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SUMMARY

We previously reported a genetic analysis of heart failure traits in a population of inbred mouse 

strains treated with isoproterenol to mimic catecholamine-driven cardiac hypertrophy. Here, we 

apply a co-expression network algorithm, wMICA, to perform a systems-level analysis of left 

ventricular transcriptomes from these mice. We describe the features of the overall network but 

focus on a module identified in treated hearts that is strongly related to cardiac hypertrophy and 

pathological remodeling. Using the causal modeling algorithm NEO, we identified the gene 

Adamts2 as a putative regulator of this module and validated the predictive value of NEO using 

small interfering RNA-mediated knockdown in neonatal rat ventricular myocytes. Adamts2 
silencing regulated the expression of the genes residing within the module and impaired 
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isoproterenol-induced cellular hypertrophy. Our results provide a view of higher order interactions 

in heart failure with potential for diagnostic and therapeutic insights.

Graphical abstract

INTRODUCTION

Heart failure (HF) is a common disorder characterized by impaired heart function, cardiac 

hypertrophy, and chamber remodeling (Frangogiannis, 2012). Despite reports of significant 

genetic heritability, genome-wide association studies (GWAS) involving tens of thousands of 

patients have had only modest success, likely due to the complex, heterogeneous nature of 

the disease (reviewed in Rau et al., 2015a). These complexities can be minimized in genetic 

studies of model organisms such as mice, and classical quantitative trait locus (QTL) linkage 

analyses in mice have identified a number of novel HF-related genes (McNally et al., 2015; 

Wheeler et al., 2009).

In previous work, we have shown that a GWAS approach can be applied to populations of 

common inbred strains of mice if associations are corrected for population structure 

(Bennett et al., 2010). We studied a population of over 100 commercially available inbred 

strains of mice selected for diversity, constituting a resource that we termed the Hybrid 

Mouse Diversity Panel (HMDP). The mapping resolution of this approach is at least an order 

of magnitude better than traditional QTL analyses involving genetic crosses and has led to 

the identification of novel genes for a number of traits (reviewed in Lusis et al., 2016). We 

recently applied this approach to identify loci and genes that contribute to HF traits in an 

isoproterenol (ISO) model, which mimics the chronic β-adrenergic stimulation that often 

occurs in human HF. Association analyses identified both known and novel genes 

contributing to hypertrophy, cardiac fibrosis, and echocardiographic traits (Rau et al., 2015b; 

Wang et al., 2016).

Rau et al. Page 2

Cell Syst. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We now report an extension of this study in which we seek to understand genes and 

pathways that contribute to HF through the modeling of biological networks. We apply an 

improved version of the Maximal Information Component Analysis (MICA) algorithm (Rau 

et al., 2013), with increased versatility and power, to left ventricular transcriptomes of the 

HMDP population before and after treatment with ISO to form modules of functionally 

related genes. Several modules that showed significant association to HF-related phenotypes 

were identified. We focused our analysis on a module based on treated expression data as it 

exhibited striking correlations with a number of HF traits and contained several genes 

previously implicated in HF, such as Nppa and Timp1. We then applied the NEO (Near Edge 

Orientation) algorithm (Aten et al., 2008) to develop a directed network with predicted 

causal interactions among the module genes. The results suggested that Adamts2, a 

metalloproteinase not previously associated with HF, plays a key role in modulating the 

expression of other genes in the module in response to ISO stimulation. Using an in vitro 

model, we validated several of these causal links and demonstrated that Adamts2 expression 

affected several proxy measurements of cardiac hypertrophy.

RESULTS

Gene Network Analysis Using Weighted MICA

Prior research (Farber, 2013) using the HMDP benefited from the use of systems-level 

transcriptomics to generate mRNA co-expression networks. We previously reported an 

unbiased gene network construction algorithm, termed MICA, which has several conceptual 

improvements over traditional co-expression methods in that it captures both linear and 

nonlinear interactions within the data and allows genes to be spread proportionally across 

multiple modules (Rau et al., 2013). Previous research on gene networks (Langfelder and 

Horvath, 2008) has shown that weighted network construction algorithms, in which all edges 

are included in the analysis, have greater versatility and power than unweighted algorithms, 

in which edges are included or excluded based on a hard threshold. Therefore, we have 

improved upon our original algorithm (STAR Methods) and developed a modified, weighted 

form of MICA, which we term wMICA. We describe here the first application of wMICA to 

the analysis of HF, using gene expression data across inbred strains of mice from the HMDP 

HF study.

Left ventricular tissue from the HMDP was processed using Illumina Mouse Ref 2.0 gene 

expression arrays. Probes were filtered for transcripts that were significantly expressed in at 

least 25% of samples and had a coefficient of variation of at least 5%. This resulted in a final 

set of 8,126 probes, representing 31.6% of the total probes on the array. Three gene 

networks, with 20 modules each, were generated from these data: one based only on 

transcripts from the untreated hearts, one based only on the treated hearts, and a third based 

on the change in gene expression between these two conditions (Data S1).

