
Cell population structure prior to bifurcation predicts
efficiency of directed differentiation in human induced
pluripotent cells
Rhishikesh Bargajea,1, Kalliopi Trachanaa,1, Martin N. Sheltona, Christopher S. McGinnisa, Joseph X. Zhoua,
Cora Chadicka, Savannah Cookb, Christopher Cavanaughb, Sui Huanga,2, and Leroy Hooda,2

aInstitute for Systems Biology, Seattle, WA 98109; and bInstitute for Stem Cell & Regenerative Medicine, University of Washington Medicine Research,
Seattle, WA 98109

Contributed by Leroy Hood, December 29, 2016 (sent for review December 7, 2016; reviewed by Alfonso E. Martinez Arias and Irving L. Weissman)

Steering the differentiation of induced pluripotent stem cells
(iPSCs) toward specific cell types is crucial for patient-specific
disease modeling and drug testing. This effort requires the capac-
ity to predict and control when and how multipotent progenitor
cells commit to the desired cell fate. Cell fate commitment repre-
sents a critical state transition or “tipping point” at which complex
systems undergo a sudden qualitative shift. To characterize such
transitions during iPSC to cardiomyocyte differentiation, we ana-
lyzed the gene expression patterns of 96 developmental genes at
single-cell resolution. We identified a bifurcation event early in the
trajectory when a primitive streak-like cell population segregated
into the mesodermal and endodermal lineages. Before this branch-
ing point, we could detect the signature of an imminent critical
transition: increase in cell heterogeneity and coordination of gene
expression. Correlation analysis of gene expression profiles at the
tipping point indicates transcription factors that drive the state
transition toward each alternative cell fate and their relationships
with specific phenotypic readouts. The latter helps us to facilitate
small molecule screening for differentiation efficiency. To this end,
we set up an analysis of cell population structure at the tipping
point after systematic variation of the protocol to bias the differ-
entiation toward mesodermal or endodermal cell lineage. We
were able to predict the proportion of cardiomyocytes many days
before cells manifest the differentiated phenotype. The analysis of
cell populations undergoing a critical state transition thus affords
a tool to forecast cell fate outcomes and can be used to optimize
differentiation protocols to obtain desired cell populations.
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The availability of human induced pluripotent stem cells
(iPSCs) with their potential to differentiate into virtually any

cell type creates unprecedented possibilities, not only to study
human development and disease but also to generate patient-
specific cells to determine personalized drug response (1, 2).
However, steering iPSCs efficiently into pure populations of a
specific cell type, such as cardiomyocytes, remains a challenge,
because the binary nature of cell fate decisions often causes the
“leakage” of cells into undesired lineages at each such decision
point. Additionally, optimizing established differentiation pro-
tocols for a specific genetic background (i.e., patient-specific
iPSC lines) to maximize differentiation efficiency is time-con-
suming because of the long time period (up to weeks) until cells
display the differentiated phenotype that informs about the
success of a differentiation protocol. Thus, it is paramount to
develop tools that not only reveal the critical regulators that
govern lineage-specific decision-making but at the same time,
also facilitate and shorten the optimization procedures for iPSC
differentiation protocols.
Toward this aim, longitudinal single-cell gene expression

analysis provides a new avenue to understand lineage commitment
in mouse and human pluripotent cells (3–5). Reconstructing

lineage trajectories at single-cell resolution captures cell fate
transitions in a large statistical ensemble of identical systems as
each individual progenitor cell in a differentiating population,
allowing us to dissect molecular and cellular patterns driving
lineage commitment. For instance, single-cell resolution analyses
have shown that cell types form discrete clusters when gene ex-
pression patterns are visualized in a low-dimensional space using,
for example, principle component analysis or t-distributed sto-
chastic neighbor-embedding plots (3, 6) (Fig. 1 A and B). This
pattern is consistent with the concept of attractors [i.e., stable
cell states of the gene regulatory network (GRN)], which corre-
spond to the valleys in Waddington’s “epigenetic landscape” (7).
A cell fate transition then corresponds to a switching between
distinct attractors via transient unstable states and can be analyzed
as coordinated shift of gene expression in a low-dimensional cell-
state space (8) (Fig. 1 A and B). This formalism enables us to study
universal patterns that underlie major transitions of GRN states
(hence transitions of cell states) independent of specific molecular
mechanisms, such as the specific structure of the regulatory net-
work that drives the transition. Such phenomenological analysis of
major state shifts in complex systems has been successfully used
for ecosystems and social systems (9, 10).
Specifically, we postulate that exit from pluripotency is not

