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The ability of the adaptive immune system to respond to arbitrary
pathogens stems from the broad diversity of immune cell sur-
face receptors. This diversity originates in a stochastic DNA edit-
ing process (VDJ recombination) that acts on the surface receptor
gene each time a new immune cell is created from a stem cell. By
analyzing T-cell receptor (TCR) sequence repertoires taken from
the blood and thymus of mice of different ages, we quantify the
changes in the VDJ recombination process that occur from embryo
to young adult. We find a rapid increase with age in the number
of random insertions and a dramatic increase in diversity. Because
the blood accumulates thymic output over time, blood repertoires
are mixtures of different statistical recombination processes, and
we unravel the mixture statistics to obtain a picture of the time
evolution of the early immune system. Sequence repertoire anal-
ysis also allows us to detect the statistical impact of selection on
the output of the VDJ recombination process. The effects we find
are nearly identical between thymus and blood, suggesting that
our analysis mainly detects selection for proper folding of the TCR
receptor protein. We further find that selection is weaker in labo-
ratory mice than in humans and it does not affect the diversity of
the repertoire.
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The adaptive immune system relies on cell surface receptors
to recognize an unpredictable array of foreign pathogens. T

cells perform their surveillance function through a highly diverse
repertoire of T-cell receptors (TCRs): Any individual TCR
recognizes only a small subset of the foreign peptides that it
may encounter, and the system defends against a broad range of
pathogens by having TCRs of many different specificities. This
receptor diversity is created by a stochastic DNA editing process
(VDJ recombination) that acts on the TCR gene each time a
new immune cell is created from a stem cell and acts indepen-
dently on each of the two chains (alpha and beta) that compose
the receptor.

The resulting repertoire diversity can now be studied in great
detail, using high-throughput sequencing of lymphocyte receptor
repertoires (1–8). In previous work, we used human sequence
repertoires to develop methods for inferring the details of the
stochastic process of VDJ recombination (9, 38) and for char-
acterizing the statistical effects of thymic selection (10). In this
paper, we apply these methods to T-cell β-chain sequence data
collected from mice at several stages of development, from
embryos to young adults, to study the T-cell repertoire matura-
tion process. We exploit the flexibility of the mouse model to
study aspects of immune system development and function that
are not readily accessible in humans.

It is known that B- and T-cell receptors formed in embryonic
or neonatal individuals are less diverse than in adults: They have
fewer nontemplated insertions (11) due to the absence of termi-
nal deoxynucleotidyl transferase (TdT) expression, the enzyme
responsible for these insertions (12–14). Whereas this observa-
tion has been confirmed by deep sequencing of human TCR

repertoires (15, 16), the precise form and time-resolved dynam-
ics of VDJ recombination have not been assessed.

We analyze mouse T cells taken simultaneously from thymus
and blood in the same individual to gain insights into the dynam-
ics of repertoire development. First, because the periphery accu-
mulates T cells produced at different times, whereas new T cells
pass quickly through the thymus and reflect conditions at a single
time point, the statistical structure of the blood T-cell repertoire
can be very different from that of the thymus. This difference
poses a challenge for statistical inference, and in this paper we
develop a method for describing such repertoires derived from
a mixture of different conditions. Second, the ability to com-
pare thymus with blood sequence repertoires allows for a more
refined view of the stages of receptor selection for functional-
ity, from initial receptor generation to eventual passage into the
periphery, and leads to a qualitatively different picture for mice
than previously reported for humans.

Results
Inferring the Statistics of VDJ Recombination. A new TCR gene
is created from germline DNA by a series of stochastic events:
choosing gene segments, deleting bases from the ends of the cho-
sen gene segments, and inserting nucleotides between the modi-
fied gene segments. Because the same sequence can be generated
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by distinct recombination events, standard tools that assign a
unique recombination scenario to each sequence (17–20) give
biased estimates that would limit our ability to detect the develop-
mental changes that interest us here. In previous work (9, 10) we
showed how to overcome this problem, using an approach that
assigns probabilities to different ways of generating a sequence
(see Materials and Methods for details). This approach allows us
to accurately quantify and track diversity as a function of devel-
opmental age, in both the thymus and the periphery.