Two measures were used for the preliminary analyses of these networks. We calculated 

significant Gene Ontology (GO) enrichments within each of these modules at several 

module membership cutoffs, using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID). Significant enrichment for one or more GO terms suggests that the 

module represents a collection of genes that are biologically related to one another and are 
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less likely to be an artifact of the module identification process. We also used principal-

component analysis (PCA) to identify the first principal component (often called the 

“eigengene”) of each module. This eigengene can be correlated to HF-related phenotypes to 

identify modules that, as a whole, are most likely related to specific features of cardiac 

pathogenesis. As wMICA allows genes to reside within multiple modules, we used a 

weighted PCA algorithm to calculate the first weighted principal component of each module 

based on each gene’s module membership. The weighted eigengene was then correlated to a 

number of HF-related phenotypes from the HMDP panel. They include seven organ weights, 

eight echocardiographic parameters, and five plasma traits that, in conjunction with either an 

organ weights or functional parameters, suggest a change in metabolism status associated 

with HF.

Heart Failure Co-expression Networks

MICA Modules Generated from Untreated Left Ventricular Tissue—Three MICA-

generated modules were observed to have very strong (DAVID score > 7) enrichments, 

while five other modules showed significant (score > 3) enrichments. Only a single module 

(not one of the eight with strong enrichments to a GO category) had even suggestive (p < 

0.01) correlations to an HF-related phenotype. Therefore, the co-expression gene modules 

identified in the pre-treated hearts appear to have limited correlation with susceptibility to 

HF.

MICA Modules Generated from Treated Left Ventricular Tissue—Thirteen of the 

modules of the MICA network constructed from treated hearts had significant DAVID 

enrichments, including three modules (3, 4, and 5) with enrichment scores greater than 10 

(Figure 1A; Table S1). Three modules (1, 5, and 19) contained at least one significant (p < 

10−4) correlation between the eigengene and either an organ weight or echocardiographic 

parameter (Figure 1B; Figure S1). Four additional modules (4, 12, 15, and 18) contained at 

least two suggestive (p < 0.01) correlations between a module and a HF-related trait.

Module 5 has 309 genes that have maximal module membership within the module. It 

showed strong correlations to 7 of 20 measured HF traits: total heart weight, left and right 

ventricle weights, left ventricular internal dimension, lung weight, liver weight, and plasma 

free fatty acids, suggesting a strong relationship between this module and cardiac 

hypertrophy and HF (Figure 1B). Module 5 also showed highly significant GO enrichments 

for several biological processes: extracellular matrix (p < 10−18), secreted signaling (p < 

10−16), and cell adhesion (p < 10−9). Of the 47 probes (42 genes) that possess greater than 

70% module membership (Figure 2A), 20 genes (47.7%) have previously been described as 

involved in heart hypertrophy or cardiac remodeling based on transgenic studies in animal 

models or mendelian forms of HF. These genes include Nppa, a well-known marker of 

cardiac hypertrophy; Timp1, an extracellular matrix regulator (Barton et al., 2003); and the 

collagen genes Col12a1, Col14a1, and Col6a2. We further observed three genes (Pcolce, 

Sprx, and Sprx2) that we had previously identified via GWAS as candidate genes for cardiac 

phenotypes in this panel of mice (Rau et al., 2015b). These features led us to characterize 

module 5 in greater detail.
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MICA Modules Generated from the Change in Gene Expression between 
Control and Treated Mice: Delta Network—We observed the strongest associations 

between gene modules and GO terms in the MICA network generated from the changes in 

gene expression induced by ISO and subsequent remodeling, with 11 modules showing 

significant enrichments. Four of these modules had DAVID scores greater than 10, and two 

had scores greater than 15. Despite strong enrichments for GO terms, no eigengene/trait 

correlations for any organ weight or echocardiographic parameter had a p value less than 

0.01.

Causality Modeling of Modules Using the NEO Algorithm

Using co-expression networks based on common genetic variation in populations, it is 

possible to model causal interactions and orient edges. The NEO (Aten et al., 2008) 

algorithm uses SNPs as anchors to infer directionality between SNP/gene/gene triads based 

on several possible models (Figure 2B). We applied the NEO algorithm to the largest 

connected components of the core genes of modules 5.