simply a jump between attractors but instead, is initiated by the
gradual destabilization of the pluripotent stem cell attractor
triggered by exogenous signals (i.e., growth factors and modulators
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of signaling pathways). This response is akin to flattening of the
valley in the landscape, which facilitates exit from the attractor
state until, at a critical point, the pluripotency attractor suddenly
vanishes, providing access to two alternative cell fate attractors
(Fig. 1 A and B). A destabilization of an attractor until it vanishes

formally represents a bifurcation event (11, 12). The associated
sudden qualitative system changes are known to produce the
phenomenological signatures of a critical state transition (“tipping
point”) (9, 10). As the cell population approaches a tipping point,
we expect to observe two changes that can only be revealed by
analyzing gene expression patterns at single-cell resolution: (i)
increased cell population diversity because of the destabilization
of the attractor and diminished “attracting force” and simulta-
neously, (ii) a higher coordination of gene expression across the
cells as they move on a trajectory along which the attractor tran-
sition takes place (11, 12).
This framework of attractor destabilization can help us for-

malize how exogenous signals relate to the differentiation effi-
ciency that is usually measured as the percentage of the desired
cell type in the differentiated cell population. We hypothesized
that the signals conveyed by the treatment to cause iPSC dif-
ferentiation not only destabilize the attractor but also, bias the
destabilization toward a specific lineage. This bias would be
manifest before fate commitment. Thus, we examined by single-
cell analysis the population structure after the treatment but
before cell lineage commitment to determine if it can inform
about the future course of the differentiation trajectory. To
validate our hypotheses, we systematically varied the levels of
differentiation cues for cardiomyocyte differentiation and in-
vestigated how a range of signals affected differentiation effi-
ciency. We show that our analysis of the cell population structure
at the tipping point can help us forecast the preference by dif-
ferentiating iPSC for cardiac over other fate options (hence, to
predict the efficiency of the desired differentiation).

Results
We first monitored changes in transcript levels at single-cell
resolution during the first 6 days as cells exit pluripotency and
move toward the cardiomyocyte cell fate (Fig. S1). Extensive
prior knowledge guided us to identify (i) intermediate cell states
at branch points of development, (ii) key transcriptional regu-
lators that control cell fate decisions, and (iii) instructive signals
that guide the differentiation process (2, 13–17). We used this
knowledge to select 96 gene markers for our study (Dataset S1,
Table S1). A standard method for induced pluripotent stem cell-
derived cardiomyocytes (iCMs) differentiation (Fig. 1C) con-
sisting of the sequential treatment of iPSCs with cytokines and
other molecules that induce cardiac mesoderm in vivo was used:
activin A (day 0), BMP4 (bone morphogenetic protein 4) com-
bined with a Wnt pathway activator (day 1), and a Wnt antag-
onist (day 3) mimicking, at least partially, the differentiation
signals that epiblast (E) cells are exposed to during heart de-
velopment in vivo (13, 17, 18). This widely used protocol yields
∼70% cardiomyocytes within 2 wk in culture (Materials and
Methods), although there is considerable variability depending
on the initial conditions (i.e., iPSC density plating) as well as
genetic background of the ES cell/iPSC line used (16).
To reconstruct the iPSC to iCM differentiation trajectory and

identify lineage branch points, we measured transcript expres-
sion of the selected genes in ∼1,900 individual differentiating
cells obtained during the first 6 days of differentiation (Fig. 1D,
Fig. S2, and Dataset S2). A major lineage branching took place
at day 3 when individual cells transitioned from a multipotent,
primitive streak (PS)-like progenitor state to either a more dif-
ferentiated mesodermal (M) state or an endodermal (En) state
as indicated by lineage-specific transcripts (Fig. 1E). This abrupt
disappearance of the progenitor state and its split into two gene
expression programs suggest a bifurcation in the dynamics of the
underlying GRN (12)—a critical state transition (9, 10).
The signature of a critical state transition that can be identi-

fied by single-cell resolution analysis of cell populations consists
of (i) a decrease of overall cell to cell correlation with respect to
gene expression and (ii) a concomitant increase in overall gene
to gene correlation across the cells (11). The first one manifests
an increase in cell diversity as the attractor destabilizing and
allowing access to new GRN states (lineage priming). However,

