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Abstract

Cell migration is a complex and multi-step process involved in homeostasis maintenance, 

morphogenesis and disease development, such as cancer metastasis. Modeling cell migration and 

the relevant cytoskeleton dynamics has profound implications for studying fundamental 

development and disease diagnosis. This review focuses on some recent models of both cell 

migration and migration-related cytoskeleton dynamics, addressing issues such as the difference 

between amoeboid and mesenchymal migration modes, and between single-cell migration and 

collective cell migration. There view also highlights the computational integration among variable 

external cues, especially the biochemical and mechanical signaling that affects cell migration. 

Finally, we aim to identify the gaps in our current knowledge and potential strategies to develop 

integrated modeling-experimental frameworks for multi-scale behavior integrating gene 

expression, cell signaling, mechanics and multi-cellular dynamics.
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Introduction

Cell migration, both at the single-cell and at the collective cell level, plays a significant role 

in regulating living system behavior. It is a complex process involved in development, tissue 

formation and engineering, cancer and metastasis.1,2 From a mechanistic stand point, it is 

argued that individual cell migration has three key components: protrusion, contractility, and 

adhesion, for migration in different environments.3,4 Additionally, single cell migration has 

been classified into two types,5 namely amoeboid and mesenchymal migration. Amoeboid 

migration commonly refers to the faster movement of rounder cells that lack mature focal 

adhesion and stress fibers, while cells with high cell-matrix adhesion and high cytoskeleton 

contractility undergo the fibroblast-like mesenchymal migration.6 There are also several 

modes of collective cell migration, which are observed in vivo and differ from single 

migration modes.5 Cell migration is a result of a balance between cell-environment 

interaction and intracellular cytoskeleton dynamics. Seeded on a two-dimension (2D) 

substrate, cells have been shown to migrate towards a stiffer environment, a process that is 

termed as durotaxis.7 Cells in three-dimension (3D) matrices also tends to move faster under 

stiff environment, however, with a certain limit over which the cell speed will be hindered 

due to the matrix resistance force.8–15 Mechanical inputs also play a role in migration, for 

example, the increased collagen crosslink and extracellular matrix (ECM) stiffening, 

cooperating with oncogenes such as ErbB2 can promote the invasiveness of mammary 

epithelial cells,10,16,17 even with the absence of cellular and soluble tissue and systemic 

factors.16 Other than mechanical inputs, chemotaxis, due to growth factors, is important in 

modulating both 2D and 3D cell migration.18,19 These and other studies have shown that 

environmental factors, both chemical and mechanical, are key to developing a 

comprehensive understanding of single and collective migratory behavior. Observations of 

these cellular behaviors in experiments inspire computational models aiming to unveil 

underlying mechanisms that are hard to test directly due to the complexity or to bridge 

current gaps in our current understanding. A key aim of this review is to understand the 

current computational models available, and their strengths and weaknesses, in describing 

both the environment and the migratory behavior at a single and collective level.

With the improved computational power, quantitative cell tracking techniques for cell 

migration have received an augment as well. Recent studies have used several trackers for 

migration and cellular reorganization including the nucleus,20 Cytotrackers,21 single-particle 

tracking systems,20,22–24 the particle image velocimetry (PIV)25 and additional methods 

such as optical flow tracking.26 Utilization of these tools have made it possible not only to 

track cellular motion velocity but also directional migration persistence,27 mean squared 

displacement (MSD),28 the velocity correlation,25 the cell-pair separation distance20 and so 

on. Nonetheless, more quantified variables are needed to quantify and distinguish different 

patterns of migration modes in both single-cell and collective cell migration, such as 

transition between amoeboid and mesenchymal migration, cellular leadership in collective 

behavior.29,30 Additionally, not all tools are applicable in native like three-dimensional 

environments. This review aims to address both the recent developments and future 

opportunities in integrated modeling-experimental frameworks to understand single and 

collective cellular behavior in complex environments.
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Cellular computational models in cell migration

To investigate microenvironment effects on cell migration, several models have been 

proposed to quantitatively predict the migration speed due to different external cues for both 

single-cell and collective cell migration. There include, among others, force balancing 

models to predict the migration speed for the single-cell migration10,31, and also the energy 

based model to predict the collective cell migration for wound healing process, tumor cell 

invasion and angiogenesis.