Of the 47 probes in the core network of module 5, 44 had at least one edge with significant 

directionality (Figure 2C). Genes with directed edges were classified into three categories 

(reactive, intermediary, and driver) based upon the number of directed edges traveling from 

the gene of interest to other genes in the module and the number of directed edges traveling 

from other genes in the module to the gene of interest (Table S2). We observed 12 “reactive” 

genes in which 75% or more of their directed edges travel to the gene from other genes in 

the module. The most reactive gene is Timp1, an important marker of left ventricular 

remodeling and HF (Barton et al., 2003), which is predicted to be affected by 18 other genes 

in the module. Similarly, we classified 12 genes as drivers based on the observation that, at 

minimum, 75% of their directed edges originate from the gene and travel to other genes in 

the module. Of the 12 drivers, 3 are notable. The first, Pcolce, a previously reported GWAS 

candidate gene (Rau et al., 2015b), has 11 outputs representing 26% of the genes in the core 

of module 5. The second, Nox4, which has a single output to Mfap5, has been previously 

established to be a key contributor to oxidative stress during pressure overload (Kuroda et 

al., 2010). The third driver, the metalloproteinase Adamts2, has not been previously 

implicated in HF or muscle development and has the largest number of directed edges within 

the module, with 23 (56% of module 5 genes) causal and 2 reactive (to the exocytosis 

regulator Rab15 and the extracellular matrix organizer Ccdc80) edges. Furthermore, 

Adamts2 showed significant correlations to lung weight (R = 0.46 · p = 4.6 · 10−6), heart 

weight (R = 0.43 · p = 1.5 · 10−5), and free fatty acids (R = 0.43, p = 2.0 · 10−5) after ISO 

stimulation, and it has both the highest degree (30) and third highest betweenness centrality 

of any gene within the module. Examination of sequence variation in and near the Adamts2 
gene revealed a significant cis-eQTL (expression QTL) but no evidence of alternative 

splicing or deleterious missense mutations (see Table S4 for a sequence-level analysis of 

each “driver” gene from this module). Taken together, these results suggest that Adamts2 is 

a previously unidentified regulator of cardiac pathology.

Rau et al. Page 5

Cell Syst. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Validation of the Driver Role of Adamts2 in Module 5 Using Cultured Cardiomyocytes

To test the NEO-predicted regulation of gene expression by Adamts2, we measured the 

expression of a set of seven predicted downstream targets residing in module 5, as well as a 

gene that was not predicted to be a target, the calcium transporter Atp2a2 (Figure 3; Figure 

S4). These seven genes (Col12a1, Kcnv2, Mfap2, Nppa, Pcolce, Timp1, and Tnc) were 

selected based on three criteria: strength of predicted relationship to Adamts2, number of 

directed edges in module 5, and previous associations with cardiac function and/or 

cardiovascular disease (Table S3). Using small interfering RNA (siRNA) to silence 

Adamts2, we achieved a 28%–45% decrease in Adamts2 expression when compared to 

transfection control (Figure 3A). We did not observe any consistent changes in Atp2a2 
expression upon siRNA knockdown (Figure S2), consistent with the NEO prediction that it 

is not a target of Adamts2 (Figure 2). In contrast, we observed significant changes in four 

genes predicted to be targets (Kcnv2, Mfap2, Nppa, and Tnc) (Figure 3), suggesting that 

Adamts2 acts to regulate their expression under ISO-treated conditions in cardiomyocytes. 

The failure to observe the predicted responses for the other genes is likely due either to 

insufficient knockdown of Adamts2 or incorrect prediction by the NEO algorithm.

Adamts2 Is a Regulator of β-Adrenergic-Induced Cardiomyocyte Hypertrophy In Vitro

As module 5 is significantly correlated with changes in numerous HF-related traits, we 

hypothesized that changes in the expression in Adamts2, a predicted driver of module 5, 

would alter cardiomyocyte size and/or viability in response to ISO. Indeed, following 

treatment with ISO, cells transfected with the control siRNA nearly doubled in cellular 

cross-sectional area (Figures 4A and 4B). Cells that expressed less Adamts2 due to siRNA 

transfection were smaller than scramble-transfected cells following treatment with ISO, 

being about the same size as the control cells without ISO stimulation (Figures 4A and 4B).

At the molecular level, treatment with ISO induced the expression of the hypertrophic 

markers Nppa and Nppb, which rose 2.4-fold and 5.7-fold, respectively, in cells transfected 

with the control siRNA. Knockdown of Adamts2 strongly impaired these inductions, with 

Nppa induction reduced by approximately 75% and Nppb expression reduced by 

approximately 65% (Figures 4C and 4D). The significant response of the hypertrophic 

markers to relatively modest changes in Adamts2 expression under an adrenergic stimulus 

suggests a non-linear relationship between these genes. As such, these findings indicate that 

Adamts2 acts as a regulator of β-adrenergic-induced cardiac hypertrophy in cardiomyocytes.

