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Abstract

In the United States, general aviation piston-driven aircraft are now the largest source of lead 

emitted to the atmosphere. Elevated lead concentrations impair children’s IQ and can lead to lower 

earnings potentials. This study is the first assessment of the nationwide annual costs of IQ losses 

from aircraft lead emissions. We develop a general aviation emissions inventory for the continental 

United States and model its impact on atmospheric concentrations using the Community Multi-

Scale Air Quality Model (CMAQ). We use these concentrations to quantify the impacts of annual 

aviation lead emissions on the U.S. population using two methods: through static estimates of 

cohort-wide IQ deficits and through dynamic economy-wide effects using a computational general 

equilibrium model. We also examine the sensitivity of these damage estimates to different 

background lead concentrations, showing the impact of lead controls and regulations on marginal 

costs. We find that aircraft-attributable lead contributes to $1.06 billion 2006 USD ($0.01 – $11.6) 

in annual damages from lifetime earnings reductions, and that dynamic economy-wide methods 

result in damage estimates that are 54% larger. Because the marginal costs of lead are dependent 

on background concentration, the costs of piston-driven aircraft lead emissions are expected to 

increase over time as regulations on other emissions sources are tightened.

INTRODUCTION

Lead is a persistent toxic pollutant that impacts human health and welfare through inhalation 

and ingestion pathways. Lead emissions from general aviation (GA) piston-driven aircraft 

are attributable to the addition of tetraethyl lead (TEL) for the formation of aviation gasoline 

(avgas). GA refers to all civil aviation excluding military and scheduled airline flights. GA 

flights occur for a variety of purposes including flight instruction, personal or business use, 

patrol and firefighting, and charter use. The lead additive in avgas prevents piston-driven 
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engine knock, improves effective fuel octane, and prevents valve seat recession. While lead 

used as an anti-knock agent in motor vehicles was the largest source of domestic 

anthropogenic lead emissions from the 1960s through the 1980s, regulations limiting 

allowable lead concentrations in gasoline in 1985 induced decreases in emissions in the 80s 

and 90s, and this use of lead was phased out by 1995 in the United States.1–2 By 2008, 

piston-driven aircraft emissions accounted for half of all US atmospheric anthropogenic lead 

emissions, and were the single largest source of lead emissions to the air.3

Human exposure to lead can occur through inhalation of lead-containing particles, ingestion 

of contaminated soil or lead paint, lead from private and public drinking water distribution 

systems, and through skin absorption.4 Lead bioaccumulates in human bones, blood, and 

soft tissue. Lead exposure leads to a variety of deleterious health impacts including 

disruption of neurological, renal, reproductive, and physical development systems.5–7 There 

is sufficient evidence that even low levels of blood lead are associated with neurological 

impacts in children.6 Cognitive and neurodevelopmental effects of lead include decrements 

in IQ tests, lower performance on standardized testing, and decreased graduation rates.5,6 

Other cognitive and behavioral neurological effects include an increase an attention-deficit 

behavior, conduct problems, memory loss, and poor language performance.6–8

In 2006, the environmental nonprofit group Friends of the Earth petitioned the US EPA to 

regulate or to advance research forming the basis of regulating leaded emissions from GA 

aircraft. In April 2010, the EPA issued a notice of a proposed rule, describing existing data 

and planned research and requested comment and further information on the subject.9 In 

2013, the EPA released findings that lead levels were above the National Ambient Air 

Quality Standards (NAAQS) at two airports. Meanwhile, the FAA has announced its 

intention to certify and make available an unleaded replacement fuel by 2018.10

Eliminating lead from automobile fuel, new residential paint, and plumbing systems over the 

past several decades likely contributed to significant economic benefits. IQ-related gains in 

discounted lifetime earnings from reduced lead exposure due to these regulations for a single 

year cohort of American children have been estimated to be between $110 and $319 billion 

relative to peak exposure.11 The potential nation-wide IQ-related benefits of eliminating lead 

from aviation fuel have not previously been quantified. Previous aviation studies have 

focused on avgas’s contribution to elevated lead levels at individual airports or regions, have 

excluded emissions from GA cruise, and have not calculated monetized damages, focusing 

instead on lead concentrations in the atmosphere, soil, or in the blood of exposed 

children.3,12,13 In addition to decreasing cohort-wide lifetime earnings, productivity losses 

from lead related IQ deficits will affect economic output, but the economic feedbacks of lead 

exposure have not been quantified. Here, we estimate the costs of leaded aviation fuel on 

society through IQ-related impacts of aviation lead emissions across the United States.