Here, we apply these methods to thymic and peripheral
sequence repertoires of TCR beta-chain (TRB) genes of mice
of varying ages: 17 d after conception and 4 d, 21 d, and 42 d
after birth (see Materials and Methods and Table S1 for a com-
plete summary of data). A distinct set of generation parame-
ters was inferred for each of these repertoires. Only out-of-frame
sequences, which are nonproductive and thus thought to be free
of selection effects, were included in the inference.

Thymic Repertoires Reveal Mechanism of Diversity Maturation. The
best-documented element of VDJ recombination known to
change between fetal and adult life is the number of nontem-
plated (N) insertions at the junctions. In Fig. 1 we plot the
marginal distributions of the number of N insertions at the VD
and DJ junctions inferred from out-of-frame thymic sequences
of mice at a sequence of ages. During the passage from fetal
to mature animal, this distribution changes dramatically and
rapidly. In the embryonic mouse, 90% of the sequences have no
insertions, whereas this fraction drops to 10% in adult mice. This
trend is consistent with previous observations in neonates (11)
and is explained by the low level of expression of TdT before
birth (12, 14). TdT is turned on after birth, and Fig. 1 indicates
that the asymptotic level of TdT in adults must be reached before
21 d, as there are no noticeable differences between 21 d and
42 d. The distribution at 4 d shows an intermediate situation,
roughly halfway between embryonic and adult. Whereas Fig. 1
shows that the inferred distribution of insertions is identical at
the VD and DJ junctions in the thymus of fetal or adult mice,
it is different at 4 d. This difference could be due to the tem-
poral ordering of VDJ recombination: DJ recombination occurs
before VD recombination, with a short time delay between the
two, and the rise of TdT expression during this delay could
explain the increased mean number of VD insertions relative to
that of DJ insertions.

We asked whether features of the recombination process other
than the number of insertions changed between embryonic and
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Fig. 1. Age-dependent insertion length distributions. Shown are distribu-
tions of the number of N insertions at the VD junction, P(insVD), and at the
DJ junction, P(insDJ), inferred from individual mouse thymus datasets at dif-
ferent ages: embryo day 17 (E17) and 4 d, 21 d, and 42 d postbirth (D4, D21,
and D42). The error bars indicate the variation across individuals (Table S1).
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Fig. 2. Sequence entropy for thymic repertoires. Shown is distribution of
the log generation probability for mouse thymic repertoires derived from
17 d embryo (E17) and 42 d postbirth animals (D42). The human generative
probability distribution (9) is plotted for comparison. Shannon entropy is
minus the mean over these distributions. Inset shows Shannon entropy at
ages 17 d embryo and 42 d postbirth, decomposed into the components
of the recombination scenario. Sequence entropy is recombination scenario
entropy minus a correction for convergent recombination. Note that only
the insertion component of scenario entropy changes significantly between
embryonic and mature.

mature mice. We found that D and J gene choice did not
change significantly (P > 0.05, t test corrected for multiple test-
ing), whereas a few V genes had their use significantly (P < 0.05)
increase (V4, V12-1, V26) or decrease (V14, V16, V17, V20, V22)
with age (Figs. S1 and S2). The profiles of deletion showed no sig-
nificant changes with age (Figs. S3 and S4) and neither did the
frequencies of inserted N nucleotides (Fig. S5). These results con-
firm quantitatively that an increase in the number of untemplated
insertions is the primary driver of diversity expansion in early life.

To quantify the overall change in diversity between TRB
sequence repertoires at different ages, we calculated the Shan-
non entropy of their distributions. Entropy can be decomposed
as a sum of contributions from gene choices, deletions, and
insertions, from which a correction for convergent recombina-
tion must be subtracted (9). We find that the diversity of gener-
ated nucleotide sequences increased from 21 bits in fetal mice to
30 bits in adult mice. The change in repertoire diversity during
this transition is almost entirely due to the change in the inser-
tion profile, as can be seen in Fig. 2, Inset, where the different
contributions to the sequence entropies of the fetal and mature
sequence repertoires are compared.

The entropy is mathematically equal to the negative of the
mean over the sequence repertoire of the logarithm of the gener-
ation probability. A plot of the distribution of generation prob-
abilities, Pgen, over a typical repertoire (Fig. 2) shows that the
generation probability of individual sequences ranges from a few
parts per million to less than 1 part in 1018.