Force balancing models in cell migration

The mechanical interventions due to external stimuli such as changes in physical, chemical 

or mechanical properties of ECM are intuitively characterized with force balancing models. 

In 3D single-cell migration, the balance among the cell protrusion force, the cell traction 

force from both the cell front and back due to cell-ECM interactions, and the resistive force 

is used to study cell speed change due to different ECM stiffness, density, cell integrin 

amounts, and matrix metalloproteinase (MMP) expressions (Fig 1A).8,10,31

Here, cell migration speed ν is determined by solving the Fresistive, given the ECM stiffness 

Emol, the ECM ligand density LD, the cell-expressing integrin concentration ITG and MMP 

density. Fprotusion is the cell protrusion force in 3D that is simulated by a vector with 

constant magnitude but random direction. The traction forces and the resistive force can be 

mathematically represented as

Here f(Emol) is a linear function of Emol until Emol reaches a threshold and then this function 

plateaus. The ligand density LDf(MMP) is linearly dependent on MMP-mediated matrix 

degradation.8 R and η are the cell radius and the effective viscosity of the matrix material. 

This single-cell force balancing model not only predicts the biphasic dependence of cell 

speed on ECM density in 3D, but also shifting of such dependence due to changes in 

integrin-mediated adhesions in vitro (Fig 1B).10 In this experimental validation single cell 

speed is measured using a live cell membrane dye and IMARIS (Bitplane, St. Paul, MN) 

spots/isosurface tracking routines. Here this tool offers major advantages in single particle 

tracking in 3D and being automated, though like most single particle tracking algorithm it 

does not deal with cell division/apoptosis. Excluding the matric resistance force enables this 

model to predict cell migrations in 2D as well.31,32 Overall, this model is significant because 
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it qualitatively predicts the cellular behavior due to variations in ECM properties in 3D, and 

unveils the underlying mechanism leading to these variations, though it doesn’t capture the 

changes in local stiffness or morphology change of the gel due to cell-ECM interactions.33

Another force balancing model focused on characterizing the collective 1D or semi-2D cell 

migration (average on one direction) considers cell-cell stress and cell elastic properties, in 

addition to the cell traction force, cell protrusion force, and resistive force34 (Fig 1C).

Here Fprotusion is the cell protrusion force, or the cell self-propelled force in collective 

migration, ε is the neighbor cell deformation strain, i and i + 1 denotes different neighbor 

cells, and k is the cell elastic constant. Both the cell-cell stress and cell migration velocity 

are the outputs of this model. Results from the model showed that only with cell 

reinforcement (stiffening) and followed soon by a fluidization (softening) when the strain is 

above a threshold, can the cells have a mechanical wave pattern of migration speed and cell-

cell stress observed in experiments.34 Without such a quantitative model, it would be 

difficult to understand this wave pattern and to further link it to the cytoskeleton 

reinforcement/fluidization. Here cell speed in a 2D monolayer is measured using the particle 

image velocimetry (PIV) algorithm. This algorithm offers major advantages in measuring 

collective cell migration in 2D monolayer using phase-contract images, and do not require 

any fluorescence staining. Although it does not track motions of each cell but rather 

identifies average movements of subregions in an image.26 A possible factor that this 

collective cell migration force balancing model can be extended to capture directly is the 

cell-cell adhesion,35,36 which is not always the same as the cell-cell stress.

These force-balance models are mainly deterministic models. The advantage for these types 

of models is the computational efficiency, since one can directly solve the cell speed in a 

linear manner. One of the limitations is that when considering chemically relevant effects, or 

factors that cannot be explicitly expressed in terms of force, this model is unable to capture 

the chemical complexity. That said, studies have used force-like terms to model the 

chemotaxis in cell migration.37 This force-like term linearly depends on the cell sensitivity 

to the chemical gradient. Force balancing models can also be carried out in a stochastic 

fashion using the Langevin equation with a stochastic noise term.37,38 Overall, force 

balancing models are an approximation of equations of motions, in which usually the inertia 

terms are neglected due to the relative high friction between the cells and their environment 

for high computational efficiency.