DISCUSSION

We report network modeling of the molecular pathways contributing to HF in an ISO-treated 

mouse model. Prior efforts to analyze transcriptome networks underlying HF and related 

cardiomyopathies in human studies have met with limited successes, likely due in part to the 

high degree of heterogeneity of HF etiology and progression in humans (Drozdov et al., 

2013; Moreno-Moral et al., 2013). Additionally, human heart samples are generally available 

only from extremely late-stage HF, masking pathways involved in the initial stages in favor 

of the reactive pathways. In contrast, by using the HMDP mice, we were able to model 

networks with minimal environmental heterogeneity. In addition to the conclusions reported 
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here, our weighted module membership tables and network graphs (Data S1) should be 

useful in exploring how genes or pathways of interest intersect with other genes and 

pathways involved in HF.

Although we constructed MICA networks from three separate sets of gene expression data, 

we found that the treated network returned the most relevant modules. The control network 

had generally weaker GO enrichments and only a single module with even suggestive (p < 

0.01) correlations with organ weights or echocardiographic parameters. The delta network 

had GO enrichments on par with the treated modules but no significant correlations with the 

HF phenotypes. Hierarchical clustering analysis revealed that 11 of the 20 modules from the 

delta network were highly correlated (r > 0.8) to one another, suggesting that the identified 

modules in the network are, in fact, largely reflecting a single “mega-module” of genes that 

have reacted strongly to ISO stimulation but whose underlying genetic variability has been 

masked to such a degree that they cannot be cleanly differentiated into phenotypically 

relevant modules. The network based on ISO-treated gene expression, on the other hand, 

contained well-defined modules strongly enriched for GO categories and very significantly 

associated with HF traits.

We focused on module 5 of the ISO-treated network in detail since it was significantly 

correlated with the traits of total heart weight, lung weight, liver weight, and plasma free 

fatty acids, as well as several functional parameters. Additionally, a total of 15 module-5 

genes have been implicated in the development of HF and HF-related traits. Of these, six 

genes are predicted to be cardioprotective, as deficiencies promote cardiac remodeling 

(Col14a1 [Tao et al., 2012], Dkk3 [Bao et al., 2015], and Timp1 [Ikonomidis et al., 2005]) or 

decrease angiogenesis and neovascularization (Olfml3 [Miljkovic-Licina et al., 2012], Srpx2 
[Miljkovic-Licina et al., 2009], and Ptn [Li et al., 2007]). In contrast, six genes are probably 

maladaptive, as their overexpression leads to increases in cardiac remodeling (Col6a2 
[Grossman et al., 2011], Cx3cl1 [Xuan et al., 2011], Egfr [Messaoudi et al., 2012], Pcolce 
[Kessler-Icekson et al., 2006], and Tnc [Nishioka et al., 2010]), oxidative stress (Nox4), or 

fibrosis (Itga11 [Talior-Volodarsky et al., 2012]) during HF. The remaining four genes have 

been implicated in the development of vascular disorders such as generalized arterial 

calcification of infancy (Enpp1 [Hofmann Bowman and McNally, 2012]) or thoracic 

abdominal aneurysm (Mfap5 [Barbier et al., 2014]). Two genes have been implicated in 

cardiovascular development through the regulation of ventricular morphogenesis (Fbln1 
[Cooley et al., 2012]) or cardiac valve formation (Snai1 [Tao et al., 2011]).

Despite the fact that ISO activates the neurohormonal signaling cascade, many of the genes 

residing within module 5, with the exception of Nppa, are not directly related to canonical β-

adrenergic signaling. Rather, approximately one third (29%) have been previously 

implicated in inflammatory signaling, integrin signaling, or transforming growth factor β 
(TGF-β) signaling. Four genes (Cx3cl1, Capn5, Cercam, and Ccdc80) are related to the 

activation of inflammatory signaling. In particular, an inhibitor of Cx3cl1, known as 

fractalkine, suppresses progression of HF in both MI (myocardial infarction) and TAC 

(tranverse aortic constriction) models (Xuan et al., 2011). Five module-5 genes (Comp, 

Fbln1, Itga11, Svep1, and Tnc) either have direct interactions with integrins expressed on the 

cardiomyocyte surface or are integrin proteins. In addition, several module-5 genes interact 
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with proteins known to contribute to integrin signaling, including fibrillin 1 (Mfap2 and 

Mfap5; Hanssen et al., 2004), decorin (Col14a1; Ehnis et al., 1997), fibronectin (Col6a2; 

Tillet et al., 1994), and FAK (Srpx2; Tanaka et al., 2009). Thus, it seems likely that integrin-

mediated signaling plays a role in ISO-induced stress responses and subsequent pathology.

TGF-β signaling plays an important role in the pathogenesis of cardiac remodeling through 

its effects on cardiomyocytes, immune cells, and mesenchymal cells (Dobaczewski et al., 

2011), and 13 of the module-5 genes are directly involved in TGF-β signaling, with four 

genes, including Pcocle (Moali et al., 2005), which activated or enhanced signaling; and 

two, including Dkk3, which antagonize signaling. They also include downstream targets of 

TGF-β signaling such as: Enpp1 (Goding et al., 2003), Fbln1 (Chen et al., 2013), Nox4 (Yan 

et al., 2014), Timp1 (Hall et al., 2003), and Tnc (Jinnin et al., 2004).