Peripheral Repertoires Reflect Past History of Thymic Diversity. Our
analysis of thymic repertoires has shown that the generative
probability distribution for VDJ recombination changes dramat-
ically in the days and weeks after birth. To understand how the
evolution of VDJ recombination impacts repertoires, we need
to account for the fact that peripheral compartments accumu-
late cells generated across earlier times, as sketched in Fig. 3. As
a result, sequence repertoires must be described by a mixture of
generative models with varying parameters that reflect past states
of the generation process.
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To use our inference procedure to quantify the state of mix-
ing of repertoires, we must make some simplifying assumptions.
First, given our observation that other features vary rather lit-
tle with age (Figs. S1–S4), we assume that only the statistics of
the untemplated insertions change with time. Second, we assume
that the instantaneous insertion distribution function, Pα(n),
interpolates linearly between the embryonic and adult distribu-
tions by setting Pα(n) =αPemb(n) + (1 − α)Pmat(n), where
n is the number of insertions at a junction, Pemb is the distri-
bution for the 17-d embryo, and Pmat is the adult distribution
at 42 d, and 0≤α≤ 1 is an effective level of TdT measured
by its impact on the number of insertions. This interpolation
describes the data at day 4 (Fig. 2) accurately: The Kullback–
Leibler divergence between Pα (for the optimal choice of α) and
the directly inferred distribution is 0.1 bits, much less than the
2.6-bit entropy of the distribution. A more thorough validation
would require data that more densely cover the early life period
when the recombination machinery is changing.

The distribution Pα describes the TRB generation process at a
fixed TdT level α. As explained above, repertoires in general rep-
resent the accumulated output of recombination events at earlier
times and must be described by a mixture of processes at various
α values. The generic mixture model for insertions n1,n2 at the
VD and DJ junctions can thus be written as

P(n1,n2) =

∫ 1

0

dα g(α)Pα(n1)Pα(n2)

= Pᾱ(n1)Pᾱ(n2) + var(α)∆P(n1)∆P(n2), [1]

where g(α) is the distribution of α in the repertoire reflecting the
distribution of the past developmental ages at which its recep-
tors were produced, ᾱ and var(α) are its mean and variance, and
∆P =Pmat − Pemb. Conveniently, per the second line of Eq. 1,
the mixture distribution depends only on the mean and variance
of α. The variance is constrained by 0≤ var(α)≤ ᾱ(1 − ᾱ) and
gives a measure of the level of mixing in the repertoire. Zero vari-
ance means no mixing; i.e., all cells were created at a single effec-
tive TdT level α= ᾱ. Maximal variance and mixing are attained
when a fraction ᾱ of cells fully expresses TdT (α= 1), whereas the
remaining fraction 1 − ᾱ does not express TdT at all (α= 0).

We estimate ᾱ and var(α) for our datasets by first inferring
the joint distribution P(insVD,insDJ) of Eq. 2 in Materials and
Methods, using our inference technique, and then adjusting ᾱ and
var(α) to obtain the best fit to Eq. 1. The data points in Fig. 4A
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Fig. 3. Age-dependent recombination affects repertoire statistics. T cells
recombine according to an insertion profile that depends on a time-
dependent effective TdT level α (Top, dashed white line). Thymic repertoires
have a unique statistical profile at any time and cells’ output to the periph-
ery at different times are described by different values of α (indicated by
colors). The accumulating peripheral T-cell repertoire is described by a mix-
ture model that accounts for the different numbers of T cells emitted at
different times.
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Fig. 4. Age dependence of the recombination process. The effective TdT
level 0 ≤ α ≤ 1 is estimated as an interpolation parameter between the
recombination statistics of embryonic and mature animals. (A) Mean effec-
tive TdT ᾱ at various ages (17 d embryo and 4 d, 21 d, and 42 d postbirth),
from different tissues: thymus and periphery. Periphery is taken from blood,
except for day 4 for which it is taken from spleen. The data points are com-
pared with a minimal model of thymic entry, residence, and output, with
a sharply increasing effective TdT level α(t) represented by the dashed line
(Materials and Methods). A, Inset shows recombination entropy as a func-
tion of age, as predicted by the model. (B) The variance of α, which mea-
sures the level of mixing in the repertoires, is shown as a function of its mean
for both data (symbols) and the prediction of the minimal model (lines). The
black line shows the maximal possible variance ᾱ(1− ᾱ). Numbers represent
age from birth in days.

