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Orbitofrontal Cortex Signals Expected Outcomes with
Predictive Codes When Stable Contingencies Promote the
Integration of Reward History

X Justin S. Riceberg and Matthew L. Shapiro
Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029

Memory can inform goal-directed behavior by linking current opportunities to past outcomes. The orbitofrontal cortex (OFC) may guide
value-based responses by integrating the history of stimulus–reward associations into expected outcomes, representations of predicted
hedonic value and quality. Alternatively, the OFC may rapidly compute flexible “online” reward predictions by associating stimuli with
the latest outcome. OFC neurons develop predictive codes when rats learn to associate arbitrary stimuli with outcomes, but the extent to
which predictive coding depends on most recent events and the integrated history of rewards is unclear. To investigate how reward
history modulates OFC activity, we recorded OFC ensembles as rats performed spatial discriminations that differed only in the number of
rewarded trials between goal reversals. The firing rate of single OFC neurons distinguished identical behaviors guided by different goals.
When �20 rewarded trials separated goal switches, OFC ensembles developed stable and anticorrelated population vectors that pre-
dicted overall choice accuracy and the goal selected in single trials. When �10 rewarded trials separated goal switches, OFC population
vectors decorrelated rapidly after each switch, but did not develop anticorrelated firing patterns or predict choice accuracy. The results
show that, whereas OFC signals respond rapidly to contingency changes, they predict choices only when reward history is relatively stable,
suggesting that consecutive rewarded episodes are needed for OFC computations that integrate reward history into expected outcomes.
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Introduction
Memory informs choices by linking current opportunities to the
outcome of past actions. When contingencies change, animals

learn to repeat rewarded responses and avoid other ones. Because
contingencies change at different rates, optimal responses require
tracking the reliability of outcomes. Across species, the orbito-
frontal cortex (OFC) supports adaptive choices based on reward,
but its specific function is debated. The OFC may track contin-
gency changes rapidly and guide choices by remapping stimulus–
reward associations after every trial (Rolls, 2004). Alternatively,
the OFC may integrate reward history, accumulating evidence
over several trials, and guide choices by computing expected out-
comes (Schoenbaum et al., 2009).

OFC dysfunction impairs performance when stable contin-
gencies change and reward expectancies are violated (Baxter et
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Significance Statement

Adapting to changing contingencies and making decisions engages the orbitofrontal cortex (OFC). Previous work shows that OFC
function can either improve or impair learning depending on reward stability, suggesting that OFC guides behavior optimally
when contingencies apply consistently. The mechanisms that link reward history to OFC computations remain obscure. Here, we
examined OFC unit activity as rodents performed tasks controlled by contingencies that varied reward history. When contingen-
cies were stable, OFC neurons signaled past, present, and pending events; when contingencies were unstable, past and present
coding persisted, but predictive coding diminished. The results suggest that OFC mechanisms require stable contingencies across
consecutive episodes to integrate reward history, represent predicted outcomes, and inform goal-directed choices.

2010 • The Journal of Neuroscience, February 22, 2017 • 37(8):2010 –2021



al., 2000, Pickens et al., 2003). OFC function may be less useful
(Stalnaker et al., 2015) or detrimental (Riceberg and Shapiro,
2012) to learning when contingencies change often. OFC unit
activity predicts choices when rats and monkeys learn to associate
stimuli with rewards, but the effects of different rates of contin-
gency changes on such activity are not well understood. OFC
firing correlates are typically analyzed during different phases of
operant tasks: stimulus presentation, delay, reward availability,
and consumption. In rats, different populations of OFC units
become active in each of these phases (van Wingerden et al.,
2010a;2010b). Neuronal responses to stimulus presentation that
distinguish pending rewards are considered representations of
expected outcome. As rats learn odor-flavor associations, OFC
single units gain predictive signals, fire in distinct phases of theta
and gamma oscillations, and the predictive codes vanish imme-
diately after contingencies change (van Wingerden et al., 2010a,
2010b, 2014). OFC neurons in monkeys taught to use visual fix-
ation cues to direct saccades developed predictive activity over
repeated trials that diminished when contingencies destabilized
and disappeared when they were violated (Kobayashi et al.,
2010). OFC circuits seem to respond to consistent reward asso-
ciations by accumulating evidence, perhaps by integrating the
history of episodes in a cognitive map of task space, a neuronal
representation of predicted outcomes that lets inferred values
inform decisions (Wilson et al., 2014).