Fig. 1. Directed differentiation at single-cell resolution. (A) Theoretical and
(B) experimental framework to study cell differentiation as a transition be-
tween attractors. Before transition (time t0): Cells in state A (local minima in
a quasipotential landscape) are defined by a distinct GRN state (expressed and
nonexpressed genes are colored and gray, respectively). The state A attractor
manifests as either a dense cloud of points in a high-dimensional cell-state space
(as measured using single-cell qPCR) or a tight, uniform distribution of a single
gene/dimension (as measured by flow cytometry) as shown in B. The tipping point
(time t1): The attractor destabilizes (via changes in the quasipotential landscape),
and cells become primed toward a future attractor state(s). Cells in the poised state
A’ exhibit increased cell diversity, whichmanifests as a shift in the high-dimensional
state space or a wider distribution in a single dimension. Posttransition (time t2):
Stable states B and C emerge through the stabilization of mutually exclusive GRN
states that can be observed as two clouds occupying distinct positions in the high-
dimensional cell-state space or bimodal distribution of the marker gene as shown
in B. (C) Snapshot of the iPSC to iCM differentiation protocol used in this study.
Asterisks mark the perturbation time points (days 0, 1, and 3) that also correspond
to cell culture media exchanges. (D) Diffusion map (DM) of the iPSC to iCM dif-
ferentiation based on 1,934 single-cell gene expression vectors of 96 genes. Color
of each dot represents the day of collection during differentiation. Arrows indicate
the direction of cell-state trajectories. The dashed arrow points toward the un-
desired cell state. (E) Dynamics of state-specific transcription factors. The violin
plots show the variability of gene expression (log2Ex) across each cell population
for five transcription factors: NANOG (stem cell marker), GSC (PS marker), MESP1
(posterior PS/cardiac mesoderm marker), GATA4 (mesoderm and endoderm
marker), and TBX2 (cardiac marker).
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the counterintuitive increase in overall gene to gene correlation
reveals a tight coordination of gene expression before the tran-
sition (Fig. 2 and Fig. S3) (11). These changes can be summa-
rized by the critical transition index IC(t) computed for each
measured time point t (Fig. 2A and Fig. S3), which is defined as
the ratio of the average of all pairs of gene to gene correlation
coefficients to the average of all pairs of cell to cell correlation
coefficients. Computing the IC(t) values (from day 0 to day 3)
revealed a significant increase as the differentiating cell pop-
ulation approached the M–En branch point, indicating a bi-
furcation (Fig. 2A and Fig. S3). To show that the observed trend
was independent of the quality and quantity of genes or cells, we
calculated the Ic for randomly selected subsets of our dataset
(Fig. S3). Cells were indistinguishable at day 0 (E state), and
there was no apparent correlation between pluripotency and
lineage-specific transcripts (Fig. 2B and Dataset S1, Table S2)—
consistent with the theory that, in an attractor state, cell pop-
ulation diversity is mainly caused by symmetric fluctuations
around the “set point” caused by gene expression noise (7, 19).
Specifically, on destabilization of the E state triggered by the first
differentiation signal (activin A), cells diversified, and gene to
gene correlation between NANOG, an E state-specific marker,
and PS state-specific markers increased (Fig. 2C and Dataset S1,
Table S3). Our data confirm previously reported interactions
between NANOG and the transcription factor EOMES (20, 21)
as a major regulatory interaction that drives exit from pluri-
potency toward PS state (Fig. S4). At day 2, when the PS-like
cells are still uniform with respect to lineage-specific markers, we
observed a temporary decrease, still significant, in the critical
transition index (Fig. 2A), consistent with the PS state being a
distinct and observable, although transient, stabilized state. By
day 2.5, the value of IC increased again driven by the emergence
of correlations and anticorrelations in the expression of lineage-
specific transcription factors (Fig. 2D and Dataset S1, Table S4).
After cells were committed to a specific lineage, cell-state vari-
ability (within each new subpopulation) decreased, thus lowering
Ic for each individual day 3 cell subpopulation (Fig. 2A).
Combining the above findings with consensus clustering and

