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RTS,S is an advanced malaria vaccine candidate and confers
significant protection against Plasmodium falciparum infection in
humans. Little is known about the molecular mechanisms driving
vaccine immunity. Here, we applied a systems biology approach
to study immune responses in subjects receiving three consecutive
immunizations with RTS,S (RRR), or in those receiving two immuni-
zations of RTS,S/AS01 following a primary immunization with ade-
novirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein.
Subsequent controlled human malaria challenge (CHMI) of the vac-
cinees with Plasmodium-infected mosquitoes, 3 wk after the final
immunization, resulted in ∼50% protection in both groups of vac-
cinees. Circumsporozoite protein (CSP)-specific antibody titers, pre-
challenge, were associated with protection in the RRR group. In
contrast, ARR-induced lower antibody responses, and protection
was associated with polyfunctional CD4+ T-cell responses 2 wk after
priming with Ad35. Molecular signatures of B and plasma cells de-
tected in PBMCs were highly correlated with antibody titers prechal-
lenge and protection in the RRR cohort. In contrast, early signatures
of innate immunity and dendritic cell activation were highly associ-
ated with protection in the ARR cohort. For both vaccine regimens,
natural killer (NK) cell signatures negatively correlated with and
predicted protection. These results suggest that protective immu-
nity against P. falciparum can be achieved via multiple mechanisms
and highlight the utility of systems approaches in defining molecu-
lar correlates of protection to vaccination.
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Malaria is a communicable disease transmitted by mosqui-
toes from the genus Anopheles. There was an estimated

214 million cases of malaria in 2014, with an estimated 438,000
deaths, primarily in sub-Saharan Africa. Nearly three-quarters of
malaria victims were children younger than 5, with an estimated
800 childhood deaths daily (1).
A malarial vaccine candidate targeting circumsporozoite pro-

tein (CSP), a major component of the Plasmodium falciparum
sporozoite coat, has been developed and recommended for pilot
implementation by the World Health Organization (2). The vac-
cine candidate, named RTS,S/AS01, consists of 19 NANP repeats
(R) and the C-terminal of CSP including T-cell epitopes (T) fused
to hepatitis B surface antigen (HBsAg) (S) (3, 4). It is produced as
a mixture of the fusion construct (RTS) with native HBsAg (S),
which self-assembles into virus-like particles with the CSP portion
of the fusion protein exposed on the surface. The RTS,S/AS01
vaccine candidate contains adjuvant system AS01, a liposome-
based adjuvant comprising 3-O-desacyl-4′-monophosphoryl lipid
A (MPL), a Toll-like receptor 4 ligand, and QS-21, a saponin
extracted from the bark of the Quillaja saponaria Molina tree (5).
To date, RTS,S/AS01 has been shown to have an acceptable

safety and immunogenicity profile in controlled human malaria
infection (CHMI) and field (6–8) studies. Phase IIa/IIb clinical

trials conducted in malaria endemic areas in Africa proved the
vaccine to be partially protective in adults (9), children (10, 11),
and infants (12, 13). These results were further confirmed in a
phase III trial in sub-Saharan Africa (14–17) in which 55.8%
efficacy against clinical malaria was observed over the first 12 mo
of follow-up in children of 5–17 mo (14).
The magnitude of the CSP-specific antibody responses induced

by RTS,S/AS01 vaccination has been correlated with protection in
previous studies (18). However, RTS,S/AS01 vaccination does not
induce CD8+ T cells, and because CD8+ T cells have a critical role
in protection against malaria (19), this observation provided one
rationale to include a viral vector in a prime-boost regimen with
RTS,S/AS01 to determine whether this addition enhances antibody,
CD4+, and CD8+ T-cell responses, which synergize to confer enhanced
protection against infection. In this context, replication-defective
recombinant adenoviral vectors (rAds) are known to potently induce
T-cell immunity and are lead vaccine candidates (20). Thus, to
augment cellular responses to the RTS,S /AS01 vaccine, a com-
bination of adenoviral vaccine candidates and RTS,S/AS01 has
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also been evaluated (21). Recently, an Ad35-CSP (AdVac)–RTS,
S/AS01 prime-boost approach was tested in humans, and its ef-
ficacy and immunogenicity was compared with the RTS,S/AS01
vaccine candidate alone (18). Surprisingly, however, inclusion of
the adenoviral prime immunization did not result in increased
vaccine efficacy (18).
In this study, we sought to enhance our understanding of the

mechanisms of vaccine-induced protection against malaria. In re-
cent years, the tools of systems biology (22, 23) have been applied to
identify signatures of immunogenicity to vaccination and have
provided insights into the mechanisms of immune responses in-
duced by vaccines such as the live attenuated yellow fever (YF-17D)
and seasonal influenza vaccines (24–26). Here, we used systems
approaches to trace the temporal variations of the transcriptional
response elicited by the two vaccines and to identify transcriptional
signatures associated with protection and immunogenicity.