MATERIALS AND METHODS

We developed temporally and spatially resolved aviation lead inventories using piston-driven 

aircraft data for 2008 including emissions from cruise phase, which have been excluded 

from prior assessments of aviation-attributable lead concentrations (which only included 
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emissions during takeoffs and landings at specific airports). We develop a model to calculate 

static costs from lead-related IQ losses using concentration-response functions from 

literature. We determine the marginal costs of aviation lead for three cases by applying 

different background concentrations of total suspended lead particulates. Finally, we 

determine dynamic economy-wide costs associated with IQ losses from lead emissions using 

a recursive-dynamic general equilibrium model.

Lead Inventory and Emissions Modeling

The total consumption of leaded avgas in the United States in 2008 was 248 million 

gallons.14 The most common formulation of avgas supplied in the US is “100 Low Lead” 

(100LL), which has a maximum lead concentration of 2.12 gPb/gal. Limiting the domain of 

the analysis to the continental United States, this results in total aviation lead emissions of 

539 short tons of lead in 2008. Total lead emissions within the landing and takeoff (LTO) 

cycle are provided for 2008 by the EPA National Emissions Inventory for nearly 20,000 

airports and airfields resulting in 257 short tons of lead emitted in LTO;15 2.6% of these 

emissions occur outside of the continental United States and are excluded, and the NEI 

inventory assumes that 5% of lead is retained in the engine, engine oil, or the exhaust 

system. A nationwide seasonal distribution of the GA operations that peaks in May (9.8% of 

operations) and reaches a minimum in January (6.8% of operations) is applied in accordance 

with a detailed study of the spatial and seasonal patterns of general aviation.16 This seasonal 

pattern is similar to the site-specific GA pattern used in a lead study at Santa Monica 

Airport;12 however, regional seasonality may be greater in some areas. We apply a single-

peak diurnal profile of operations with operations beginning at 6 AM, peaking at midday, 

and ending at 10 PM that approximates the temporal profile of operations used in a near-

airport lead study.12 A local sensitivity study on lead dispersion found that annual 

concentration levels were not sensitive to choice of diurnal profile.3

The remaining lead is emitted during the cruise phase of flight. Most GA flights are local 

(i.e. depart and arrive from the same airport) or are of short-duration. Thus, for the 

latitudinal and longitudinal distribution of emissions from GA flights, cruise emissions are 

apportioned across each state in accordance with the percentage of operations that originate 

in that state according to the methodology of the EPA NEI guidance.15 We develop a 

triangular characteristic altitudinal distribution of piston-driven aircraft cruise emissions 

with a mode of 3000 ft and a peak of 13,000 ft from a study of 71 GA aircraft that cover a 

range of aircraft type, primary-use purpose, and operational characteristics.16 These 

operational characteristics are in line with altitudinal profiles of GA airplanes from 

December 2007 and June 2008 radar data, which had a modal peak in the 1200–3000 ft 

altitudinal range and decreasing frequency of flights with increasing altitudinal band.17

Background emissions for all atmospheric emissions species including aviation were 

developed from the U.S. EPA National Emission Inventory for 2005.18 Total lead emissions 

from this inventory were scaled to 55% of their initial values to account for the removal of 

2005 aviation lead emissions, which were generated using an older EPA inventory 

methodology and not distributed in a spatially consistent manner. While 2005 background 

emissions are used as a surrogate for 2008 background emissions, total anthropogenic lead 
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emissions decreased from 1.36 to 0.95 thousand tons per annum in the National Emissions 

Inventory from 2005 to 2008, a difference in emissions of less than 2% of total annual lead 

emissions at their 1970s peak. The NEI emissions totals represent changes both to actual 

emissions and to inventory methodologies; therefore, actual emissions changes from 2005 to 

2008 may have be more or less than 0.41 thousand tons.19

We use the Community Multiscale Air Quality (CMAQ) modeling system v4.7.1 at a 

resolution of 36 km × 36 km is used to model aviation emission-attributable lead 

concentrations in the continental United States.23 CMAQ is a high- resolution regional air 

quality model used by the EPA to support regulatory impact assessment. CMAQ has been 

developed for multi-pollutant and air toxic assessment. Aerosol phase hazardous pollutants 

are tracked using the multi-pollutant CMAQ model and, while chemically inert, undergo 

microphysical processes and deposition. Meteorological inputs are provided using the 