Rats associate places with hidden food and safety and adapt
rapidly to changing spatial contingencies, yet the OFC’s contri-
bution to spatial learning has not been investigated extensively.
To investigate how reward history affects OFC coding, we re-
corded OFC ensembles as rats performed identical spatial dis-
criminations and reversals in plus-maze tasks that differed only
in reversal frequency. In the plus maze, a rat is placed in a north or
south start arm and can obtain hidden food by approaching the
choice point and selecting the east or west goal arm. Each start
arm is a discriminative stimulus and selecting a goal arm is a
discriminative response. If the OFC maps stimulus–reward asso-
ciations, then OFC neurons should respond rapidly to reward
changes and be unaffected by contingency stability. Stimulus–
reward remapping should be most prominent in the goal arm,
where reward is obtained and contiguity is strongest. Alterna-
tively, if the OFC integrates reward history, then OFC units
should respond slowly over successive episodes and stable con-
tingencies. OFC activity can inform choices only before the rat
exits the choice point, for example, in the start arm. If outcome
expectancies signaled by OFC neurons inform choices, then OFC
activity in the start arm should predict goal selection and depend
upon stable contingencies. Although OFC activity changed rap-
idly after contingency changes, OFC ensembles predicted choices
only when contingencies were stable, suggesting that OFC cir-
cuits compute expected outcomes by integrating reward across
successive trials.

Materials and Methods
Experimental design
We compared spatial learning in a plus maze using tasks with different
reversal frequencies (Fig. 1A) (Riceberg and Shapiro, 2012). A “low-
frequency reversal” (LFR) task was intended to promote stable outcome
expectancies by maintaining the same reward contingency and required
each rat to perform 17/20 consecutive trials correctly in a block of �20
trials before switching reward contingencies. A “high-frequency rever-
sal” (HFR) task was intended to discourage the formation of stable out-
come expectancies by switching reward contingencies frequently and
required each rat to perform five of seven consecutive trials correctly in a
block of �12 trials. The two tasks thereby favored different response

tendencies, with LFR encouraging the integration of reward history into
outcome expectancies and the HFR encouraging the formation of more
immediate reward associations. The rats were acclimated to the maze,
pretrained, implanted surgically with electrodes, retrained, and OFC
neurons were recorded as they performed the LFR and HFR tasks (Fig.
1A). Across all rats, 14 sessions of each task were included for analysis.

Subjects
Adult male Long–Evans rats weighed 275–300 g at the start of experi-
ments and were housed individually in a colony room with a 12 h light/
dark cycle. The rats were acclimated to the colony for a week and then
food restricted to no �85% of their ad libitum body weight and main-
tained on a restricted diet for the duration of the experiment. Four rats
were implanted with tetrode bundles targeting neurons in the ventrolat-
eral OFC (Fig. 1A). All procedures were performed in accordance with
Institutional Animal Care and Use Committee guidelines and those es-
tablished by the National Institutes of Health.

Maze
A plus-shaped maze made of wood was painted gray with 4 arms (59 cm
long, 6.5 cm wide, with edges 2 cm high) that met in the center at 90°
angles. Food cups at the end of each arm were recessed 0.5 cm and an
inaccessible piece of food was kept below a mesh screen. Each of two
opposing arms was designated as north and south start arms; the two
orthogonal arms were designated east and west goal arms. A rectangular
waiting platform made of white-painted wood (30 � 35 cm) stood beside
the maze in a room with several visual cues on the walls. The platform
and the maze were elevated 81 cm above the floor.

Surgery
Each rat was anesthetized with continuous flow isoflurane, mounted in a
stereotaxic frame, and given a preoperative dose of buprenorphine (0.3
mg/kg) intraperitoneally. Body temperature was monitored throughout
the surgery. The scalp was shaved, anesthetized (0.5 ml lidocaine with
epinephrine, subcutaneous), incised at the midline, and the skin and
pericranium were retracted. Seven holes were drilled around the perim-
eter of the skull for ground screws (n � 4) and reference screws (n � 3).
The skull and screws were coated with a layer of Metabond and Panavia.
Craniotomies were made above the right OFC (3.8 mm anterior, 2.2 mm
lateral to bregma). Dura was removed, the hyperdrive was lowered so
that the electrode guide tubes met the cortical surface, and the hyperdrive
was fixed to the skull with dental acrylic. Ground and reference wires
were pinned and cemented into an electrode interface board (EIB) with
cable connectors for recording. Tetrodes were lowered 2.2–2.5 mm to-
ward the OFC at the end of surgery. Rats were administered sterile saline
(0.5 ml/h, s.c.) and given a single postsurgical dose of buprinorphine and
daily MetaCam as needed during a �7 d recovery period.