Results
Challenge Model for the RTS,S/AS01 and AdVac Malaria Vaccines. The
clinical trial (NCT01366534) was conducted at Walter Reed Army
Institute of Research, as described (18). Forty-six healthy malaria-
naïve volunteers, randomized to two study arms, participated in this
study testing the efficacy of RTS,S and AdVac malaria vaccine
candidates (Fig. 1), as described (18). Study arm 1 (hereafter re-
ferred to as ARR), comprised of 25 volunteers who received the
AdVac vaccine composed of Ad35 vector expressing full-length
CSP, as a primary immunization, was followed by two doses of RTS,
S/AS01 vaccine. The subjects in the second arm, consisting of 21
volunteers, received three doses of RTS,S/AS01 (RRR regimen).
Participants in both study arms were vaccinated at 28-d intervals,
and subjected to CHMI 21 d following the final immunization.
Parasitemia was monitored for 28 d, and immunomonitoring con-
tinued for 159 d following challenge. The study also included 12
nonvaccinated subjects as infectivity controls. Vaccine efficacy was
44% and 52% in ARR and RR arms, respectively, and was not
statistically different between the two arms (18). All subjects in the
control group developed parasitemia (18).

Adaptive Immune Responses. The RRR regimen induced signifi-
cantly greater antibody titers against CSP than ARR regimen at all
time points before or on the day of challenge (Fig. S1A and ref.
18). Similar results were also seen for antibody titers against
HBsAg, the protein fused to CSP, although the differences at later
time points were modest (Fig. S1B). Two doses of RTS,S/AS01
following the ARR were not able to induce as high a magnitude of
antibody titers as two doses of RTS,S/AS01 vaccine in the RRR
arm (Fig. S1A). We also assessed the number of antibody secreting
cells (ASCs) induced after immunization, using ELISPOT. Both
vaccines induced similar frequencies of CSP-specific (Fig. S1C),
or HBsAg-specific ASCs, 6 d after the second and third

immunizations. This was surprising because RRR vaccination
induced a greater magnitude of CSP-antibody titers compared
with ARR vaccination (Fig. S1A). This discordance may reflect
differences in kinetics of the ASC response induced by ARR
versus RRR. Alternatively, a different population of ASC (which
was not sampled in this study) may contribute to enhanced an-
tibody response in the RRR group.
CSP-specific CD4+ and CD8+ T-cell responses to vaccination

were also assessed (18). There was negligible induction of CD8+

T-cell responses by RRR and a modest induction by ARR. In con-
trast, there was a significant induction of CSP-specific CD4+ T-cell
response by ARR, and to a much weaker degree by RRR (18).
The functionality of T cells was monitored by FACS analysis using
a panel including four markers: CD40L, IL-2, TNFα, and IFNγ. In
the ARR vaccine group, there was a markedly enhanced frequency
of polyfunctional (expressing three or four functions) CSP-specific
CD4+ T cells at D14, D42, and D77, and postchallenge (Fig. S1D).

Immunologic Correlates of Protection. As reported (18), in the
RRR vaccine arm, individuals who did not develop parasitemia
within 28 d after challenge (referred hereafter as “protected”)
had higher concentration of anti-CSP antibodies at the time of
challenge than nonprotected individuals (Fig. 2A). In the ARR
arm, the concentration of anti-CSP antibodies was substantially
lower than that in the RRR arm (Fig. S1A), and there was no
statistically significant difference in the titers on the day of
challenge, between the protected versus nonprotected subjects.
Anti-HBsAg antibody concentrations were not significantly dif-
ferent between protected and nonprotected individuals (Fig. 2B).
In the ARR arm, it was in fact the frequency of CSP-specific
polyfunctional CD4+ T cells at day 14 that significantly corre-
lated with protection (Fig. 2C). The frequencies of CSP-specific
polyfunctional T cells were similar between protected and non-
protected groups at all later time points (Fig. 2C). The frequency
of polyfunctional CD4+ T cells did not correlate with protection
in the RRR arm (Fig. 2C).