correlation analysis allowed us to build a comprehensive model
of early iPSC to iCM differentiation (Fig. 2E). Our data support
two distinct cell (sub)states after day 2 (Fig. S5), which were
evident in the mutually exclusive expression of the fate-determining
transcription factors indicative of binary lineage branching (22).
The identified heterogeneity at this stage can be correlated with
distinct in vivo states during the anterior–posterior patterning
of the PS (Figs. S6 and S7). In particular, SOX17 (23) and
HAND1 (24) appeared to display the familiar toggle switch-like
binary behavior that segregates the PS-like cells into two dis-
tinctly primed populations: if HAND1 >> SOX17, cells were
primed toward M fates (posterior PS); if HAND1 << SOX17,
they were primed to the En fate (anterior PS). Similar obser-
vations have been reported by other single-cell studies for
mesoderm differentiation (3, 4). However, our analysis addi-
tionally revealed that the expression of the cell surface marker,
cKIT, correlated with this anterior vs. posterior PS specification
(Fig. S6). Thus, we decided to investigate the distribution of the
cKIT protein expression phenotype and its association with
mesoderm–endoderm branching.
We found that, at the tipping point, cKIT protein expression

varied among individual cells, displaying the widest spread,
consistent with maximal cell to cell variability (Fig. 3A). Addi-
tionally, around the tipping point, the heterogeneous cell pop-
ulation transiently exhibited an M–En continuum, in which
individual cells expressed the molecular signature, indicating
priming toward either the desired cardiac (cKIT− and HAND1+/
SOX17− cells) or the undesired noncardiac (cKIT+ and
HAND1−/SOX17+ cells) fate. Single-cell gene expression pro-
filing of the extreme tails of the cKIT distribution (outliers),
cKITlow and cKIThigh cells, mapped them to cell states primed
for the M and En lineages, respectively. Thus, information on
prospective fate is hidden in the bulk population distributions

Fig. 2. A critical transition signature for differentiation branch points.
(A) Time point-specific boxplots represent the distribution of IC(t) values
from 1,000 permutations of 25 randomly selected genes. After bifurcation,
we used cells that cluster asM lineage for day 3. The mean value corresponds
to the IC(t) value [X(t) = 96 genes × M cells]. **P value < 2e-10 for comparison
between the time points (Kolmogorov–Smirnov test and Wilcoxon rank sum
test). (B) Gene to gene (GxG) correlation plots for six lineage-specific transcription
factors at day 0 (“in attractor”). The shade corresponds to the Pearson’s corre-
lation across all of the cells for each pairwise comparison, whereas the shape of
the data cloud shows the distribution of Pearson’s correlation across all of the
cells for each gene pair. (C and D) GxG correlation plots for six lineage-specific
transcription factors during two state transitions. We can observe distinct pat-
terns for individual genes, such as EOMES (important during E→ PS but not PS→
M transition), or small regulatory circuits (i.e., day 2.5 shows anticorrelated
networks that are related with lineage segregation). (E) Early iPSC to iCM dif-
ferentiation model. Each cell state (stable or transitional) can be marked by
specific transcription factors.
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and seems most pronounced in the outlier subpopulations (25)
as evident at days 2 and 2.5. Although at this point, the pop-
ulation is still unimodal with respect to cKIT expression, the
cKIThigh cells expressed higher levels of SOX17, whereas the
cKITlow cells expressed higher levels of HAND1, and both dis-
played decreased expression of NANOG (Fig. 3B). Therefore,
the population distribution of cKIT protein expression can act as
surrogate marker for the position in the HAND1–SOX17 ex-
pression axis of cells poised to differentiate to M or En cell
lineages, respectively.
Accordingly, this behavior can be exploited to identify primed

states and predict lineage commitment using a single surface
marker—cKIT (12, 19). We reasoned that the cell population
structure at the tipping point (day 2), which reflects attractor
destabilization that can be biased in either direction by the in-
structive signal, may determine the M vs. En decision and thus,
influence the ultimate efficiency of differentiation into iCMs as
observed on day 28. In other words, the final percentage of cells
in the desired state (iCM) may already be destined at a critical
fork in the road (trajectory) far earlier in the developmental
journey. Thus, the transient PS-like state may be sensitive to
tuning that “tilts” the cells toward either fate.
To test the idea that the cell population structure at this tip-

ping point sets the course of the long-term trajectory and can
predict the efficiency of differentiation into future states, we
varied the protocol for differentiation by gradually modulating
the concentration for the two inducers, BMP4 and Wnt pathway
activator (glycogen synthase kinase 3 (GSK3) inhibitor) (Mate-
rials and Methods and Fig. 4A). We then monitored the structure
of the differentiating cell populations with respect to five state-
specific surface markers and the final efficiency of iCM differ-
entiation (Fig. 4 A and B and Fig. S8). Indeed, the features of the
cKIT distribution (i.e., mean and dispersion) correlate with the
low- vs. high-efficiency protocols. The M–En branching at day 3
took place in the absence of any exogenous signals (no BMP4/no
GSK3 inhibitor), suggesting that Activin A-induced iPSCs are in
a transient, unstable state driven by the endogenous TGF-β/BMP
and Wnt pathways to undergo a critical state transition (Fig. 4 B
and C). It seems, however, that Activin A alone induced a biased
destabilization of the E attractor toward the En states and
resulted in low iCM efficiency (<30%); this observation is

consistent with use of Activin A in definitive endoderm (hepa-
tocytes and pancreatic) differentiation protocols (26).
Because the distribution of cKIT marks the priming at the