Histology
At the end of testing, rats were deeply anesthetized with isoflurane and
pentobarbital (100 mg/ml, i.p.). One wire in each eligible tetrode was
pulsed with 300 uA DC to label the tetrode tips via a small lesion. Rats
were perfused transcardially with PBS and then 10% formalin. Brains
were removed, cryoprotected in 15% followed by 30% sucrose solution,
sectioned at 40 �m, and stained with formol–thionin to label cell bodies
blue and fiber tracts red.

Behavior testing
Pretraining. The rats were handled for 5 d and acclimated to the testing
room and the maze, where they found scattered chocolate sprinkles.
Inaccessible food rewards were distributed throughout the maze to min-
imize the use of odor cues to guide foraging. The rats were then trained in
a spatial win–stay task. Each trial began when the experimenter placed
food in the designated goal arm, picked up a rat from the waiting plat-
form, and placed it at the end of a pseudorandomly selected start arm
facing away from the maze center. The experimenter used similar move-
ments while placing food in the food cups to avoid cueing its location to
the rat. The rats were trained initially to find chocolate sprinkles at the
end of the west arm. Self-correction was permitted during this stage.
After the rat consumed the reward, the experimenter picked up the rat
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and placed it on the waiting platform for 5–10 s between trials. After a rat
made eight consecutive correct “go west” responses, it was assigned to
surgery (Fig. 1A).

Postsurgery acclimation and tetrode lowering. After the rat recovered
from surgery, it was again acclimated to the maze, retrained in the spatial
discrimination task, and the tetrodes were advanced toward their target
in 60 –180 mm steps once or twice daily (Fig. 1A). On testing days,
tetrodes were moved in 20 –30 mm increments until stable single-unit
activity was detected. Tetrodes were left untouched for at least 1 h
before behavioral testing. Final tetrode recording positions are de-
picted in Figure 1C.

Reversal tasks. As in pretraining, the experimenter put food in the west
goal arm: each trial started when the rat was placed in a start arm and
ended when the rat was put back on the waiting platform after it either
consumed the food or reached the end of the unrewarded arm. A choice
was counted when the rat put all four paws into a goal arm. Each rat was
given 5– 8 d of discrimination training and tetrodes were lowered con-
currently toward the OFC. Unit recording began after a rat met the 17/20
correct trial criterion in the “go west” discrimination and stable units
were detected. The same contingency held during the first recording
sessions and initial block of LFR testing, which was divided into blocks of
trials. In each block, the same goal arm was rewarded until the rat met the
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Figure 1. Experimental design, behavior, and firing correlates. A, Rats were trained to find food in one goal arm in a plus maze and then implanted with tetrodes targeting ventrolateral OFC.
Schematics depict sagittal and coronal brain sections 2.4 mm lateral and 3.7 mm anterior from bregma, respectively. After recovery from surgery, each rat was retrained to find reward in east or west
goal arms in blocks of trials: “go west” (dotted black line) or “go east” (solid black line). Below, lines show correct contingencies during the first blocks of typical low and HFR sessions: LFR (black) and
HFR (red). B, Rats performed the LFR task with 72% and the HFR task with 66% accuracy: the total number of correct trials performed during each task was similar (700 LFR, 688 HFR: �50
trials/session for each task). C, The numbers of neurons recorded during LFR and HFR and their estimated dorsoventral coordinates are shown. D, Firing rates across tasks. Single-unit activity was
recorded as rats learned LFR and HFR tasks. Mean firing rates in the start and goal arms were equivalent in LFR (black bars) and HFR (red bars). E, Spatial distributions of normalized OFC firing rates.
Each row shows the mean firing rate of one unit from start to goal in rows sorted by peak firing rate locations. The spatial distributions of firing rate peaks were indistinguishable in LFR and HFR (inset
lower right). F, Behavioral variation and firing rates. General linear models quantified the effects of heading angle, spatial trajectories, and movement speed on OFC activity. The variance in firing
rate predicted by each behavioral variable (� coefficients, horizontal axis) is plotted for every neuron (vertical axis) in LFR (black) and HFR (red) trials. Solid lines show westbound journeys, dotted
lines eastbound journeys, and means (�) are inset. None of the behavioral variables influenced firing rates in either task.
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criterion performance of 17/20 correct trials (40 –97 total trials). The
opposite goal arm was rewarded in the next block of trials so that each
daily testing session included two to four blocks and one to three rever-
sals. Because our previous work found that the order of HFR and LFR
training did not alter the effect of OFC lesions (Riceberg and Shapiro,
2012), the rats were tested on the HFR task after LFR testing. The tasks
were procedurally identical except the criterion for contingency change
was five of seven consecutive correct trials in HFR (52–93 total trials)
(Fig. 1A). Rats completed three to seven reversals per HFR session. Self-
correction was not permitted in either task.