Transcriptional Signatures Induced by Vaccination. Vaccination with
ARR or RRR induced potent transcriptional responses in
PBMCs, with several thousands of genes being induced or re-
pressed (Fig. 3A). The transcriptional responses at day 1 and day 6
after vaccinations, which include signatures of inflammation/TLR
signaling and cell cycle genes in proliferating ASCs, correspond to
the early innate and the later ASC responses (Fig. S2 A and B).
ARR and RRR induced a small number of differentially
expressed genes at D1 after primary vaccination (Fig. S2C). The
genes more strongly induced by ARR included genes associated
with the type I IFN antiviral response and innate immunity, such
as IFI27, IFI44L, IFI6, and HESX1 (27), consistent with previous
studies (28). We then investigated the regulation of known IFN
type I response-associated genes (27), as well as genes up-regu-
lated in response to the live attenuated virus YF-17D vaccine (24).
Both Ad35.CS and RTS,S/AS01 primary vaccinations induce po-
tent expression of IFN type I and YF-17D signatures (Fig. S3),
suggesting that the virus-like particles and the AS01 adjuvant
contained in RTS,S/AS01 induces a potent antiviral type I IFN
response, similar to that observed with viruses such as Ad35 or
YF-17D. The identity of such genes induced by Ad35.CS and
RTS,S/AS01 was largely overlapping (Fig. S3).
To identify functional pathways perturbed by the two regi-

mens, we used Gene Set Enrichment Analysis (GSEA) using
blood transcription modules (BTMs) (29) as gene sets. Tran-
scripts were ranked according to a fold change differences rel-
ative to the D0 baseline. The functional responses elicited by the
two vaccines were broadly similar (Fig. S4 and Dataset S1). Both
vaccines induced strong innate responses (Fig. S4), including in-
flammatory/TLR/chemokines BTMs, following each vaccination
(Fig. S4). Enrichment of cell cycle and plasma and B-cell–related
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Fig. 1. Study design. Filled rectangles indicate the time points of data col-
lection. ARR regimen was immunization with Ad35 followed by two immu-
nizations with RTS,S. RRR regimen was three consecutive immunizations
with RTS,S.
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BTMs was observed 6 d after each vaccination (Fig. S4). A no-
ticeable difference was the contraction of B-cell and plasma cell
BTMs at D2 following prime immunization, observed in the ARR
regimen, but absent in the RRR arm (Fig. S4). Interestingly BTMs
related to cell cycle were enhanced even at D14 after primary
vaccination, suggesting the persistence of cycling cells. Further-
more, in both arms, we observed a repression of BTMs related to
NK cells at D1 following each vaccination (Fig. S4).

Molecular Signatures of Immunogenicity. We next analyzed the
transcriptional signatures that correlated with immunogenicity of
vaccination. In the case of RRR vaccination, we assessed tran-
scriptional correlates of CSP-specific antibody titers on D77 (the
day of challenge). Following RRR vaccination, the expression of
BTMs related to plasmablasts at D1 after each vaccination was
positively associated with the antibody titers on the day of
challenge (Figs. S5A and S6A). This observation was surprising,
given that the plasmablast response in humans to vaccination
with other vaccines such as influenza (30) has been shown to
peak at day 7 after vaccination, and with ARR and RRR vac-
cination robust, plasmablast responses were observed 6 d after
each boost (Fig. S1C). The observed correlation between BTMs
related to B cells and plasmablasts, at day 1 after each boost, and
immunogenicity might reflect a transient burst of genes related
to B-cell activation within a day of vaccination, but this hy-
pothesis needs further exploration. Additionally, cell division
BTMs showed positive correlation to the antibody titers even at
later time points (D14, 28, and 56), suggesting the persistence of
cycling cells (Figs. S5A and S6A). Furthermore, the expression of
several innate immunity modules (antigen presentation M95,
dendritic cell activation M165), including many antiviral and type
I IFN-related modules at day 6 post primary and secondary
vaccinations, were positively correlated with the antibody titers
on the day of challenge (Figs. S5A and S6A and Dataset S2).
Most strikingly, on the day of first and second boosts, gene
modules relevant to NK cells showed strong negative correlation
to the antibody titers at the day of challenge (Fig. S5A and
Dataset S2). Indeed, we observed that the majority of genes
included in these NK cell-related BTMs showed negative asso-
ciation with antibody titers.
In the case of ARR, the frequency of polyfunctional CD4+ T

cells at day 14 was associated with protection (Fig. 2C). We thus
assessed whether early transcriptional signatures correlated with
the polyfunctional CD4+ T-cell response at day 14. At day 1,
several modules representative of innate immune activation (an-
tigen presentation M71, M95.1; activated dendritic cells and
monocytes M168, M11; TLR and inflammatory responses M16,
M25, M146) were strongly associated with polyfunctional CD4+