M–En branch point, we also profiled the abundance of the same
96 transcripts in cKITHigh, cKITMedium, and cKITLow population
fractions (100-cell pools) in the day 2 cells for each of the tested
protocol modifications to determine if the gene expression pro-
files also predicted the terminal iCM differentiation efficiency.
Using a Random Forest classification to extract genes that are
associated with low- or high-efficiency treatments, we identify a
molecular signature at the tipping point that predicted whether
the efficiency of cardiomyocyte differentiation at day 28 was high
(>70% iCMs) or low (<70% iCMs) (Fig. 4D). Importantly, we
achieved a better classification when we used the information
afforded by the gene expression of the populations fractions
cKITHigh-cKITMedium-cKITLow separately (concatenated gene
expression vectors) compared with just the gene expression of
the cKITMedium fraction (Fig. 4 D–F and Dataset S1, Table S5),
corroborating the informative potential of the cKIT outliers. Finally,
we investigated how the expression of important endogenous sig-
naling molecules, including BMP4 and DKK1, a canonical Wnt
pathway inhibitor that promotes the cardiac cell fate, is influenced by
the levels of exogenous BMP4 and GSK3 inhibitor (Dataset S1,
Table S7). We could confirm that poor cardiomyocyte differentia-
tion efficiency correlated with low levels of noncanonical Wnt or
PDGF pathway activation, implicating a role for cell–cell commu-
nication in cell fate commitment. Similar to the classification anal-
ysis, the “average cell profile,” indicated by the expression profiles of
the cKITMedium population, can distinguish between poor and high
efficiency. However, we could identify cases where signaling inter-
actions with predictive power were either exclusively seen (Wnt5B)
or better detected (i.e., PDGFRa) in the outlier fractions (Fig. 4F).

Discussion
Understanding the hierarchy of cell fate decisions in mammals has
enormous translational applications beyond insights in the biology
of embryonic development and how pluripotent cells commit to
diversity of adult cell types. Although separated from the tissue
context, iPSCs hold great promise for unraveling the principles of
cell fate determination on a dish because of ease and potential
for massively parallel studies. Such endeavor will be critical for
deciphering the idiosyncratic cell lineage trajectories that may vary

Fig. 3. cKIT distribution at the tipping point hides
M–En primed states. (A) Dynamics of cKIT distribu-
tion from day 1 (activin A-induced cells) to 3 (post-
branching event). The unimodal distribution before
(day 1) and during the tipping point (days 2–2.5) slowly
changes to the characteristic bimodal distribution after
the branching event (day 3). The cKIT−/HAND1+ cells
will eventually commit to the cardiac cell fate. (B) Heat
map of cell to cell correlations based on the cKITHigh,
cKITMedium, and cKITLow single-cell gene expression
vectors (30–50 cells per phenotypic state per time
point). Cells have been sorted based on the pheno-
typic state [low (L) → average (M) → high (H)] and
time collected (day 0→ day 3). By day 2.5, cKITHigh and
cKITLow cells are presented as two distinct states that
expressed SOX17 or HAND1, respectively (side bar).
These results are supported by consensus clustering
analysis (Fig. S5).
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between individuals and are altered in iPSC lines derived from
patients (1, 27). Here, we harnessed the information inherent in cell
population structure afforded by single-cell resolution analysis and
showed that such integrative analysis of single-cell expression data
contains clues about the propensity of multipotential cells toward a
particular fate, even before apparent phenotypic fate decisions.
Specifically, we have analyzed the expression of 96 genes in