Weather Research and Forecasting (WRF) v3.3.1 model for the year 2005.20 Initial and 

boundary conditions for all chemical species are obtained from three-dimensional 

tropospheric chemistry simulations from the Goddard Earth Observing System of the NASA 

Global Modeling Assimilation Offices (GEOS-Chem).21,22 The fate and transport of metals 

and air toxics have been modeled and validated in using CMAQ using monitor data for 

several species including lead.24 We compare our modeled concentrations to monitor data 

from the United States Environmental Protection Air Quality Data Mart following the 

methodology of the 2011 National Air Toxics Assessment (NATA).25

Emissions-to-IQ Loss Pathway

Population exposure to lead is calculated by overlaying annual average surface 

concentrations on census data stratified by age group provided by Woods and Poole26 and 

previously used in aviation environmental analyses.27 Lead in ambient air can contribute to 

several exposure pathways, including direct inhalation, and—once the lead is deposited to 

the surface—ingestion with indoor or outdoor dust, soil, water, and food. Young children’s 

exposure to ambient lead is predominantly through the ingestion pathway, with lead-based 

paint ingestion representing up to 70% of US childhood lead exposure in the 2000s.28,29 

Because of these multiple pathways, the relationship between recent ambient lead (PbA) and 

blood lead (PbB) concentrations can be difficult to determine. Several studies use historical 

data to develop regression models that estimate the impact of changes in PbA measured in 

Total Suspended Particulates (TSP) on children’s PbB, by controlling for factors that could 

be predictors for non-recent air pathways, like geographic location, home age, and race/

ethnicity.30–37 Based on these studies, this work considers eight concentration response 

functions consisting of two functional forms for the PbA (μg/m3 in TSP) to PbB (μg/dL) 

relationship. The first relates ln(PbA) to ln(PbB) (ln-ln) according to: ln(PbB)=β · ln(PbA)

+γ. The ln-ln model results in larger changes in PbB per change in PbA at lower PbA 

concentrations. The second model linearly relates PbA and PbB (linear) according to: 

PbB=β · PbA. For the linear functions, slope values are consistent with ranges developed 

from case studies using the mechanistic Integrated Exposure Uptake Biokinetic (IEUBK) 

model of the PbA-PbB relationship.38
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Concurrent blood lead level measured during childhood is the best predictor of IQ when 

controlling for other social and environmental variables.39,40 Four concentration response 

functions identified by the EPA are used to model the resulting IQ decrements from changes 

in children’s concurrent PbB.38,41 These models are based on the pooled dataset from the 

meta-analysis of seven longitudinal cohort epidemiological studies, adjusted for errors 

identified in an independent re-analysis.41,39 The four concentration-response functions take 

different functional forms (log-linear with threshold, log-linear with no threshold and 

linearization at low levels, two-piece linear with slope change at 5 μg/dL, and two-piece 

linear with slope change at 3.75 μg/dL) to capture uncertainty in the PbB-IQ relationship. 

While the EPA includes a concentration-response function with a lower threshold, there is 

no blood lead level cutoff below which adverse health effects have not been observed.42 

Thus, while we present results for all four blood-to-IQ concentration response functions for 

comparison, results where the use of a threshold results in no damage estimates are excluded 

from summary statistics. Further details of the air-to-blood and blood-to-IQ concentration 

response functions are given in the SI.

While the IQ-related impacts of lead are a function of concentration in TSP, CMAQ modeled 

lead concentrations have only been validated for PM10 and PM2.5.24,25 TSP measurements 

include particles up to 45 microns in diameter, and therefore can be sensitive to even small 

concentrations of large coarse particles from lead-containing particles from wind-entrained 

dust, lead re-emissions, paint dust, and other sources. Thus, for this study, we apply several 

background TSP concentrations and calculate the aviation-attributable impact as the 

difference between these background scenarios and the modeled aviation-attributable lead 

concentrations. The annual maximum 3-month average lead TSP for the United States has 

decreased from 1.57 μg/m3 in 1980 to 0.13 μg/m3 in 2013, a reduction of 94%, based on the 

average of 12 monitoring sites used in the EPA’s Air Trends assessment.43 Because toxic 

metal concentrations are expected to vary over small spatial scales,12,44 and because lead 

concentrations have decreased dramatically over a short time period, three cases for 

background lead concentration are modeled: in Case 1, background concentrations reflect 

average exposure levels of lead TSP; in Case 2, background concentrations reflect measured 

concentrations from a time before the completed phase out of leaded gasoline; and in Case 

3, background concentrations reflect an additional 85% improvement in average air 

concentration. The 3 Cases were chosen to provide insight into the sensitivity of lead 

marginal costs given historical data on lead concentrations and exposure levels.