Energy based models in cell migration

To address factors that are chemically relevant or cannot be explicitly expressed in terms of 

forces, the cellular Potts model39 with energy minimization and Monte Carlo steps offers a 

major advantage. Its off-lattice alternative, the vertex model, is also well used in 

morphogenesis and patterning.40,41 The factors affecting cell migration are evaluated in 

terms of Hamiltonian or energy form.42–45
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Here the adhesion energy term Eadhesion, which was developed from Steinberg’s Differential 

Adhesion Hypothesis (DAH),39,46 has two parts: the adhesion among cells, and between cell 

and ECM or medium.41 σ is the adhesion energy per unit area, and A is the adhesion area 

for cell-cell or cell-ECM contacts. Econtinuity is the conservation of cell volume V in 3D or 

surface area in 2D due to cell elasticity and/or contractility,41,47 and is usually a quadratic 

function of the change ratio. Egrowth captures favorable energy change due to proliferation 

via the doubling cell volume and surface area.43 In some models however, the effect of 

proliferation is set within the Econtinuity. The chemotaxis energy term Echemotaxis is simulated 

to be linearly dependent on the growth factor concentration gradient ∇GF.43 The probability 

of accepting each Monte Carlo step is given by43

The cellular Potts model has addressed multiple cell migration predictions that can be 

validated by experiments. One of the successes is in predicting endothelial cell migration in 

angiogenesis.48 Shamloo et al48 first used an in silico collagen fibrils model to estimate the 

corresponding matrix density index used in their model via matching collagen area in 

microscopic and in silico images under different densities. We also have used an in silico 
collagen fibers model to mimic microscopic collagen images in vitro.33 With this 

corresponding matrix density index obtained, the angiogenesis process, that is the migration 

of endothelial cells, is simulated mimicking different collagen density effect. Shamloo et 

al48 confirmed their previous model predictions43 on endothelial sprout formation 

morphology under different ECM matrix. Recent studies also consider the effect of MMP 

and the nucleus compartments in cell migration using cellular Potts models. These models 

have been able to predict that cell migratory ability in subcellular channels closely depends 
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on proteolytic machinery, and the cancer cell can achieve a sustained locomotion by either a 

pericellular proteolysis or by deforming its nucleus in a subnuclear track.42,49 A limitation 

for these Monte Carlo based energy minimization models is that they can only simulate a 

relatively small number of cell populations due to the heavy computational task.

In comparison, the vertex model using the similar form of energy term is solved as an 

optimization problem. It tracks the movement of vertices during the optimization process. 

The gradient descent method can help to find the local minima state of the system energy. 

The steady state of 2D or 3D vertex model (Fig 2B) is close to the force balancing model 

result. For example, both approaches lead to the equilibrium between the contractility and 

the cell-cell adhesive force,41 and so does the Cellular Potts model. However, to fully 

convert the results between these models, vertex version of force balancing model (Fig 2C), 

or more generally, an appropriate conversion between the energy based model and the force 

balancing model is needed.

This is a challenging problem, but a significant one. With recent advancements in stress and 

force measurement techniques, such as cell traction microscopy and cell stress microscopy, 

the mechanical properties can be measured directly during collective cell migration. A force-

based model will have an advantage of direct correspondence with these mechanical 

measurements, and it can be directly and easily tested, in comparison with the energy based 

model. During collective cell migration, there exists largely motility, mechanical, molecular 

signaling heterogeneities within monolayers and cell clusters. The next step of unveiling the 

collective cell migration patterns is to explain the source and predict quantitatively these 

heterogeneities.