Recording and unit discrimination
Recording apparatus. Hyperdrives held between 12 and 24 tetrodes (four
twisted nickel-chromium wires, 12.7 �m diameter; RO-800, Kanthal
Precision Technology), each loaded into an independently movable mi-
crodrive. Each tetrode wire was connected to the EIB and gold plated to
an impedance �0.2 M�. The interface board was connected via three 36
channel head stages to a Digital Cheetah data acquisition system to re-
cord tetrode signals. Light-emitting diodes were mounted on the head
stage and tracked by an overhead video camera (640 � 480 pixels, 30 Hz
sampling rate; Neuralynx). Tetrode signals were digitized and amplified
(200 –3000�) independently for each channel to maximize waveform
discrimination. Single units (threshold �100 mV) were sampled for 1
MS at 32,000 Hz and filtered between 600 and 6000 Hz. LFPs were re-
corded continuously from the same wires sampled at 2000 Hz and fil-
tered between 1 and 512 Hz.

Recording epochs. OFC activity was recorded on each trial from the
time the animal was placed on the start arm until it reached the food cup
at the end of the goal arm. Recording was paused �2 s after reward (both
reward receipt and omission) and then resumed when the rat was on the
wait platform between trials (intertrial interval � 9 � 0.16 s).

Spike clustering. Spikes were described by waveform parameters; for
example, the spike amplitude and duration recorded from each tetrode
wire and discriminated as reliable clusters in a high-dimensional param-
eter space using an eight-step, semiautomated procedure as follows. (1)
The initial parameters included the digitized waveform (32 V samples
recorded in 1 ms) from each tetrode wire and its Morlet wavelet trans-
form between 600 and 9000 Hz to quantify time-varying amplitude and
frequency. (2) Principal components analysis (PCA) of every sample of
each tetrode’s parameterized waveform recorded in the session identified
the three largest independent sources of variance and these, together with
any other dimensions with multimodal distributions, defined the param-
eter space used for cluster identification. (3) Clusters of points in the
PCA space were identified initially using KlustaKwik (http://klustakwik.
sourceforge.net/). (4) Waveforms identified by parameter clusters were
inspected visually to eliminate artifacts (e.g., chewing). (5) The remain-
ing parameterized waveform were clustered again using KlustaKwik. (6)
The output was edited using MATLAB routines that displayed 3D pro-
jections of the spike waveforms within the remaining clusters. (7) The
remaining clusters were refined using auto- and cross-correlations to
determine that spike timing was consistent with well discriminated
single units. (8) Cluster discrimination was quantified by the Ma-
halanobis distance.

Unit stability. The stability of individual units was evaluated by mea-
suring drift in mean spike amplitude and firing rate for each tetrode wire
in 20 equally distributed time bins spanning each recording session. All
units with time-correlated firing rates or waveform amplitudes on any
wire were excluded from further analysis (Spearman rank correlation,
uncorrected p � 0.05). The exclusion criteria were conservative and
rejected units that seemed stable by visual inspection, removing 137/504
(�28%) of the recorded OFC units, leaving 367 stable waveforms for
analysis.