T-cell response at day 14 (Figs. S5B and S6B). Interestingly, mod-
ules representative of respiratory electron transport were strongly
associated with the response. In contrast, modules representative
of NK cells and T cells were negatively associated with the re-
sponse. Similar, but weaker, associations were observed at D2 after
prime Ad35.CS immunization. By day 6, the landscape of corre-
lates changed, with many modules representing DC markers be-
coming negatively enriched, whereas NK cell modules continued to
be negatively associated (Figs. S5B and S6B and Dataset S2).

Association of Molecular Signatures with Protection. We then ana-
lyzed transcriptional signatures associated with protection. In the
RRR group, BTMs related to plasma cells, B cells, and cell cycle at
D1, D29, and D57 (i.e., 1 d after each vaccination) were positively
associated with protection (Fig. 4 and Fig. S7A), consistent with the
correlations between the expression of such BTMs at 1 d after each
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Fig. 2. Serological and cellular associations with protection. (A) Serum anti-
CS IgG antibody titers. Lines indicate median values, shaded areas indicate
25–75% interquartile range. *α = 0.05 level by Wilcoxon signed rank test.
(B) Serum anti-HBsAg antibody titers in protected and nonprotected subjects.
(C) SPICE plots indicate the functionality of CSP-specific CD4 T cells. Inner
sectors on SPICE plots indicate the number of markers expressed: Blue,
green, orange, and red indicate 1, 2, 3, and 4 markers, respectively. Outside
arches indicate the identity of expressed markers, per legend in the figure.
Sum of χ2 values was used as a test metric. P values were generated by

partial permutation test (37) and indicate the statistical significance of the
differences in frequencies of T-cell subsets in P vs. NP.
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booster vaccination, and antibody titers (Figs. S5A and S6A). We
also observed positive associations of multiple innate immunity
modules at 6 d after primary and secondary vaccination, similar to
the observed correlations with CSP-specific antibody titers (Fig. 4
and Fig. S7A). Additionally, several NK cell modules at D56 (day of
the second boost) negatively associate with protection (Fig. 4 and
Fig. S7A), consistent with their correlation with antibody titers (Figs.
S5A and S6A). Strikingly, there were negative correlations of the
expression of almost all of the genes contained within the NK cell-
related BTMs, at D56, and protection (Fig. 5).
The transcriptional signatures of protection for the ARR arm

were different from those for RRR. Here, multiple innate im-
munity modules positively associate with protection at D1 and 2
after the prime, and D28 (day of the first boost) (Fig. S7 B and C),
similar to the transcriptional correlates of polyfunctional CD4+ T
cells described above (Figs. S5B and S6B). Again, NK modules
display strong negative association with protection at multiple time
points (D2, D28, D29, D56) (Fig. S7 B and C and Dataset S3).
We then determined the overlap between the molecular sig-

natures of protection and immunogenicity. For the ARR arm, at
D1 and 2 BTMs related to antigen presentation, TLR signaling
and dendritic cells were associated with both immunogenicity
(i.e., polyfunctional CD4+ T cells at D14) and protection (Fig.
S7C). For RRR, there was considerable overlap between signa-
tures of protection and immunogenicity. Several BTMs that
correlate with protection were also correlated with immunoge-
nicity (Fig. 4). BTMs related to plasma and B cells, and the cell
cycle were correlated with both protection and immunogenicity
at 1 d after the primary and secondary vaccinations (Fig. 4). In
contrast, several innate immunity modules, at day 6 after prime
and day 6 after boost (D34), were correlated with both anti-CSP–
specific antibody response and protection (Fig. 4). Strikingly, at
D56 (the day of the final boost), we observed negative correla-
tions of several NK cell-related BTMs with protection and im-
munogenicity (i.e., CSP-specific antibody titers at D77) (Fig. 4).
A full description of all common associations with immunoge-
nicity and protection is provided in Dataset S4.