In addition to the models discussed above, there are also stochastic models on collective cell 

migration, especially focused on angiogenesis involving tip cell migration, sprouting and 

anastomosis.50 Maclaw et al. developed an evolutionary model of tumor progression 

regarding cell growth and migration, suggesting that targeting short-range cellular migratory 

activity could have marked effects on tumor growth rates.51 There is also a phase-field 

model, which does not identify cell boundaries and studies cell migration in a relatively 

deterministic manner.52 Additionally cell migration models have been developed that 

capture how migration affects ECM fibrous structure.33 There is an opportunity that it can be 

combined with recent additional ECM fibrous models53,54 focusing on microenvironment 

heterogeneity in cell migration.

Signaling pathways in cell migration

Cell signaling plays a central role in single and collective migration. The following section 

will review recent advancements in modeling signaling during migration. Due to a greater 

number of models focused on mesenchymal migration, and more data and literature focusing 

on these modes, the next section will have a greater discussion of mesenchymal modes, 

compared to amoeboid studies.
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Signaling pathways in mesenchymal migration

As previously mentioned, modes of single-cell migration are divided into two broad 

categories, namely mesenchymal and amoeboid migratory modes. The mesenchymal 

migration relies mainly on high adhesion and form mature focal adhesion.

In mesenchymal modes, cell migration involves formation of cell-ECM adhesions at the 

leading edge of protrusions and disassembly of adhesions, mainly at cell rear.55,56 Integrins 

bind to the ECM and initially form small, transient matrix contact structures, called nascent 

adhesions. Proteins are recruited to bind with integrin cytoplasmic domains, such as 

paxillin.57,58 During adhesion maturation to focal adhesion, FAK and Src are activated by 

phosphorylation. FAK activity can be enhanced by the collagen crosslinking and ECM 

stiffening and further drive invasion of tumor cells.16,59 Importantly, it has been found 

recently that for cells in 3D matrices, focal adhesion proteins such as FAK do not form 

aggregates but are more diffused throughout the cytoplasm, though they still modulate cell 

motility by affecting protrusion activity and matrix deformation.60 Adhesion-relevant 

kinases regulate Rho-family GTPases, such as Rac and RhoA.61,62 FAK has been shown to 

be able to activate63–65 or inhibit RhoA activity.66,67 Though with these opposing effects, 

there is an apparent global increase in FAK and RhoA activity in stiffer 3D ECM 

environment.59 The increased collagen crosslink and ECM stiffening also promote 3D cell 

migration via up-regulating growth factor dependent PI3K activity.16,68 Following EGF 

stimulation, protein complexes containing Src, F-actin, mDia1 and Dia-interacting protein 1 

stimulate Rac1.66

Cell protrusions at leading edge in migration process involves actin polymerization, while at 

cell rear there are cell contractions.56 The cytoskeleton activities are coordinated with 

formation/disassembly of cell-ECM adhesions. Rho-family GTPases are molecular 

‘switches’ within cells bridging adhesion activities and cytoskeleton dynamics by 

controlling the formation and disassembly of actin cytoskeletal structures (Fig 3). RhoA-

GTP can activate formin (mDia)-based actin nucleation69,70 and ROCK dependent myosin II 

contractility71. mDia stimulates the formation of stable microtubules that are capped and 

oriented towards the wound edge to promote cell migration.72,73 Rac stimulates branching 

and polymerization of actin filaments by the Arp2/3 complex via the activation of WAVE,74 

and it promotes the lamellipodia formation in cell migration.75,76 Cdc42 activity is also 

prominent at the tip of the leading edge and regulates the migration direction by regulating 

the cell polarization.77,78 WASP, which is autoinhibited, can be activated by binding with 

