at saturation, the population size (Ne) is ∼3.44 × 105.

Each genotypewas labeled with both fluorescent proteins, and there were
four biological replicates of each competition (two with each color combi-
nation). Therefore, we controlled for potential competitive advantage of
expressing one fluorescent protein over the other by pooling equal replicates of
each color combination (e.g., two biological replicates of blue wild type vs. red
experimental strain plus two biological replicates of red wild type vs. blue ex-
perimental strain). Using the MACSQuant VYB (Miltenyi Biotec Inc.) flow
cytometer, 50,000 cells per competition were counted at the 20th and the 40th
generation. We analyzed the data using Flowing software (by Perttu Terho,
freely available at flowingsoftware.com) to identify the two differently colored
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populations of cells. Gates for each population were drawnmanually to exclude
cells fluorescing in both red and blue channels (dead cells) and were kept
consistent throughout the experiment. We then calculated the relative selec-
tion coefficient (s) as the increase in logarithmic ratio of the wild-type (WT) and
experimental (EXP) cells every generation (81–83), as follows:

ln EXPt
WTt

−   ln EXP0
WT0

t
=   lnð1+ sÞ,

where t indicates the number of generations and s is the selection co-
efficient. We report s in Fig. 3.

Ste50 IDR Sequence Feature Calculations. We calculated a series of different
features for the wild-type Ste50 IDR as well as each IDR that we engineered
and regressed the mean pFUS1-GFP levels as a quantitative functional output
on these values (correlation shown in Fig. 4). We calculated length; pro-
portion of TP sites, SP sites, or TP/SP sites; number of TP sites, SP sites, or TP/
SP sites; net charge of TP sites, SP sites, and TP/SP sites; and net charge plus
varying levels of basal phosphorylation on TP sites, SP sites, or TP/SP sites for
each IDR. For net charge, we added positively charged residues (lysine, ar-
ginine) to negatively charged residues (glutamic acid, aspartic acid) for each
IDR, unless otherwise indicated. For net charge with basal phosphorylation
(“basal net charge”), we calculated net charge with the above-mentioned
method but added a charge of –2 for each phosphorylation site that could
potentially be phosphorylated in the IDR. For example, if an IDR had three
phosphorylation sites and a net charge of +2 and we considered the net
charge with basal phosphorylation of two SP/TP sites, we calculated a value
of 2 + 2 * –2 = –2. All trait calculations were made using base functions in R,
except the proportion of TP, SP, or TP/SP sites, which was calculated using
the “protr” package in R (84); the Henderson–Hasselbalch net charge and
hydrophobicity calculations, which were done using the “Peptides” package
in ref. 85; and the polarity calculation, which was done using the “alaka-
zam” package in R (86).

Test for Selection on IDR Sequence Features/Quantitative Traits. To estimate
evolutionary time for the phylogenetic comparative method, we assumed
that evolutionary distance could serve as a proxy for evolutionary time
(following ref. 54). Multiple sequence alignments for Ste5 and its orthologs
were obtained from YGOB (66). All evolutionary analyses were performed
on only the longest disordered region within Ste5; the boundaries of this
region across all orthologs were determined with DISOPRED3 (68) predic-
tions for S. cerevisiae, as with Ste50 (described in Ste50 Alignment and
Quantification of Divergence). Evolutionary distances for both Ste50 and
Ste5 disordered regions were estimated across the YGOB species’ phylogeny
(66) using PAML (70) under the WAG model, with an initial kappa of 2, initial
omega of 0.4, and clean data set to 0.

To obtain the expectation of quantitative trait evolution in the absence of
selection on the quantitative trait, we simulated a set of 1,000 IDRs, following

methods and using software from ref. 56. Briefly, we used a phylogenetic
hidden Markov model to infer (i) the location of conserved functional SLiMs,
(ii) a column (per site) rate of evolution, and (iii) a local (window of 31
residues) rate of evolution. The simulated disordered regions were gener-
ated using the S. cerevisiae disordered region as the root sequence, the
constraints inferred from the phylogenetic hidden Markov model, as well as
an amino acid substitution model that accounts for the exchangeability of
amino acid pairs specific to disordered regions (56).

We applied a BM model to both real and simulated sequences. BM is a
model that can be used to describe the evolution of quantitative traits (55).
This model is given by the equation: dX(t) = σdB(t), where dX(t) represents
the change in a trait value (X) over time (t), σ represents the intensity of
random fluctuations, and B(t) is drawn at random from a normal distribution
with a mean of 0 and a variance of σ2 (87). We applied this model using the
“GEIGER” package in R (88). Basal net charge was calculated (Ste50 IDR
Sequence Feature Calculations) assuming basal phosphorylation of up to
two “SP”motifs (each phosphorylation event decreases the net charge by 2).
As a negative control, we defined another quantitative trait—that is,
“scrambled” charge—with positive and negative charges reassigned to four
different residues (asparagine, glycine, threonine, alanine) than those
known to be charged under physiological pH conditions and assuming basal
phosphorylation of up to two “scrambled” phosphorylation sites (PSX mo-
tifs, where X is any amino acid other than proline).

Estimation of evolutionary variance with BM assumes mutations have
approximately symmetrically distributed effects on quantitative traits with
mean equal to zero. We therefore tested the average effect of a random
mutation on the basal net charge trait (Fig. S7). We did this by using evolver
in the PAML package (70). We simulated nucleotide evolution using the
Ste50 IDR nucleotide sequence as the root sequence, under the HKY85
model with parameters estimated from the Ste50 IDR alignment of sensu
stricto species: kappa of 3.36 and base frequencies of 0.20370, 0.31145,
0.31481, and 0.17003 for T, C, A, and G, respectively. We ran the simulation
2,000 times and calculated the difference in basal net charge from the initial
root sequence for the 1,472 sequences that only had one mutation.
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