Predictive Modeling of Protection. We then developed predictive
signatures of protection based on the transcriptional response to
RRR vaccination. To achieve this goal, a discriminant analysis via
mixed integer programming (DAMIP) (31) was used to generate
the candidate predictive signatures. The two groups to classify are
group 0 (protected) versus group 1 (not protected). For signature
validation, we used a transcriptional dataset from an independent
malaria challenge study with RTS,S/AS01 (32), NCT00075049,
hereby referred to as “Vahey data set.” Responses in the two

studies were broadly similar (Fig. S8 and Datasets S5 and S6). The
baseline-normalized expression values for the RRR cohort in the
present study was used as a training set, and candidate signatures
that passed a minimum accuracy threshold in the training set were
then applied to the independent validation set for blind pre-
diction. The outline of the predictive modeling experiments is
provided in Fig. 6A. A full list of signatures and their performance
metrics is provided in Datasets S7 and S8. Analysis of the tran-
scripts included in the successful predictive signatures revealed a
high prevalence of transcripts that were commonly found in a
large number of signatures at D56 (Table S1). One such transcript,
KIR2DS1 (an NK cell marker), was found in 57 of 99 successful
predictive signatures. This observation is consistent with the fact
that NK cell-related BTMs are negatively associated with pro-
tection in both datasets at D56 (Fig. 6B). To validate these sig-
natures, we used the set of transcripts identified in RRR to
generate and train signatures in the Vahey data set (Dataset S9).
Many of the mRNAs that were highly represented in signatures
trained in RRR arm of this study are also highly represented in
signatures trained in the Vahey data set (Datasets S10 and S11).
Up-regulated mRNA common to both RRR- and Vahey-generated
signatures include several NK markers KIR2DS1, KIR2DL2, and
KIR3DL1. Notably, many of the mRNAs that were included in the
predictive signatures in 10-fold cross validation (10× CV) in RRR
and the Vahey data set individually were also included in predictive
signatures that were trained by using RRR, and were shown to
blind predict outcome in Vahey data set (Dataset S11). Therefore,
we conclude that a small number of mRNAs with high prevalence
in predictive signatures are likely to be determining factors that
distinguish protected versus nonprotected individuals.
Finally, we illustrated the ability of the generated signatures of

protection to segregate the samples in their respective protection
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groups. For this analysis, we used signatures consisting of features
that include the high-prevalence genes noted above and plotted the
distribution of protected and nonprotected subjects as a function of
baseline normalized expression values of genes contained in these
signatures. The results for three representative signatures are
shown in Fig. 6C. Notably, although the overall accuracy of pre-
diction was 80% or higher in both protected and unprotected
groups, there were specific individuals in the Vahey validation set
that were consistently misclassified. One of these individuals was
misclassified by more than 90% of signatures, whereas four others
were classified into one or the other group with nearly random
probability. These subjects are indicated by black dots in Fig. 6C. In
summary, we confirmed that expression of genes included in rep-
resentative predictive signatures is sufficient to segregate protected
and nonprotected subjects.

Discussion
Despite the fact that RTS,S/AS01 is the most advanced malaria
vaccine candidate under development, little is understood about the
mechanisms by which it induces protective immunity. In this study,
we performed a systems biology analysis of samples obtained from a
clinical study involving 3xRTS,S/AS01 (RRR) and Ad35.CS-prime
followed by 2xRTS,S/AS01 (ARR) vaccination regimens, with a view
to identifying molecular correlates of immunogenicity and protection,
and exploring the molecular mechanisms of protective immunity.
The two vaccination regimens elicited potent transcriptional

responses, with several thousand genes differentially induced or
repressed in response to each vaccination. Surprisingly, the tran-
scriptional responses induced by the two vaccines were similar at
the BTM level. However, the signatures of immunogenicity were
different. For RRR, the correlates of antibody titers were expression
of BTMs containing genes associated with cell cycle and several
B-cell activation genes and some genes expressed in plasma cells, as

early as 1 or 2 d after the second and third immunizations. This
observation was surprising because the peak of the plasmablast re-
sponse and B-cell activation has been shown to occur at ∼7 d after
vaccination (25, 30). This difference suggests that the signatures of
cell cycle, and B and plasma cell activation observed at days 1 and 2,
may reflect some of the earliest events in B-cell activation that
precedes plasmablast generation. There was a noticeable increase in
the numbers of antigen-specific plasmablasts at 6 d after vaccination,
but unlike what was previously observed with other vaccines, the
frequency of such cells were not observed to correlate with the
magnitude of the antibody response, suggesting potential differences
in the kinetics of the plasmablast responses between the two vaccines,
or that other populations of antibody-producing cells, not detected in
the present analysis, may contribute toward antibody production.
For ARR, several innate immune modules of gene expression