Using NEO causal modeling, we identified Adamts2 as a key driver of module 5. Adamts2 
is a member of the “disintegrin and metalloproteinase with thrombospondin motifs” family 

of metalloproteases (Tortorella et al., 2009). Mutations in Adamts2 can cause the disorder 

Ehler Danlos Type VIIC, characterized by severe skin fragility and joint laxity 

(hyperextensibility) (Porter et al., 2005). Using siRNA knockdown of Adamts2 in 

cardiomyocytes, we validated five novel targets of Adamts2, including Kcnv2, Mfap2, Tnc, 

Nppa, and Nppb. Of these, Tnc, Nppa, and Nppb are currently associated with the 

development of HF, while Kcnv2 and Mfap2 are two novel genes not previously associated 

with HF.

While the direct molecular mechanism by which Adamts2 expression acts to regulate these 

five target genes is unknown, recent work has suggested that Adamts2 may act as a upstream 

regulator of TGF-β signaling through direct cleavage of the proteins TGF-β RIII and DKK3 

(Bekhouche et al., 2016). Dkk3, a known cardioprotective molecule in HF also resides 

within module 5. Using siRNA knockdown of Adamts2 in neonatal rat ventricular 

cardiomyocytes (NRVMs), we showed that expression of Adamts2 is crucial to ISO-induced 

cardiac hypertrophy in vitro, possibly due to its regulation of Dkk3 cleavage.

In summary, network modeling of expression data across a diverse population of mice 

exposed to ISO identified a co-expressed group of genes strongly associated with HF traits. 

Furthermore, causal modeling revealed Adamts2 to be a key regulator of the module and of 

cardiac hypertrophy. It is likely that the ISO-induced cardiac pathology reflects only some 

aspects of the complex spectrum of human heart disease, and it will be of interest to 

compare our results with those generated using other stressors such as the α-adrenergic 

agonist angiotensin or pressure overload by trans-aortic constriction. It will also be of 

interest to compare networks generated in animal models with those observed in human 

studies.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

SYBRFast Master Mix KAPA KK4611

Lipofectamine RNAimax ThermoFisher Scientific 13778150

DMEM with pyruvate Fisher MT-10-013-CV

FBS PREMIUM CELLGRO 
500ML

Fisher MT35015CV

Penicillin/Streptomycin Fisher MT-30-002-CI

ITS Fisher CB-40351

Isoproterenol Sigma 16504

QIAzol QIAGEN 79306

Isopropyl Alcohol Sigma 19516

Ethanol Sigma E7023

Osmotic Micropumps Alzet 1004

Critical Commercial Assays

Reverse Transcription Kit Applied Biosystems 4374967

miRNAeasy RNA extraction 
Kit

QIAGEN 217004

Microarray Illumina Mouse Reference 8 v 2.0

Deposited Data

HMDP HF Data Gene Expression Omnibus GSE48760

HMDP Mouse Diversity 
Array Genotypes

http://cgd.jax.org/datasets/diversityarray.shtml N/A

Experimental Models: Cell Lines

Neonatal Rat Ventricular 
Myocytes Primary Cell Culture N/A

Experimental Models: Organisms/Strains

HMDP Strains Jackson Labs See Table S1

Rats for NRVM extraction UCLA Sprague-Dawley

Recombinant DNA

None N/A N/A

Sequence-Based Reagents

Adamts2 DsiRNA #1 IDT Tech RNC.RNAI.N001137622.12.1

Adamts2 DsiRNA #2 IDT Tech siRNA-2 #RNC.RNAI.N001137622.12.5

Negative Scramble Control IDT Tech DS NC1

Software and Algorithms

Weighted Maximal 
Information Component 
Analysis v0.9

https://github.com/ChristophRau/wMICA N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Database for Annotation, 
Visualization and Integrated 
Discovery v 6.7

https://david.ncifcrf.gov/ N/A

Near Edge Orientation https://labs.genetics.ucla.edu/horvath/aten/NEO/ N/A

NEQC Normalization CRAN Limma package

comBAT Bioconductor SVA package

Other

qPCR Machine Roche LightCycler 480

RNA quality control Agilent Bioanalyzer

CONTACT FOR REAGENT AND RESOURCE SHARING

Please contact Dr. Aldons J. Lusis, Department of Human Genetics, UCLA for reagents and 

resources at jlusis@mednet.ucla.edu

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—A total of 98 HMDP mouse strains (see Table S6) were obtained from The 

Jackson Laboratory and then bred at UCLA. Progeny were then studied for HF traits 

following ISO treatment as previously described (Rau et al., 2015b; Wang et al., 2016). 