Cdc42 and further activates Arp2/3.79 Conventionally, Rac promotes membrane protrusions 

at the leading edge, while RhoA is active in the cell rear and regulates its contractility in 2D 

cell migration.80,81 This is most likely due to the antagonism between Rac and RhoA at the 

leading edge.82,83 However, it has also been found that in randomly migrating cells, RhoA 

activity is high in a sharp band directly at the edge of protrusions.84

Signaling pathways in amoeboid migration

In amoeboid cell migration mode, cells migrate in a largely rounded shape, which results 

from a high cell tension relative to cell adhesions.85 In cells that undergo amoeboid 
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migration, actin filaments assemble into a fibrous cortex that is absent from the cell front, 

but become progressively denser toward the cell rear, and so does myosin.86 With myosin II-

dependent contraction at the cell rear, cells are even able to squeeze their nuclei through a 

narrow gap.3 High cell tension, that is, high cortical actomyosin contractility is due to high 

Rho and low Rac activities.85 Relying on increased activity of the RhoA pathway, formin-

based actin nucleation and myosin II contractility are activated, which meanwhile promotes 

a retrograde actin flow during migration process.87 A retrograde flow is a translocation and 

recycling at proximal sites due to actin filament severing and/or disassembly following 

assembly at nucleation sites.88 The cell-scale retrograde flow of actin and myosin II is the 

driving force for the stable bleb mode in amoeboid migration. The pseudopods mode of 

amoeboid migration, which has protrusion due local actin assembly at the leading edge, only 

has the retrograde flow in the front.4

Manipulating cytoskeleton regulators, such as Rac,74 Rho89 and Rock,86 cell-ECM adhesion 

proteins,86 can make cells to switch migration modes between the mesenchymal and 

amoeboid migration. Adding lysophosphatidic (LPA), a serum phospholipid known to 

activate cortical contractility via the Rho/Rock pathway, also induces amoeboid migration.90 

After LPA addition, myosin II rapidly redistributed to the cell cortex. The cortical 

accumulations of myosin II and the size of bleb are correlated with LPA addition. And a 

gradient of LPA can induce an asymmetric contraction of the cortical cytoskeleton to further 

influence cell migration. Both the mesenchymal and amoeboid single-cell migration requires 

a high myosin activity for mechanotransduction and great amount actin assemblies. 

However, other than the integrin or the external environment regulations, what kinds of 

direct molecular actin regulators lead to the difference between the cortical actin assemblies 

and the stress fiber assemblies? Do the stress fiber contractility and the cortical actomyosin 

contractility depend on the same cascade of myosin II signaling? These are the questions in 

need to be answered in unveiling the regulation of the single-cell migration signaling.

Signaling pathways in collective cell migration

Though the collective cell migration is ubiquitous in biology, detailed mechanistic and 

quantitative understanding linking molecular events with collective behavior is lacking 

compared to single-cell migration due to its complexity. When studying collective cell 

behavior, velocity correlation is sometimes used,25,30 to understand collective cellular 

motion. This correlation is a coefficient of coordination in collective cell migration in 

addition to cell speed and directional persistence. The tumor suppressor, merlin, plays an 

important role in coordinating cells interacting with Rac1 in monolayer epithelial collective 

migration.25 Also results from experiments show that collective migration has largely related 

to the intercellular stress.34 Within a confluent monolayer cells tend to move along 

directions with minimal intercellular shear stress, so that cell-cell junctions along these 

directions carry only minimal shear stresses.91 In the adherens junctions of epithelial cells, 

the extracellular domain of E-cadherin interact with cadherin protein on other cells (trans-

binding) in a calcium-dependent way,92 while the cytoplasmic domain of E-cadherin 

interacts with p120 catenin, β-catenin and α-catenin, which links with the actin 

cytoskeleton.93 P-cadherin, whose expression is highly associated with undifferentiated cells 

in normal adult epithelial tissues and breast cancer, has the similar cadherin-catenin complex 
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structure and actin cytoskeleton connection in cells.94 Results from the experiment show that 

Wnt slows down collective cell migration, which involves with the interaction with β-

catenin.30 Substrate stiffness not only regulates cellular migration at a single cell level, but 

also at a collective level. The stiffer substrate has resulted in higher migration speed and 

persistence at the edge, which emerge with a higher myosin-mediated contractility.20 Cell 

coordination relies on a balance between cadherin complex mediated cell-cell adhesion and 

myosin-mediated contractility during collective motion. Epithelial polarity is another 

important factor regulating the cooperativity during cell migration, though to our knowledge 

researchers have not fully studied how the balance of the contractility and cell-cell adhesion 

interacts with this polarity in this directionality information synchronization. With current 

molecular assays in collective cell migration, the challenges stem from the investigation of 

downstream cascade signaling effects and quantification of patterns of collective cell 

migration in various environments. Thus, the computational models have the ability to 

provide novel insights to understand these questions.