In Case 1, the background annual lead in TSP is fixed at 0.011 μg/m3, consistent with the 

measured average lead TSP geographically corresponding to NHANES-participating 1 year-

olds between 1999 and 2008.30 In Case 2, the background annual lead in TSP is 0.4 μg/m3. 

This corresponds to the 90th percentile value of the yearly maximum 3-month average lead 

TSP from the EPA Air Trends study in 2005 and the mean value for 1994 using 12 

monitoring sites.43 This high background case gives an indication of the damages 

attributable to aviation lead if background concentrations were as high as before the 

completion of the phase-out of leaded automobile gasoline. In Case 3, the background 

concentration in TSP is set as the annual PM10 lead concentration for each 36 km × 36 km 

grid cell as the contributions from all sources as modeled in CMAQ. This low background 

case represents an additional 85% reduction in the average background lead concentrations 
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and highlights the potential change in marginal costs of IQ-related impacts of leaded avgas if 

background concentrations continue to fall.

Economic Modeling

Following previous studies estimating the economic impacts of lead, we model the earnings 

reductions associated with IQ loss due to children’s lead exposure.11,45–47 The economic 

impacts of IQ loss are calculated using two methods: a static estimate of the net present 

value (NPV) of earnings losses for one cohort of 1 year olds, and a dynamic estimate that 

uses cohort-wide earnings losses as an input to labor productivity in a computable general 

equilibrium model. Following a 1-year cohort is a useful modeling simplification as it 

provides an indication of the annual costs of aviation-attributable lead emissions as IQ loss 

correlates best with concurrent blood lead level. These estimates underestimate the total 

societal impacts of lead exposure, however, as they do not include valuations of other human 

health impacts, health treatment costs, and damage to wildlife and ecosystem health.

For our static estimate, estimates of the percentage change in lifetime earnings associated 

with an IQ point reduction are taken from both the environmental health and labor 

economics literature.11,46,48,49 These estimates take into account both the direct impacts of 

IQ on wage, and indirect effects of IQ on schooling, and range from 0.9% to 2.37% loss of 

lifetime earnings per IQ point where productivity is assumed to increase by 1% per annum 

and future earnings are discounted at 3%. We calculate the NPV of lifetime earnings for a 

cohort of 1 year olds using earnings data, stratified by age group, from the US Department 

of Labor’s Bureau of Labor Statistics and present results in 2006 USD.

For our dynamic estimate, which accounts for the impacts of children’s IQ-related earnings 

loss on the US economy as a whole, we use the US Regional Energy and Environmental 

Policy (USREP) model. USREP is a recursive-dynamic general equilibrium model of the US 

economy.50,51 USREP represents utility-maximizing households and profit-maximizing 

firms as rational economic agents, and finds the optimal, equilibrium condition of the 

economy (expressed through commodity prices). Production and consumption depend on the 

relative prices of different goods, services, and availability of production factors like labor 

and capital. They are modeled as nested constant elasticity of substitution functions. The 

availability of labor is based on a household choice between labor and leisure. USREP uses 

2006 as a base year. Then, from 2010 onwards, equilibrium conditions are assessed at 5-year 

intervals.

USREP has been used to explore the dynamic, economy-wide health-related economic 

effects of climate, energy, and air quality policies including the influence of IQ deficits from 

mercury exposure.50–54 Within the model, household labor and leisure are treated as inputs 

to the good health of the US population. In the case of IQ loss, we consider only the effect of 

IQ on total lifetime earnings (labor). As pollution increases, more of these inputs are 

required to “produce” good health, reducing economy-wide productivity by diverting these 

resources from other sectors. Reduced household productivity results in reduced 

consumption, with economy-wide ripple effects that compound over time. We therefore 

express economy-wide losses due to IQ-related effects as changes in consumer welfare, 

measured as changes to household consumption and leisure.
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RESULTS

The contribution of aviation emissions to ambient lead concentrations is calculated by first 

modeling particulate and toxic species concentrations from all emission sources and then by 

modeling concentrations for all sources except general aviation. Aviation-induced lead 

concentrations are estimated as the difference between the two model runs.