Identification of cell types. The current analyses targeted OFC pyra-
midal cells. To distinguish interneurons from pyramidal cells, three
neurophysiological parameters were calculated: peak-to-trough dura-
tion, peak-to-trough asymmetry, and firing rate (Wilson et al., 1994).
The waveform from the tetrode channel with the highest peak amplitude
was used to calculate peak to trough time, asymmetry score (peak/trough
amplitude), and mean firing rate. Units were clustered into two groups,

one with broader, asymmetric spikes and low mean firing rates and the
other with narrower, more symmetrical waveforms and higher firing
rates. The first group identified putative pyramidal neurons that were
analyzed, whereas the second group identified putative interneurons that
were excluded.

Movement variables
Most of the analyses (described next) compared firing patterns in goal-
directed journeys as rats followed identical paths either in the same start
arm on the way to different goals or in the same goal arm on the way from
different starts. Spatial trajectories were constrained physically by the size
of the rat (�4 cm wide) and the narrow maze arms (6.5 cm wide),
minimizing potential differences spatial behavior. To quantify the extent
to which horizontal head position and movement affected unit activity,
we analyzed the variance in movement speed, location occupancy, and
heading angle within the spatial (�0.4 cm/camera pixel) and temporal
(30 Hz) sampling resolution of the recording system.

Speed. For each trial, velocities were calculated on linearized position
data (see “Trajectory” section), smoothed, and interpolated to successive
1 mm bins. Speed means and SDs were computed for each bin across
all trials within sessions. Unit analyses excluded all epochs with speed
�1 cm/s, those �2.5 SDs from the mean, and all trials in which the rat
reversed direction or exhibited erratic behavior (e.g., stopped moving
for �4 s).

Trajectory. To quantify variability in spatial trajectories, we compared
the distribution of positions occupied by a rat to an idealized path de-
fined by a high-order polynomial curve fit to all trials in a session. Tra-
jectory variance was calculated as the “residual distance” between each
tracked point in every trial’s actual path and the corresponding points in
the idealized path. Residual distances were binned in the start and goal
arms of the maze for all trials and each task.

Heading angles. Heading angles were calculated by the arctangent of
successive x–y tracking positions for each trial: the angular concentration
parameter, �, quantified the variability of these angles. A generalized
linear model quantified the variance in firing rate associated with each of
these behavior measures.

Single-unit selectivity
To quantify how the activity of individual OFC neurons varied with task
demands, we calculated speed-filtered firing rates of each single unit in
every maze region (i.e., start arm, goal arm, reward site, full trial) on all
trials and compared the mean firing rate of each unit in different memory
epochs and contingencies. Unit activity was sorted into one of four
categories by the start and goal of each trial: north or south starts and
east- or west-bound journeys. Predictive, retrospective, reward site,
and outcome selectivity was assessed by firing rate differences across
corresponding journeys: Predictive coding, the extent to which unit ac-
tivity in a start arm distinguished pending choices to the east or west goal
as the rat approached the choice point, was quantified as the difference in
firing rates between east- and west-bound journeys, calculated separately
for each start arm (e.g., in the north arm during east and west bound
journeys). Retrospective coding measured firing rate differences in each
goal arm (e.g., in the west goal arm during journeys that started in the
north vs south arms). Reward site coding compared firing rate differ-
ences in the east and west goal sites and outcome selectivity compared
firing rate differences between correct and incorrect trials in identical
journeys (e.g., rewarded versus nonrewarded north-to-east journeys).
For each unit, the actual difference in mean firing rate between condi-
tions was compared with a null distribution established by permutation
tests that shuffled trial identity 5000� and by t tests. A significant firing
rate difference identified predictive, retrospective, reward-site, and out-
come selectivity, and Cohen’s d measured the effect size of firing rate
differences. A unit was defined operationally as selective if the mean
firing rate difference was �95% of the permuted differences ( p � 0.05).
The proportions of selective units in the two tasks were compared using
� 2 tests. To be included in any analysis, each unit had to fire �25 spikes
during �20% of trials in a given condition. Firing rates were based on
spiking in identical maze regions sampled for similar intervals in both
tasks (mean sample time in ms, reward site: HFR � 1050, LFR � 1050;
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start arm: HFR � 500, LFR � 550, t � 1.23, p � 0.022; goal arm: HFR �
820, LFR � 1010 t � 2.82, p � 0.01).