Modeling signaling in cell migration

In the previous section we mainly reviewed the signaling pathways during cell migration, at 

the single and collective level. In the following section, we will turn our attention to 

additional comprehensive modeling work that integrates cell signaling and migration, with 

an eye towards the future direction and opportunities for computational modeling.

It is of fundamental importance to understand the molecular programmes that regulate cell 

migration in an integrated modeling-experimental framework. We recently have established 

an integrated signaling model of N-glycosylation metabolic pathway, Wnt/β-catenin 

signaling pathway, and cadherin-mediated adhesion in affecting cell migrations (Fig. 4A).30 

A fundamental, ER glycosylation enzyme, GPT, is a Wnt/β-catenin transcriptional target 

that can promote the N-glycosylation of E-cadherin. This glycosylation, in turn, limits the 

adhesivity of cadherin ectodomains, which, in turn, leads to enhanced β-catenin signaling. 

This consists of multiple signaling pathways and feedback/feedforward pathways with 

extensive complexity. With the integrated modeling-experimental framework, we can reduce 

this complexity and unveil underlying molecular mechanisms regulating cell migration. In 

this model, binding and dissociation processes are described as linear product of the kinetic 

rate and the corresponding molecule concentrations: kiXY and k−i(X/Y). Here X and Y are 

the free concentrations of the binding partners, (X/Y) the concentration of the complex in 

which X and Y binds together, and ki and k−i the association and dissociation rates. 

Syntheses of proteins are described by constant rates (νi). Phosphorylation and 

dephosphorylation processes are described as kiX and kiX*, in which phosphorylated 

molecules are labeled with *. For example,
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Here the dynamics of active β-catenin is solved based on the pathway processes that it 

involves in. The parameters are either taken from the direct measurement of the binding/

unbinding rate and the phosphorylation/dephosphorylation rate, or estimated from known 

cellular responses. And the adhesivity of adhesion junctions is solved by the concentration 

of the adhesion junctions, the concentration of the (E-caderin/β-catenin) complex in the 

membrane, and the N-glycosylation degree of E-cadherin in the membrane (σM). We also 

carried out the experimental validation for our signaling pathway model. We not only 

measured the molecular amount change under the addition of Wnt3a and the β-catenin/TCF 

binding inhibitor, but also quantify the collective migration pattern change under these 

conditions in wound assay. The average speed, the movement angle orientations that indicate 

the coordination and the persistence, and more importantly, the correlation length are 

calculated based on the PIV measurement, which was previously discussed and offers an 

advantage in tracking motions in a monolayer. The correlation length quantifies the length 

scale within which cells have coordination in their motions,25 and the adhesivity predicted in 

our model has a good agreement with this intercellular coordination measurement in wound 

assay experiment (Figure 4B). To the authors’ knowledge, this is one of the few successful 

studies investigating multiple signaling pathways in influencing cell migration in an 

integrated modeling-experimental framework.

Over the years, a number of additional computational studies have modeled dynamics of 

signaling molecules to understand cell migration. The enormous complexity of the cell, 

combined with limited spatial and temporal data at the molecular level and prohibitive cost 

of detailed molecular modeling, result in models that cannot capture the dynamics of all the 

key molecules in complex environments. The molecules selected in the computational model 

are therefore often representative of the questions the researchers want to ask. For example, 

some models focus on how Rho-family GTPases sense the ECM properties characterizing 

the adhesion related kinases,95 other models have focused on rate of protrusion96,97 and 

polymerization98 in cell migration using cytoskeletal dynamics. However, most such 