The model is validated against monitor data using the approach of the 2011 NATA, using 

paired comparisons of model concentrations to 22 annual lead monitors of lead PM10 

observations in 2008.24 These 22 sites represent all monitors which meet completeness 

guidelines for determining annual average concentrations of lead PM10 in accordance with 

NATA guidance and are not necessarily representative of the average or range of 

concentrations of general population exposure. The model, when simulating all 

anthropogenic lead emissions, has a normalized mean bias of −60% and a normalized mean 

error of 62% as shown in the left panel of Figure 1. For comparison, a study of 2001 

emissions found that modeled lead values had an average normalized mean bias of −48.10% 

for lead PM2.5 at suburban monitoring stations in January,24 and CMAQ lead concentrations 

had a normalized mean error of 154% for PM10 in the NATA.25

The right panel of Figure 1 shows the concentration of aviation-attributable yearly average 

surface PM10 lead concentrations in μg/m3. Model results show that GA contributes to a 

wide dispersion of low concentrations of fine particulate lead emissions. For comparison, the 

median national total atmospheric surface lead concentration experienced by 1–5 year olds 

for the same period, based on Air Quality System monitoring data collected with National 

Health and Nutrition Examination Survey (NHANES) 9908 study participants, is estimated 

to be 0.011 μg/m3,29 and fine particulate lead accounted for an average of between 0.0053 

μg/m3 and 0.00723 μg/m3 of total atmospheric lead at US monitoring sites in July 2001 and 

January 2001, respectively.23 The model shows local areas of high aviation lead 

contributions, particularly the San Diego – Los Angeles Corridor, the Washington – Boston 

Corridor, and the Dallas/Fort Worth area. Further, the results indicate that aviation 

contributes to surface lead concentration across the entire continental United States. Because 

these aircraft-attributable concentrations are small (on the order of 0.0005–0.002 μg/m3), 

these contributions may be indistinguishable from background lead concentrations in 

monitor data. The EPA estimates pristine atmospheric lead concentration at 0.0005 μg/m3,12 

and detection limits and resolution for several monitors are of the same order.24 However, 

because there is no known threshold for lead impacts on health, these concentrations may 

contribute to significant health and welfare impacts.

The static IQ-related benefits of controlling all aviation-related lead emissions for Case 1, 

0.011 μg/m3 background lead TSP, are shown in Figure 2. Estimates for annual impacts 

range from less than 0.01 billion USD to $11.3 billion (2006 USD). Nine estimates return 0 

values, all for the log-linear with cutoff blood-to-IQ function. The mean and median benefit 

of aircraft lead control are 0.95 and 0.51 billion USD per annum respectively for all 

estimates and 1.06 and 0.60 billion USD per annum respectively for all non-zero estimates. 

All three linear air-to-blood concentration functions provide lower damage estimates. These 

linear damage functions are expected to provide conservatively lower damage estimates as 
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they include concentration responses developed from studies with larger lead emissions and 

blood lead levels.

Case 2 and Case 3 provide insight into the impact of decreasing background lead 

concentration and regional variability on the IQ-related benefit from controlling lead 

emissions. Case 2 estimates the impact of aviation lead emissions with background 

concentrations of 0.40 μg/m3 lead TSP. While this concentration is an order of magnitude 

higher than that of Case 1, 0.40 μg/m3 was the mean annual maximum 3-month average lead 

concentration in the EPA’s Air Trends analysis in 1999. The mean and median static 

aviation lead societal cost for Case 2 are $0.09 and $0.04 billion USD respectively. Whereas 

in Case 1 the linear air-to-blood concentration response functions provided the lowest cost 

estimates, in Case 2 they provide higher cost estimates than some ln-ln CRFs as background 

concentrations are higher.