Population vector correlations
To assess the effects of contingency changes on OFC ensemble activity,
we compared the firing rates of simultaneously recorded units as rats
move through the start arm and stereotyped behavior was “clamped”
before the choice point and goal selection. We reasoned that if OFC
neurons signaled pending goals or outcomes, then ensemble activity
should be similar from one trial to another as rats follow an established
contingency, change when a new contingency is imposed, and stabilize as
rats perform to criterion.

Trials for all sessions and rats were grouped by performance according
to learning stage. LFR learning curves were generated using a hidden
Markov model that estimated the probability of a correct response for
each trial across the block of trials defined by a specific contingency
(Smith et al., 2004). The Smith algorithm considers the entire session
performance to determine the probability correct on a given trial and
generates confidence intervals (CIs). For a two-choice task such as the
current one, the rat is considered to perform better than chance when the
lower confidence bound exceeds 50% probability correct.

During the first block of LFR, rats performed at near ceiling levels and
trials were grouped into three evenly spaced sub-blocks (sub-blocks 1, 2,
and 3; see Fig. 4A). During the reversal blocks, trials were grouped into
quartiles based on the lower CI of the Smith probability: early � 0.2,
middle � 0.2– 0.4, late � 0.4 – 0.6, and stable �0.6. The HFR task is not
well suited to the Smith algorithm because the quickly changing contin-
gencies interfere with measures of stable performance. We therefore
grouped the trials within each block into sub-blocks divided by a median
split.

Transitions between activity states. We quantified ensemble activity
using population vectors (PVs) and compared activity dynamics across
the learning curve using PV correlations (PVRs) (Rich et al., 2009). PVs
were defined as the mean z-scored firing rates of neurons active on a start
arm in �20% of trials for each ensemble of units recorded simultane-
ously in every sub-block of each session. To compare similar numbers of
sessions in each treatment and trials to each goal, we analyzed PVs from
the first two blocks of 10 LFR sessions and the first four blocks of 11 HFR
sessions. PVs recorded during performance of the first contingency de-
fined a “seed” used to compute PVRs across contingency changes. In
LFR, the seed PV included all trials performed during stable performance
of the first contingency; in HFR, the seed PV included all trials in the first
contingency block. To quantify the decay of established representations,
PVRs compared the initial seed to PVs in subsequent sub-blocks. To
quantify the emergence of new activity patterns, new seeds were defined
by PVs recorded at the end of each contingency, during late learning and
stable performance in LFR, and the entire final contingency block in
HFR.

Because the number of contingency changes differed in the LFR and
HFR, we also measured PVRs defined by different sub-block and seed
definitions. To test the effect of sampling procedures on PVRs, we ex-
changed the methods used to group LFR and HFR trials. One test
grouped all trials after the Smith learning trial (lower CI � 0.5) to define
the seed for LFR sessions; another divided LFR trials into split quarters
rather than by the Smith algorithm. Complementary tests applied to HFR
sessions, for example, defining the initial seed by the trials needed to
reach the same percentage correct (five of seven correct) as in HFR and
defining one HFR seed for each of the four contingency blocks. To assess
the effect of individual trials and trial numbers within sub-blocks, we
calculated PVs in 50 randomly drawn sets of five trials for sub-blocks
containing more than five trials and used the mean of the trial-
randomized PVs in additional PVRs.

Linear classifiers
To test the effect of contingency stability on OFC goal decoding, we used
a linear classifier to quantify how well neuronal activity in the start arm
predicted goal choices in single trials as rats attained five of seven correct
in each goal (Rich and Wallis, 2016). A moving window of seven trials
was convolved with the performance vector for the relevant block. The