show the mean effective TdT level ᾱ as a function of age for thy-
mus or blood datasets, whereas the data points in Fig. 4B report
the associated values of var(α). Fig. 4A shows that the blood
repertoire transitions from embryonic (α = 0) to mature (α = 1)
with a time delay relative to the thymic repertoire. This result is
expected because blood T cells are first produced in the thymus.
The rise in TdT level results in an increase of diversity, measured
by the entropy of recombination events (Fig. 4A, Inset). Fig. 4B
shows that, although embryonic and adult repertoires have no
mixing, var(α) ≈ 0, all intermediate repertoires are mixed, with
var(α) significantly larger than 0. Although the thymus does not
accumulate cells, T cells do spend a finite time in the thymus
and, when TdT levels are changing fast, thymic repertoires are
described by mixtures. Still, blood repertoires are substantially
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more mixed than thymic repertoires, as expected because the thy-
mus contains cells that have recombined over a narrow range of
TdT levels α, whereas blood contains cells with a greater range
of ages and of values of α.

The behavior of the data displayed in Fig. 4 can be better under-
stood by comparison with a simple model (Materials and Meth-
ods and Mixture Model). In this model the effective TdT level
α(t) in the thymus is given by a sharply rising Hill function (Fig.
4A, dashed curve), recombined cells are created at a rate that
increases rapidly with time, and cells reside in the thymus for
3 d on average, after which they are released into the periph-
ery. Although model parameters were chosen to reproduce the
observed behavior quantitatively, we did not attempt a formal fit
to the data, because of the paucity of data points. Results for ᾱ(t)
and var(α)(t) are displayed in Fig. 4 (orange and green curves).
The model recapitulates the delay in maturation between thymus
and blood (Fig. 4A) and also accounts for the observed level of
mixing as a function of time in blood and thymus (Fig. 4B). The
model curves in Fig. 4B are parametric in time (time stamps added
for clarity) and it is significant that the data points lie close to
points on the model curves at the right age.

Selection Shapes the In-Frame Repertoire. Our discussion so far has
focused on the evolution of the generative model for VDJ recom-
bination, a model inferred from nonproductive, out-of-frame
sequences. We now discuss what can be learned from in-frame
sequences. Because they can code for functional surface receptor
proteins, their statistics will be modified, relative to the genera-
tive model statistics, by selection effects. To quantify selection,
we focus on the complementarity-determining region 3 (CDR3)
of the beta chain, the region thought to encode most of the func-
tional diversity of the T-cell repertoire. We define the CDR3 as
the amino acid sequence running from a conserved cysteine in
the V segment to a conserved phenylalanine in the J segment. We
associate to each possible CDR3 amino acid sequence σ a selec-
tion factor Q(σ), defined as the ratio of its probability of being
observed in the data to its probability of having been generated.
For computability, Q is taken to be a product of factors qi,L(a)
reflecting the selection effect of each amino acid a at each posi-
tion i in a CDR3 of length L. The collection of these subfactors
defines a selection motif. The algorithms for inferring the subfac-
tors from the data were developed in previous work on human
TRB sequences (21) (see Materials and Methods for details).

We inferred selection motifs for a variety of thymic and blood
repertoires (Fig. S6). These motifs are very consistent between
thymus and blood of mice of the same age, with weaker con-
sistency between mice of different ages (Fig. S7). Similarity
between blood and thymus may seem surprising, as we could
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Fig. 5. Distributions with respect to generation
probability and selection factor. (A) The distribution
of mature mouse in-frame sequences with respect
to primitive generation probability. The distribu-
tions for thymus and blood are essentially the same;
the predicted distribution using Q factors on prim-
itively generated sequences agrees perfectly with
data. (B) Distribution over selection factor Q of
primitively generated sequences vs. in-frame data
sequences. For mice, both distributions are concen-
trated around Q = 1; for humans, one-third of prim-
itively generated sequences have Q< 0.1 (i.e., are
strongly selected against).

have expected a significant fraction of TRBs from thymic cells
to have been sequenced before any selection effect, making them
statistically closer to out-of-frame sequences. These observations
suggest that our selection factors primarily capture selection for
the ability of the coded protein to fold into a displayable receptor
and may not capture more subtle effects such as negative selec-
tion against self-recognition. In Fig. S6, we also display patterns
of correlation between mature mouse selection factors and quan-
titative amino acid biochemical properties; significant, but hard-
to-interpret, patterns are apparent.