The static benefits of aviation lead control for all three cases are shown in Figure 3. For Case 

3, the case with average background concentrations 85% lower than Case 1, the estimated 

benefits of reducing lead increase to a median of $5.2 billion USD and a mean of $7.9 

billion USD. Case 3 produces an upper bound estimate of $51 billion USD, an order of 

magnitude greater than the median value. As in Case 1, 9 of the 96 cost estimates were $0 

values, all for the concentration response function that includes a cut-off value below 1 

μg/dL.

In the dynamic case, we estimate the economy-wide impact of children’s IQ-related earnings 

loss by taking the sum of discounted differences between the economic output simulated by 

USREP considering a cohort of one-year olds exposed to aviation lead emissions and one 

where aviation lead emissions are eliminated for that cohort. Results of USREP for aviation-

attributable lead are shown in Figure 4. The median Case 1 (background lead concentrations 

of 0.011 μg/m3, ln-ln PbA to PbB relationship, dual-linear blood to IQ relationship with 

inflection at 7.5, and IQ-loss to earnings of 2.37%/IQ point) static estimate is used to 

explore the impact of economy-wide costs. The economic impact of lead pollution for one 

childhood cohort starts 15 years after initial emissions as they start to enter the workforce 

and peaks 50 years later. Because impacts are delayed, results are highly sensitive to 

discount rate. At a 3% discount rate, dynamic economy-wide impacts of the median Case 1 

model are $926 million, an increase of 54% over the static case. At 2% and 7% discount 

rates, the economy-wide impacts are $1,460 million and $202 million respectively. As 

shown in Figure 4, at high discount rates, the maximum damages occur when the cohort 

enters the workforce, but at lower discount rates yearly damages from a single cohort 

continue to increase for 40 to 60 years.

DISCUSSION

The mean and median Case 1 IQ loss costs of aviation lead emissions are $1.06 and $0.6 

billion for static losses and $1.63 and $0.93 billion for dynamic losses. Wolfe et al.55 

estimate the climate and noise damages attributable to US airports at $5.25 billion and $0.63 

billion respectively, while Yim et al.56 estimate air quality damages from ozone and PM2.5 in 

North America as $6.89 billion. Thus, the cost of General Aviation lead emissions are of the 
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same order of magnitude (albeit smaller) than estimated costs of commercial aircraft climate 

and air quality, but exceed the costs from commercial aircraft noise.

The range of static damage estimates from Case 1 alone spans two orders of magnitude, 

even after limiting blood-to-IQ relationships to functions without an impact cut-off at low 

concentrations and only considering one discount rate. This range represents the uncertainty 

along the exposure-to-impact pathway. Treatment of earnings reduction potential alone 

provides a factor of 3 differential in damage estimates. While summary statistics presented 

here focus primarily on the mean and median estimates, the range of damages indicates 

opportunities for other interpretations. For example, a precautionary approach may focus on 

the maximum damage estimates ($11.3 billion). Further, expert judgment may be used to 

down-select exposure-response functions depending on the goal and scope of the analysis. 

For example, a previous study found that if meta-analyses on lead damages were limited to 

studies with blood lead levels < 15 μg/dL, levels of the same magnitude as those modeled in 

this study, the mean of the marginal cost of lead would nearly double.45 Conversely, 

considering additional social discount rates and uncertainty from the general equilibrium 

modeling in the dynamic case would increase the range of damage estimates.

Aviation full-flight emissions contribute to small but impactful increases in lead exposures 

across the continental United States. Because these contributions may be indistinguishable 

from background concentrations or lower than monitor resolution detection limits, we use 

CMAQ to model the contributions from all stages of GA flight to understand the full impact 

of GA in the continental US. The spatial resolution of CMAQ may lead to an overestimation 

of lead concentration, exposure, and IQ loss damages further from an airport boundary and 

an underestimation of lead concentration, exposure and IQ loss damages nearer the airport. 

Lead emissions are expected to decrease exponentially as a function of distance from a point 

or area source. Carr et al.12 found that near-airport lead concentration gradients were 

indistinguishable from Los Angeles background concentrations at monitor stations further 

than 900 m downwind from Santa Monica Airport, but did not consider how aviation 

emissions, such as those from cruise and itinerant operations, contribute to the background. 

The under-/(over-) estimation of damages nearer (further) from an airport will depend upon 

the spatial distribution of the local population and the expected contribution of other sources 

to background lead concentrations. These local airport impacts could be significant.

The results indicate that lead damages attributable to a single source are highly sensitive to 

emissions from other sources. Between Case 2 and Case 1, a 96% reduction in background 

lead emissions equates to a 92% increase in median expected societal cost of aviation lead. 