within the first 6 days of Ad35.CS prime correlated with the
frequency of polyfunctional CD4+ T cells 2 weeks after the first
immunization. Additionally, in the case of RRR, it was the ex-
pression of BTMs related to innate immunity at 6 days after the
first and second immunization that correlated with immunoge-
nicity. We observed that multiple innate immunity modules were
associated with the day of challenge antibody titers at day 6 after
the primary immunization, and day 6 after the first boost (D34 of
the study) (Figs. S5A and S6A). This observation is similar to the
pattern of more persistent innate response observed in YF-17D
vaccination compared with seasonal influenza, which may con-
tribute to the exceptional vaccine efficacy of YF-17D (24, 28). Of
interest, although we observed strong induction of multiple in-
nate immunity modules within 1 or 2 days after each vaccination
(Figs. S2A and S5), these responses were not associated with
immunogenicity (Figs. S5A and S6A) or protection (Fig. 4). In
contrast, expression of multiple innate immunity modules following
Ad35.CS vaccination in the ARR arm was strongly associated with
immunogenicity (Figs. S5B and S6B) and protection (Fig. S7 B andC).
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A surprising result is that at D56 (the day of the final boost), we
observed consistent signatures of immunogenicity and protection.
In particular, the NK cell modules in peripheral blood at D56 (day
of the third immunization) correlate negatively with both antibody
response and protection. Furthermore, several NK cell-related
genes were observed in the predictive signatures delineated by
DAMIP. Whether there is a causal link between the observed NK
cell modules and the antibody response remains to be determined.
In this context, a recent report shows that NK cells negatively
regulate germinal center and T follicular responses and memory
B-cell generation (33), so it is conceivable that such a mechanism
may be at play with the current vaccine. In addition, it is possible
that this inverse correlation between the expression of NK cell-
related genes and antibody titers and protection reflects the mi-
gration of NK cells from the blood to the liver, where they may
help orchestrate antibody-mediated effector mechanisms such as
antibody-dependent cell-mediated cytoxcity against infected cells in
the liver. In this context, several previous studies have implicated
NK cells in immunity against malaria (34–36).
Together, our findings indicate that the RTS,S/AS01 vaccine

candidate elicits protective immunity against infection primarily
through rapid accumulation of high levels of anti-CS antibodies. In
contrast, vaccination with ARR did not induce as high a magnitude
of antibody response, but rather enhanced frequencies of polyfunc-
tional CD4+ T cells. Given the critical importance of CD4+ T cells in
promoting antibody responses, the failure of the ARR regimen to
induce as strong an antibody response as the RRR regimen was a
surprise. However, it should be noted that RRR regimen involved
three immunizations with CSP-expressing Hep B virus-like particles,
whereas ARR only involved two immunizations. Furthermore, the

polyfunctional CD4+ T cells induced by the Ad35 prime may have
altered the quality of the antibody response, leading, for example, to
higher-affinity antibodies as a result of enhanced germinal center
response in the ARR vaccine compared with the RRR vaccine.
Thus, the ARR and RRR vaccine might have conferred protection
against malaria via two distinct mechanisms, involving the magnitude
(RRR) and the affinity (ARR) of the antibody response. Further-
more our results demonstrate a potent and sustained transcriptional
response induced by this vaccine, and delineate several unappre-
ciated molecular correlates of immunogenicity and protection (Fig.
S9). Importantly, these results provide candidate molecular signa-
tures that may have potential as biomarkers of protective efficacy of
vaccine-induced immunity against malaria.

Methods
This study was conducted at the Walter Reed Army Institute of Research
(WRAIR) between August 2011 and July 2012, and was approved by the
WRAIR Institutional Review Board (IRB) and Program for Appropriate
Technology in Health-Malaria Vaccine Initiative’s Western IRB. The trial was
undertaken in accordance with the provisions of the International Confer-
ence on Harmonization and Good Clinical Practice guidelines. Written in-
formed consent was obtained from each subject before study procedures
were initiated. All laboratories received deidentified samples and performed
tests according to protocol, and therefore their work was IRB-exempt.
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