computational models due to computational complexity and lack of detailed mechanistic 

data, have focused on single cells and have occasionally incorporated ECM,33,99,100 

suggesting that integrated modeling of cellular interior, cell-cell and cell-ECM interactions 

continues to be an elusive goal. To this end, one of the most important processes in 

designing a multi-scale model is the “bridge”. The challenge in creating this bridge is about 

how to transfer simulation information/results between multiple scales. There have been 

some efforts, for example, the previous force balancing model inside the cell can potentially 

coupled with the previous force balancing model of cell migration. Similarly, the signaling 

pathway of Hippo95,101 can be combined in the energy based model and characterizing how 

the cell-cell stress difference can lead to different pattern of collective cell migration.

Sun and Zaman Page 10

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yet, the broad based frameworks connecting scales and providing detailed and valuable 

information at multiple scales continues to be a major challenge.

Outlook

With increasing computational power in the past twenty years, significant effort has been 

made to study cell migration in complex and clinically relevant environments. Combined 

with new developments in biomedical engineering, new tools are being developed to 

effectively characterize cell migration and the associated mechanisms, such as tracking 

individuals within cell cohorts embedded in three dimensional collagen scaffolding29 and 

3D cell traction microscopy.102 With the help of these quantification tools, corresponding 

numerical modeling work has also shed light on 3D migratory mechanisms in disease 

understanding. Availability of this data is revolutionizing modeling strategies and 

approaches to understand cellular behavior in complex environments and possibly identify 

new therapeutic targets. Finally, with the development of genome-scale analyses, patient 

specific and precision medicine strategies will also benefit from integrated experimental and 

computational models to understand how cell migration alterations may influence clinical 

outcomes,103 Thus while new challenges in understanding cell migration behavior remain, 

the opportunities to develop new, powerful and potent therapeutic regimens, and create new 

platforms for multi-scale investigation provide exciting possibilities for fundamental and 

applied understanding of cellular form, fate and function.
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Fig 1. Force balancing models of cell migration
(A) A force balancing model of individual cell migration. (B) The later experimental 

validation (left) is consistent with the computational predictions (right), which successfully 

predicted the cell migration speed dependence on both the integrin concentration and the 

matrix stiffness. Iamges are obtained from Zaman et al.10 (Copyright (2006) National 

Academy of Sciences)(C) A force balancing model of collective monolayer cell migration. 

(D) This model successfully explained the mechanical wave-like cell migration and stress 

patterns, which are due to the reinforcement and fluidization of cytoskeleton. The 

experimental measurement is on the left and the numerical simulation is on the right using 

the force balancing model. Images are obtained from Serra-Picamal et al.34 (Adapted by 

permission from Macmillan Publishers Ltd: Nat. Phys. (Ref 34), copyright (2012))
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Fig 2. The vertex model and its potential force balancing correspondence
(A) The vertex model for collective cell migration in 2D and 3D, with the difference in cell-

ECM contact area part and whether to include the elasticity of ECM matrix when cells 

invading into the matrix. (B) An appropriate analog between the energy based model and 

force balancing model is needed.
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Fig 3. The signaling pathways of cytoskeleton dynamics in cell migration
Here is a signaling pathway map that represents how external cues regulate cytoskeleton 

dynamics, and further induce directional cell migration via these downstream signaling 

molecules. Several modeling work of these signaling pathways have been built upon these 

interactions and crosstalks, and they further predict or explain the integrated effects of 

signaling molecules in affecting cell migration.
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Fig 4. The integrated signaling pathway of N-glycosylation, Wnt/β-catenin and E-cadherin/β-
catenin
The signaling pathway map (A) that integrates model of N-glycosylation, Wnt/β-catenin and 

E-cadherin/β-catenin represents how signaling molecules interact in a kinetic network. The 

quantitative predictions of the model (B: left) are validated in experiments of cell migration 

(B: right). (Copyright 2016 PLoS Comput. Biol.30 :https://creativecommons.org/licenses/by/

4.0/)
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