Case 2 suggests that, as emissions from other sources have decreased dramatically, 

aviation’s impact has become more significant. With logarithmic concentration functions, 

improvements in overall air quality are expected to lead to increases in the marginal costs of 

additional emissions.57 Since 2005 the US has continued to tighten lead controls on lead 

emitters. In 2013, Doe Run Co.’s smelter in Herculaneum, MO ceased primary lead smelting 

as sulfur and lead emission stringencies increased. In addition, there is significant regional 

variation in the background concentration of lead in the US.
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There are limitations to the lead modeling approach that may influence the usefulness of 

results in some contexts. The lead inventory is limited by the sources provided in the EPA 

National Emissions Inventory. Research suggests that forest fires and lead re-emissions from 

soil are increasingly important sources of lead to the atmosphere.58,59 These sources, like 

aviation, were an insignificant source of airborne lead during the peak of leaded gasoline, 

but now may be a principal source of emissions in certain regions. Further, leaded paint and 

paint dust is expected to be the largest contributor to childhood lead exposure, with exposure 

risk being spatially and demographically heterogeneous.29 This study does not account for 

this heterogeneity. The CMAQ domain is also limited to the continental United States, and 

therefore does not account for over 8 tons of yearly aviation lead emissions in Alaska.

Earnings reductions related to IQ loss are only one effect of lead exposure. High lead levels 

can lead to damages to the nervous, circulatory, endocrine, and renal systems, which may 

contribute to health costs and foregone wages.42 At high blood lead levels, the Centers for 

Disease Control prescribes medical intervention for heavy metal poisoning that can include 

oral or intravenous chelation. Lower bound estimates of medical treatment costs from all 

lead hazards are $11–$53 billion, about 6%–20% of total lead damages.47 Childhood 

exposure to lead has also been linked to criminal activity. The environmental hypothesis for 

crime rates suggests that childhood exposure to lead increases the likelihood of possessing 

low behavior and cognition self-control and that low-self control is an important predictor of 

adolescent and adult criminal behavior.60–62 The direct costs of lead-linked crimes in the US 

in 2006 are estimated at $1.8 billion, and indirect costs, including treatment for 

psychological and physical damages may contribute to an additional $11.6 billion in 

damages.46

The three cases in this study explore the sensitivity of results to variability in background 

atmospheric concentrations, but they do not consider the sensitivity of results to variability 

in other sources of lead including leaded paint and soil lead or sensitivity of results to 

changes in meteorology and climate. The impact of aviation lead may be overestimated for 

populations with significant non-atmospheric sources of lead, but the future impact of 

aviation lead may be larger than current estimates if controls on non-emission sources are 

tightened or if the available housing stock with leaded paint decreases. While historically 

aviation has represented a small percentage of total anthropogenic lead emissions, aircraft 

emissions will continue to represent a larger and larger percentage of legacy emissions and 

may contribute to significant soil concentrations and therefore lead re-emissions near an 

airport with a high concentration of GA traffic. Combining full-flight emissions and 

transport with local dispersion modeling, utilizing higher spatial resolution modeling of 

population exposure, and incorporating historical emissions of aviation lead in conjunction 

with higher-fidelity inventories of anthropogenic, natural, and re-emission sources are 

important areas of future work that can be used to refine the damage estimates provided in 

this study.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left panel: Comparison of simulated all-source anthropogenic emission PM10 lead 

concentrations to observed PM10 concentrations. Right panel: Surface atmospheric PM10 

lead concentrations attributable to aviation in the continental United States (μg/m3).
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Figure 2. 
Static economic benefit of eliminating lead from avgas for 8 Air-to-Blood functions, 4 

Blood-to-IQ functions, and 3 different IQ-to-earnings functions for an average background 

concentration of 0.011 μg/m3.
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Figure 3. 
US-wide IQ-related benefit of aviation lead control, measured as increase in lifetime 

earnings, for 3 background cases: Case 1: 0.011 μg/m3, Case 2: 0.4 μg/m3, and Case 3: a 

spatially varying case with mean concentration of 0.0017 μg/m3.
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Figure 4. 
Present value of lead damages from USREP for a cohort of one-year olds by decade for 3 

discount rates compared to the static IQ-loss damage estimates at a 3% discount rate.
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