∼1,900 individual cells over 6 days in a way that represents a
major departure from all recent single-cell transcript studies.
Current computational analysis of single-cell gene expression
profiles focuses on the descriptive identification of cell clusters
and differentially expressed genes. Here, we take a dynamical
systems approach that considers the governing principles that
generate these patterns in the first place (28). Our analysis is
grounded in first principles of nonlinear dynamical systems and

provides strong evidence for the notion that cell types, such as
iPSCs, are stable states (attractors) in the epigenetic landscape.
As a consequence, fate commitment and differentiation are
quasidiscrete, involving stepwise switching between distinct sta-
ble states. Indeed, we detected a critical cell-state transition
(tipping point) during early cardiac differentiation (day 2.5). As
predicted by theory, the initial (PS-like cells) and final (M or En
cells) states were discrete populations within the developmental
trajectory from iPSC to cardiomyocyte.
At the molecular level, a cell fate transition does not only

involve abrupt shifts in the transcriptional state of a cell pop-
ulation—the main pattern on which traditional gene expression
analysis relies to identify cell fate-specific transcripts. Now, we
observe that, concomitant to increased cell heterogeneity, which
itself is a predicted manifestation of critical dynamics, a cell
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population at a tipping point is characterized by increased gene
to gene correlations—suggesting a coordination between the
functionally related nodes of the GRN as recently shown (11).
Thus, sampling longitudinally, even before the bifurcation, can re-
veal the pair of genes that increases their coordination and could
serve as markers for the upcoming cell fate transition. Integrating
the molecular profiles and cell population structure proved a
powerful analysis tool to dissect the regulatory molecules that drive
the cell fate transitions: E–PS–M or En. Analyzing the gene ex-
pression activity and how it shifts between days 2, 2.5, and 3 (prior-
and postbifurcation), we could identify and quantify the cells that are
primed (day 2) and committed (day 2.5/3) to M or En cell fate.
However, this result takes a step beyond the descriptive analysis and
has enormous practical implications: we show that it is possible to
exploit knowledge of dynamical trajectories of a gene regulatory
circuit (HAND1-SOX17), when measured at single-cell resolution, to
predict the ultimate course of a biological process. In other words,
we show how we can exploit a phenomenological signature to gain
mechanistic insights about a cell fate specification event. The key
element of our approach is to identify the tipping points in the
trajectory using single-cell transcriptomics, which reveal primed
states and their phenotypic markers. This framework can be applied
to study the directionality and dynamics of cell lineage trajectories
for well-established or newly defined differentiation protocols.
After the desired high-dimensional cell fate decision can be re-

duced to a transcriptional circuit (HAND1-SOX17) and a pheno-
typic readout (cKIT distribution), we could study how the
exogenous differentiation cues bias the destabilization of the plu-
ripotency attractor, channeling the cells toward a specific lineage.
This observation shows that the population structure of heteroge-
neous differentiating cells at the tipping point can serve as an early
readout for the proportion of cells that will commit to a given fate.
Thus, such analyses can help to predict the efficiency of protocols
for directing differentiation to a desired cell type many days
before cells enter terminal differentiation (predict percentage of
cardiac cells at day 2). These predictions have an enormous
potential for translational applications, because iPSCs are being
used to study diseases with developmental components, such as

neurodegeneration. Thus, the most concrete utility of our approach
is the optimization of directed differentiation protocols for patient-
specific iPSC lines, which we show herein can be evaluated and
optimized through a high-throughput screening procedure.
To conclude, the dynamics of cell population structure with

respect to high-dimensional gene expression states are an im-
portant “biological observable.” Our study shows that single-cell
resolution analysis in combination with dynamical systems theory
is an invaluable tool for predicting the trajectory of cellular and
tissue responses and potentially, predicting impending transitions
between health and disease (10).

Materials and Methods
MHF2 (GM05387; Coriell Institute) cells were dedifferentiated to iPSCs using epi-
somal iPSC reprogramming vectors (A14703; Thermo Fisher) according to the
manufacturer’s instructions. We confirmed pluripotency and maintained the cells
in feeder-free culture conditions. The iPSCs were differentiated in monolayer as
described by Palpant et al. (18). For BMP4 and CHIR-99021 gradient experiment,
we created a gradient of BMP4 and CHIR-99021, resulting in 15 different combi-
nations used for culturing. All antibodies used for flow cytometry on BD FACSAria
II are shown in Dataset S1, Table S6. We used Biomark (Fluidigm) to platform
single-cell quantitative RT-PCR according to the manufacturer’s guidelines. The
genes and primer sequences are given in Dataset S1, Table S1. The quantitative
PCR (qPCR) data were processed and analyzed as described in SI Materials
and Methods. Detailed methods are described in SI Materials and Methods.
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