Our method attaches two hidden variables to each in-frame
sequence: its probability Pgen of being generated in a VDJ
recombination event and the selection factor Q governing its
probability of then appearing in a thymic or peripheral sequence
repertoire. Distributions of sequence repertoires over these vari-
ables give interesting insights into selection. We recall that, for
humans, we found that the distribution of in-frame sequences
was strongly skewed to higher Pgen: If a sequence was more likely
to be created, it was more likely to be selected (21). Fig. 5A shows
that this correlation does not hold for mice: The Pgen distribution
for in-frame repertoires is virtually the same as that created by
VDJ recombination. The difference between humans and mice
is even more apparent in the distribution of sequence repertoires
over the selection factor Q (Fig. 5B). For mice, selection is a
weak effect: The distribution over Q is narrow, nearly centered
about Q = 1 (no selection), and moves to only slightly higher val-
ues of Q in going from generated to selected repertoires. For
humans, the primitively generated repertoire has a large fraction
of sequences with a low probability of being selected (Fig. 5B).
Consequently, selection purges a large fraction of sequences and
substantially modifies the repertoire statistics.

Discussion
VDJ recombination is a stochastic process that produces the
initial diversity on which the adaptive immune system relies to
develop a functional and diverse repertoire of receptor specifici-
ties. Previous studies have shown that this diversity is limited in
neonates compared with adults, either by biasing the choice of
gene segments (22–25) or by having a small number of N inser-
tions (11, 26). Combining high-throughput sequencing with sta-
tistical analysis of murine T-cell receptor beta chains, we ana-
lyzed the dynamics of maturation of VDJ recombination. This
analysis allowed us to precisely quantify, in bits, how diversity
increases with age, from embryo to adult. We found that the most
significant change in the recombination statistics was the num-
ber of untemplated N insertions, which sharply increases around
the age of 4 d, from almost no insertions to the amount found
in adults. Low numbers of insertions in neonates and during
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embryonic development are common to both B- and T-cell recep-
tors (27) and are attributed to low TdT expression (12–14). Diver-
sity can be further reduced in embryos by concentrating gene use
on only a few combinations, as was shown for Ig in mice (22, 23),
humans (24), and more recently zebrafish, using high-throughput
sequencing (25). Similar observations were made on human TCR
beta chains (28, 29). By contrast, we found only minor differences
in TRB gene use between embryonic and adult mice (Fig. S1),
meaning that the reduced number of N insertions is the only factor
limiting diversity in the embryo relative to the adult.

One can only speculate about the biological function of the
lack of N insertions in embryos and very young individuals. Rear-
rangements with no insertions may encode particular specifici-
ties that are effectively innate. The invariant TCRs of mucosal-
associated invariant T cells (MAIT) and natural killer T cells
(NKT) are specific examples of such genetically encoded recep-
tors (30). These TCRs, which lack N insertions, are formed with
high probability by VDJ recombination (31) and are further
selected to be very conserved. Receptors lacking N insertions
may provide neonates with a minimal set of innate-like specifici-
ties, ensuring basic immunity (32), which is later completed by
the full diversity of receptors endowed with N insertions.

Our analysis highlights the importance of focusing on the
underlying statistical ensembles from which repertoires are
drawn, rather than looking for significance in the sequences them-
selves. Although sequence repertoires are contingent and noisy,
with little to no overlap between individuals, their statistical prop-
erties are consistent between individuals, as was already noted for
humans (9, 21). Crucially, a statistical treatment is essential for
tracking the precise dynamics of N insertions with age, as deter-
ministic assignments give systematically biased estimates of these
numbers (Fig. S8). In our study of the development of repertoire
diversity, we avoided the confounding factor of possibly time-
dependent selection by analyzing out-of-frame rearrangements.

Using an analysis tailored to the productive repertoire, we
were able to assign to any CDR3 sequence a statistical mea-
sure of selection, quantifying the probability that an amino acid
sequence, once generated, goes on to become a functional recep-
tor. The inferred selection motifs were very similar in thymic and
blood repertoires. This lack of difference suggests that our mea-
sure of selection is mainly sensitive to basic selection against mis-
folding of the encoded receptor protein (which would have the
same effect on thymic and blood repertoires) and is relatively
insensitive to thymic selection against self-recognizing receptors
(which would be present in blood but not in thymus). Nega-
tive selection in the thymus of course exists, but previous work
on statistically characterizing its nature has shown that strong
effects are localized in the few residues that actually contact pre-
sented peptides (33–35). Because we are statistically characteriz-
ing selection across the more extensive CDR3 region (11 aa long
on average), it is perhaps not surprising that localized negative
selection effects are washed out. It would clearly be productive
to incorporate such insights into our approach.