Briefly, Isoproterenol (30 mg per kg body weight per day) was administered for 21 days in 

8–10 week old female mice using ALZET osmotic mini-pumps, which were surgically 

implanted intraperitoneally. All animal experiments were conducted following guidelines 

established and approved by the University of California, Los Angeles Institutional Animal 

Care and Use Committee (IACUC) and housed in an IACUC-approved vivarium with daily 

monitoring by vivarium personnel. Neonatal Rat Ventricular Cardiomyocytes (NRVM) were 

isolated as previously described (Brown et al., 2005) in accordance with UCLA IACUC 

guidelines. Briefly, 2–4 day old Sprague-Dawley rats were killed by decapitation, rinsed 

briefly in ethanol and hearts excised. Ventricles were isolated, and minced in a buffer 

solution. The buffer solution was removed and replaced with a collagenase-pancreatin 

solution and incubated at 37°C for 30 min. Myocytes were then separated using a Percoll 

density gradient.

METHOD DETAILS

RNA Isolation and Microarray Processing—Following homogenization of left 

ventricular tissue samples in QIAzol, RNA was extracted using the QIAGEN miRNAeasy 

extraction kit, and verified as having a RIN > 7 by Agilent Bioanalyzer. Two RNA samples 

were pooled for each strain/experimental condition and arrayed on Illumina Mouse 

Reference 8 version 2.0 chips. Analysis was conducted using the Neqc algorithm included in 

the limma R package (Smyth, 2005) and batch effects addressed using COMbat (Johnson et 

al., 2007). In designing our study, we were cautious and distributed the treated and control 

conditions evenly across our three batches as well as endeavoring to include a diverse set of 

genetic backgrounds in each batch. Thus, we do not believe that our data suffer from the 

potential batch artifacts as reported in Nygaard and Rødland, 2016. To check our results, 
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however, we used wMICA on data from a single batch of our data and recovered a module 

similar to module 5 (significance of overlap = 5.1E-26) and with similar GO enrichments.

wMICA—We used a modified form of Maximal Information Component Analysis (Rau et 

al., 2013) to form gene networks on the LV transcriptomes generated from the ISO-treated 

mice. Probes were limited to the 8126 probes which were both expressed in at least 25% of 

either the untreated or treated data and whose coefficient of variation was greater than 5%. 

The MICA algorithm consists of two parts. For the first step, relationships between genes 

are determined using the MINE algorithm (Reshef et al., 2011). For this, we used the 

MINERVA R package (Albanese et al., 2013) instead of the original Java implementation 

due to MINERVA’s significant improvement in run-time. The second step utilizes the ICMg 

algorithm (Parkkinen and Kaski, 2010) to determine the proportional module membership 

for each gene.

Analyses were performed as described (Rau et al., 2013), except that the ICMg algorithm 

was modified as follows to allow for weighted edges. ICMg is an iterative process in which 

each edge is independently interrogated for each iteration utilizing Gibbs sampling with the 

following equation:

where {L}′ is the set of all links excluding the one being interrogated, {z}′ is the set of 

module assignments for the links excluding the link being interrogated, nz is the count of 

links assigned to component z, i and j represent the genes linked by edge z0 and qzi counts 

the module-node co-occurrences between module z and node i. C is the total number of 

modules, and M is the total number of nodes. α and β are control parameters that modify the 

overall distribution of module sizes and the average module membership per gene per 

module. To allow for weighted edges, we altered how the matrix q was updated. Previously, 

 and qzj were incremented by 1 each time an edge was placed into a module in an 

iteration. Instead, we increased these entries in the q matrix by the MIC score of the edge 

(Lij), and instead of dividing q by the number of iterations in order to get the proportional 

module memberships for each gene within each module, we divided each element of q by its 

respective column sum.

Weighted principle components (“eigengenes”) of each module were determined through the 

use of the dudi.pca function from the ade4 R package (Chessel et al., 2004) and compared to 

HF-related phenotypes using the heatmap function of WGCNA (Langfelder and Horvath, 

2008). For all control variables, the standard values were used.

eQTL Analysis—All strains in this study have been previously genotyped using the Mouse 

Diversity Array (Rau et al., 2015c), which contains over 200,000 high-quality, informative 

SNPs. eQTLs were calculated for 13,155 expressed genes using the Efficient Mixed Model 

Association algorithm (Kang et al., 2008) which accounts for the population structure 

among the strains using the following model:
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where m is the mean, b is the allele effect of the SNP, x is the (nx1) vector of observed 

genotypes of the SNP (using additive coding of 0,0.5,1), u is the random effects due to 

genetic relatedness with var , and e is the random noise with var . K 

denotes the identity-by-state kinship matrix estimated from all the SNPs, I denotes the (n×n) 

identity matrix, and 1n is the (n×1) vector of ones. Both u and e follow normal distributions. 

We estimated  and  using restricted maximum likelihood (REML) and computed p 

values using the standard F test to test the null hypothesis b = 0. Spot checking of 100 probe 

QQ plots was performed and all appeared normal.