The study of mice raises interesting and puzzling questions
about sequence diversity. We found that the mature mouse
repertoire is 9 bits (or 29 ≈ 500-fold) more diverse than the
embryonic repertoire. This wide diversity of sequences is accom-
panied by a wide diversity of generation probabilities: In the
mature repertoire, typical generation probabilities vary from
more than 10−6 to less than 10−18 (Fig. 3). TCRs with very low
generation probabilities should be private, i.e., not likely to be
generated independently in two mice, whereas TCRs with the
highest generation probabilities can be public, i.e., frequently
found in different mice (36). The estimate of generation proba-
bilities afforded by our model could therefore be useful for study-
ing the origin of public TCR repertoires in mice (37).

The mature mouse repertoire is 14 bits (or 214 ≈ 16,000-fold)
less diverse than the human T-cell repertoire, owing to a lower

number of N insertions (typically ∼3 per junction in mice vs.
∼5 in humans). Humans and mice have to deal with presum-
ably equally complex pathogen environments, and it would be
natural to expect their immune systems to have similar levels of
sequence diversity. It is intriguing that this ∼10,000-fold differ-
ence in potential diversity closely reflects the difference in the
number of T cells in the two species (∼107 in mice vs. ∼1011 in
humans). Another difference with humans is the timing of the
transition. The number of TCR N insertions increases as early as
the first semester of gestation in humans (28) and from the sec-
ond semester for B-cell receptors (BCRs) (27). By contrast, our
results for mice show a sharp transition soon after birth. Finally,
we found that the inferred selection factors are weaker in mice
than in humans. They are also not correlated with generation
probability. As a result, selection does not affect the entropy of
the mouse repertoire, as it does to the human repertoire (21).
The reason for this stark difference is not clear, and it would be
interesting to see whether wild mice, as opposed to the inbred
laboratory mice we have studied, show the same effect.

Materials and Methods
Datasets. The data used in our analyses are 87-bp (and 60-bp) nucleotide
sequences covering the variable region of the rearranged mouse TRB gene.
The sequences were obtained by Adaptive Biosciences, using their TRB DNA
sequencing protocol (including error correction on the basis of multiple
reads of each unique DNA sequence) applied to biological samples provided
by two of the authors (A.J.L. and C.S.D.). The samples comprised blood,
spleen, and thymus samples from mice sacrificed at four different ages:
17-d embryo and 4 d, 21 d, and 42 d postbirth (the library preparation and
sequencing for day 42 thymic samples were replicated). The mice were Black
6 laboratory mice (Jackson Laboratories) raised in standard laboratory condi-
tions. The animal care committee of the New Jersey Medical School provided
approvals for the experiments carried out with mice in this publication. The
numbers of unique sequences in the various datasets were a few tens of
thousands on average (with a few datasets providing more than 105 unique
sequences). The sequencing of the mature (D42) thymus samples was repli-
cated once. Detailed statistics on the datasets are provided in Table S1. The
full sequence datasets are available, along with an explanatory README
file, at princeton.edu/∼ccallan/MousePaper/data/.

Stochastic Model for VDJ Recombination. Out-of-frame data sequences were
usedtoinferthestatisticalensembleofsequencesproduceddirectlybytheVDJ
recombination process. We assume that the probability distribution for the
generative events involved in VDJ recombination of TRB has the form (9, 38)

P(S) = P(V)P(D, J)P(insVD, insDJ)

P(delV|V)P(delDl, delDr|D)P(delJ|J)

P(s1)P(s2|s1) · · · P(sinsVD|sinsVD−1)

P(t1)P(t2|t1) · · · P(tinsDJ|tinsDJ−1), [2]

where S is a recombination scenario (defined by gene choice, numbers of
deletions, and number and identity of insertions) and where each factor in
the equation is a distribution over the possible elements of the scenario,
P(V)P(D, J) is the distribution of choices of the three kinds of gene segments
(note that a correlation between the two D genes and the two clusters of J
genes is imposed by genome topology), and P(delV|V) is the distribution of
numbers of deletions from the end of a particular gene V (and likewise for
D and J). A scenario includes specific N nucleotide insertions s1...sinsVD and
t1...tinsVD at the VD and DJ junctions, and P(insVD, insDJ) is the distribution
of the total numbers of such insertions, whereas P(si|si−1), etc. describes the
probability of inserting particular N nucleotides. Note that Eq. 2 gives the
probability of recombination scenarios, not sequences. To obtain the prob-
ability of generating a specific sequence, one must sum the expression in
Eq. 2 over all of the recombination scenarios that result in that sequence.
We determine the component probability distributions in Eq. 2, P(V), P(D, J),
P(insVD, insDJ), and so forth, directly from the data using the principle of
maximum likelihood. The likelihood of a whole dataset is given by the prod-
uct, over all of the unique out-of-frame sequences in the dataset, of the gen-
eration probabilities of those sequences according to the model. In practice,
likelihood maximization is performed using an expectation–maximization
algorithm, as explained in ref. 9.

The main assumption underlying Eq. 2 is its simple product structure,
reflecting the independence of the enzymes that carry out different steps of
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the process. Another assumption is that the probability of inserting a given
N nucleotide depends only on the identity of the nucleotide that precedes
it (Markov assumption). We self-consistently checked the validity of these
assumptions by verifying a posteriori that almost no unaccounted correla-
tions between the recombination events were left in the data that were
not explicitly assumed (Validation of the Structure of the Sequence Gener-
ation Model and Fig. S9) and by showing that the statistics of triplets of N
insertions were well predicted by the Markov model (Fig. S5). We also com-
pared our probabilistically inferred distributions of recombination scenario
variables with distributions assembled from assignments made by a standard
VDJ alignment software package (17). We found that these nonprobabilistic
alignment methods greatly overestimate the fraction of sequences with no
N nucleotide insertions and significantly violate the D-J pairing rule imposed
by genome topology, whereas the probabilistic method does not (Fig. S8).
This discrepancy is what motivates our use of a probabilistic approach. The
inferred model features were very reproducible across individuals of the
same age (Figs. S2 and S4).

Selection Model. Following previous work on human TRB sequences (21),
we associate to each possible CDR3 amino acid sequence σ of the TRB reper-
toire a selection factor Q(σ) defined as the ratio between the probability of
generation of σ in VDJ recombination and its probability of occurrence in
unique in-frame data sequences. The selection factor Q is assumed to be a
product of subfactors related to the V and J gene choice (qVJ), CDR3 length
L (qL), and amino acid identity a at each position i of the CDR3 (qi,L(a)):

Pobs(σ) = Q(σ) · Pgen(σ) =
1

Z
qLqV J

L∏
i=1

qi, L(a) · Pgen(σ). [3]

The qi, L(a) are normalized such that their sum over amino acids at each i
and L is unity and Z enforces an overall normalization. The set of all these

subfactors defines a motif of selection across all possible TRB sequences, and
a likelihood maximization procedure allows us to infer the best selection
factors from the data.

To test the consistency of the selection model, Eq. 3, we also learned
a more general model where, instead of taking the qi,L(a) to depend
on amino acid identity, they were functions of the 62 codons. Using the
same inference procedure, we found that selection factors for degener-
ate codons for the same amino acid were consistent (Fig. S10). This agree-
ment justifies the assumption that selection depends only on amino acid
composition.

Code Availability. The Matlab software for implementing the inference pro-
cedures is available at princeton.edu/∼ccallan/MousePaper/software/. The
results of the inference, along with instructions on how to use these
files to recreate the figures in this paper, are available at princeton.edu/
∼ccallan/MousePaper/results/.

Model of Repertoire Maturation. TCRs are produced in the thymus with
a time-dependent effective TdT level α(t) = [1 + ((Thalf− Tstart)/(t −
Tstart))20]−1, with a production rate θ(t) ∝ (1 + (t − Tstart + 1)2.1) (arbitrary
units). Time is in days, with birth at t = 0, Tstart = −15, and Thalf = 2. Cells
reside in the thymus for an average of 3 d (exponentially distributed time),
after which they are released into the periphery. The simulation is followed
from t = Tstart (early embryo) to t = 42 (age of oldest dataset).
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