NEO—The Network Edge Orienting (NEO) R software package (Aten et al., 2008) uses 

transcriptome and genotype information to infer a causal link between two genes. We 

applied this analysis to the genes of several modules identified as being significantly 

associated with phenotypes of interest. For each edge contained within the module, NEO 

was performed using those two genes and any SNP for which either gene had an eQTL (cis 
or trans) with a p value of less than 1E-4. Default parameters for NEO was used as originally 

described (Aten et al., 2008) in which NEO estimates the likelyhoods of all local structural 

equation models and returns a Local Edge Orientation (LEO) likelyhood score between 

nodes(genes) A and B., and we kept any SNP/gene/gene combination which yielded a 

LEO_NB.AtoB or LEO_NB.BtoA score greater than 0.75 and for which mlogp.M.AtoB or 

mlogp.M.BtoA was less than 0.05.

Prior work (Kang et al., 2008) has demonstrated that for the HMDP, 4.1E-6 is the correct 

significance threshold for a single genome-wide trait, and this threshold was used for trans-

eQTLs. For cis-eQTLS, our significance threshold of 3.6E-4 was calculated using a FDR of 

5% for all SNPs which lay within 1 Mb of a probe used in this study (roughly 100 SNPs/

probe), using standard permutation analysis methods (total of 100 permutations of all data).

To make a final determination of edge orientation, we examined all SNP/gene/gene 

combinations kept in the above step. For each edge, we examined only combinations that 

included that edge. If all of the combinations were either “forward” (gene A affects gene B) 

or “reverse” (gene B affects gene A), then the edge was classified as either “forward” or 

“reverse,” respectively. Otherwise, the difference between the sum of the LEO_NB.AtoB 

scores (for the “forward” combinations) and the sum of the LEO_NB.BtoA scores (for the 

“reverse” combinations) was determined. If this difference was larger than 1, then the edge 

was classified as either “forward” or “reverse” (depending on which sum was larger). 

Otherwise, the directionality of the edge could not be determined and it was classified as 

“undirected.”

Cell Culture and Treatments—Following isolation, NRVM were plated in DMEM 

containing 10% Fetal bovine serum (FBS) and 1% antibiotics overnight. For the rest of the 

culture period the cells were maintained in DMEM containing 1% ITS (Fisher – CB-40351) 
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and 1% antibiotics. For some studies cells were treated with 60uM Isoproterenol (Sigma – 

I6504) for 48 hr.

Adamts2 knockdown experiments were performed using IDT DsiRNA (Adamts2 siRNA –1 

# RNC.RNAI.N001137622.12.1, Adamts2 siRNA-2 #RNC.RNAI.N001137622.12.5, 

Negative Control – DS NC1) at the indicated concentrations. All transfections were 

performed with Invitrogen Lipofectamine RNAimax reagent.

cDNA Synthesis and qRT-PCR—Total RNA isolation from NRVMs was performed by 

phenol-chloroform extraction using QIAzol lysis reagent (QIAGEN – 79306). RNA was 

quantified using a Nanodrop UV-Vis Spectrophotometer prior to cDNA synthesis. mRNA 

reverse transcription was performed using the Applied Biosystems High-Capacity cDNA 

Reverse Transcription Kit (Thermo-Fisher Scientific – 4374967). Quantitative PCR was 

performed using the KAPA SYBRFast Master Mix in a Roche LightCycler 480 instrument. 

Analysis was performed using the Lightcycler 480 software, with standard curves and 

product melt curves performed for every set of gene primers. Primers used for qRT-PCR are 

provided in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Combat—The significance of overlap between the module 5 constructed from all data as 

opposed to data from a single batch was calculated using a hypergeometric test with a 

threshold of significance of p < 0.05.

wMICA Module Correlation to Traits—Correlation and Significance of correlation 

between the wMICA module eigengenes (the first principle components of the genes within 

the module) were calculated using the Heatmap function of the WGCNA 

package(Langfelder and Horvath, 2008), which uses Pearson correlation for its calculations.

GO Enrichment with DAVID—All Gene Ontology enrichments were performed using 

DAVID (Huang et al., 2009). DAVID’s enrichments are performed using the EASE 

algorithm, which is a slightly more conservative form of the Fisher’s exact test, in which the 

upper left quadrant of the 2×2 Fisher’s exact contingency table is reduced by 1. See 

manuscript text and Tables S1, S2 and S4 for values.

eQTL Analysis—Prior work (Kang et al., 2008) has demonstrated that for the HMDP, 

4.1E-6 is the correct significance threshold for a single genome-wide trait, and this threshold 

was used for trans-eQTLs. For cis-eQTLS, our significance threshold of 3.6E-4 was 

calculated using a FDR of 5% for all SNPs which lay within 1 Mb of a probe used in this 

study (roughly 100 SNPs/probe), using standard permutation analysis methods (total of 100 

permutations of all data). We have previously observed that cis-eQTL at this level are highly 

conserved in the HMDP (Hasin-Brumshtein et al., 2014).

NRVMs and qPCR—See figure legends for n and manuscript text for significance. 

Significance values were obtained using Student’s t test after testing data for normality.
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DATA AND SOFTWARE AVAILABILITY

Online Database—Data S1, containing the co-expression networks and module 

membership assignments may be accessed on Mendeley Data. doi: http://dx.doi.org/

10.17632/ntd85jnwxd.1.

Microarray data may be accessed at the Gene Expression Omnibus using accession ID: 

GSE48760.

Phenotypic data may be found on Mendeley Data. doi: http://dx.doi.org/10.17632/

y8tdm4s7nh.1.

All phenotypic, expression and eQTL data may also be accessed at https://

systems.genetics.ucla.edu/data/hmdp_hypertrophy_heart_failure.

wMICA Software Package—The latest version of the wMICA algorithm may be found 

at https://github.com/ChristophRau/wMICA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Co-expression networks were created from heart transcriptomes of 100 mouse 

strains

• A module was identified that strongly correlated to heartfailure-related traits

• The NEO algorithm identified Adamts2 as an important driver of the module

• In vitro studies demonstrated that Adamts2 is a regulator of cardiac 

hypertrophy
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Figure 1. Visualization, Functional Enrichment, and Trait Correlations of the Treated Left 
Ventricular Gene Co-expression Network
(A) 8126 transcripts were arranged into 20 distinct modules by the network construction 

algorithm MICA. For the ease of visualization, only probes with a module membership of 

greater than 50% in a module (4,392) were included, and probes with a module membership 

of over 50% in module 9 (2,783) were removed, as they tended to mask the relationships 

between the genes in the smaller modules. Circles (nodes) represent transcripts, and lines 

(edges) represent significant (MI score > 0.35) relationships between nodes. Probes are 

arranged by correlation strength where shorter distances indicate high correlation. Node 

color indicates maximal module membership. The groups of transcripts corresponding to 

each module were analyzed using DAVID to identify any significant enrichment for 

biological processes. The most significant biological processes for that particular module has 

been labeled in the color corresponding to the module.

(B) A weighted PCA algorithm was used to calculate the first weighted principal component 

of each module. These weighted first principal components were then correlated to the HF-

related phenotypes. Strength of correlation is indicated by color, while the p value of the 

correlation is printed within each box. EF, ejection fraction; FFA, free fatty acid; FS, 

fractional shortening.
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Figure 2. Visualization and Causal Modeling of Module 5
(A) 309 probes contain a maximal membership in module 5. To examine the most important 

genes in the module, only those 47 probes (42 genes) that possess a module membership of 

70% or greater (the “core” module) are shown. Diamonds indicate genes that have been 

previously implicated in heart disease. The color of the diamonds and circles indicate GO 

category membership, with blue indicating glycoprotein, red indicating signaling, green 

indicating extracellular region, and gray indicating no significant GO category membership.

(B) A schematic depicting the way in which the NEO algorithm uses genetic markers 

(indicated with an S) as anchors to infer directionality between two genes (indicated with an 

A and B).

(C) Module 5 after NEO. 44 probes of the module, representing 93.6% of the core module, 

showed at least one edge with significant inferred directionality. Circles indicate the nodes, 

while arrows indicate the inferred directionality by NEO between two nodes. Node color 

indicates the percentage of edges with inferred directions to or from the node, with green 

indicating 75% or greater inferred edges originating from the node, yellow indicating a 

roughly equal percentage of edges originating from and traveling to the node, and red 

indicating that 75% or greater of the edges originating from another node.
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Figure 3. Adamts2 Alters the Expression of Module-5 Genes in Cardiomyocytes
(A–H) NRVMs were transfected with either control siRNA or Adamts2 siRNA. Following 

overnight transfection, NRVMs were treated with isoproterenol (60 μM)-containing media 

for 48 hr. mRNA levels were quantified using qRT-PCR. Plots show average ± SEM. n = 9. 

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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Figure 4. Adamts2 Regulates Cardiac Hypertrophy In Vitro
NRVMs were transfected with either control siRNA or Adamts2 siRNA. Following 

overnight transfection, NRVMs were treated with either control or isoproterenol (60 μM)-

containing media for 48 hr.

(A) Representative images of cardiomyocytes transfected with either control or Adamts2 
siRNA following 48 hr treatment with control or isoproterenol-containing media.

(B) Quantification of cardiomyocyte cell size following transfection with either control or 

Adamts2 siRNA and a 48-hr treatment with control or isoproterenol-containing media. Plots 

show average ± SEM. n = 6.

(C and D) mRNA expression levels of Nppa and Nppb were quantified using qRT-PCR. 

Plots show average ± SEM. n = 8–9. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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