first five correct trials within that window were selected as the first block
of five of seven trials. The same procedure was used after the contingency
change to select the first five correct of 10 trials for block 2. We compared
decoding accuracy in both tasks and in both individual rats and all rats
combined. For each task, the firing rates of each neuron in every record-
ing session were assembled into pseudo-PVs (PPVs) and the 10 trial � N
neuron arrays were used to predict choices using leave-one-out cross-
validation. Because many neurons (20 –59) predicted the outcome of
relatively few trials (10), we used lasso regressions with leave-one-out
cross-validation (Hastie et al., 2009). This method removes the data of
the trial to-be-classified and calculates a penalty term � through a leave-
one-out cross-validation using the remaining nine trials. The �-optimized
model then classifies the activity on the omitted trial and calculates an
accuracy score (0 –1) using a logistic function. The overall accuracy of
each model is measured by the sum of squares error calculated for the 10
trials. To compare actual to chance predictions, goal labels were shuffled
and the same lasso regression method was used to classify the permuted
trials. This procedure was repeated 700 times for each individual rat and
200 times for the combined dataset. The probability of obtaining the
actual decoding accuracy relative to chance ( p-value) was calculated by
comparing the actual sum-square-error to the distribution of sum-
squared errors in the shuffled data. PPVs from individual rats included
neurons that fired in at least three of five correct trials in one or both goal
blocks (neurons/rat 1, 2, 3: LFR � 26, 30, 22; HFR � 25, 19, 22, respec-
tively). The combined PPVs included all neurons in every rat that fired in
at least four of five correct trials in one or both goal blocks (LFR � 58,
HFR � 47 neurons). The different inclusion criteria meant that the total
number of neurons differed in the individual and combined analyses and
both procedures give similar results (see Fig. 4B).

Results
Variations in spatial movement did not predict firing rates
Because running speed, spatial location, and heading can modu-
late neural activity, we assessed the extent to which these behav-
ioral variables predicted firing rate dynamics within and between
tasks. We calculated variations in firing rate, speed, location, and
heading in the start arms for each trial and used GLM to quantify
the contribution of these variables to the firing rate of every neu-
ron. None of the behavioral variables predicted firing rate, none
of the distribution means differed from zero (range of statistical
values: LFR, t(206) � 0.57–1.58, p � 0.12– 0.27: HFR, t(161) �
0.85–1.1, p � 0.31– 0.38), and none of the measures distin-
guished firing rates in either of the two tasks [LFR vs HFR: head-
ing angle (�), Kolmogorov–Smirnov statistic (ks-stat) � 0.13,
p � 0.09; trajectory, ks-stat � 0.09, p � 0.45; running speed,
ks-stat � 0.11, p � 0.23; Fig. 1F] or the trial’s destination (east vs
west: LFR, k � 0.04 – 0.09, p � 0.4 – 0.97; HFR, k � 0.08 – 0.11,
p � 0.31– 0.65; Fig. 1F).

Reversal frequency altered learning but not firing rate
All rats were trained initially to enter one spatial goal from each of
the two start arms (e.g., north-to-west and south-to-west). On
subsequent testing days, the reward contingencies changed with-
out warning so the rat had to “go east” to find reward (Fig. 1A).
Contingencies changed either rarely, after 17/20 consecutive cor-
rect trials (LFR), or rapidly, after five of seven consecutive correct
trials (HFR). Overall performance was better in LFR than HFR
(Fig. 1B, left, t test, t(27) � 3.26, p � 0.01), whereas the number of
correct trials was similar (Fig. 1B, right). Although all rats learned
the LFR task before the HFR task, tetrode positions remained
within �100 �m across the tasks (Fig. 1C) and neurons recorded
during LFR and HFR fired at equivalent rates (Fig. 1D, 2-way
ANOVA, Ftask(1,367) � 1.8, p � 0.05) and with similar distribu-
tions on the maze (Fig. 1E, ks test, p 	 1).
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Reversal frequency altered predictive, but neither reward site
nor retrospective coding
Reward-site signals
The two goal arms defined distinct spatial stimuli that predicted
the same chocolate sprinkles reward. If OFC firing rates vary only
with expected reward value or outcome identity, then unit activ-
ity should be similar in the two goals. If the OFC signals stimulus–
outcomeassociations,however,thenunitactivityshoulddistinguishthe
two goals. We therefore compared the firing rate of each neuron
while the rats occupied the east and west reward sites during
correct trials before reward consumption (Fig. 2Ai, reward-site).
Reward site selectivity p-values corresponded to effect size (p
level, proportion with Cohen’s d value: LFR, p � 0.05, d � 0.8,
46%, d � 0.5, 97%; HFR, p � 0.05, d � 0.8, 55%, d � 0.5, 100%).
Although the reward identity and quantity were equivalent,
�25% of the neurons fired with significantly different rates in the
two goals, discriminating specific stimulus– outcome associa-
tions equally in both tasks (Fig. 2B–Di; reward site: LFR, 27% vs
HFR, 23%, � 2 � 0.30, p � 0.58).

Retrospective signals
OFC cells fire in patterns that differ statistically during identical
spatial trajectories depending on the past or future behavior of
the animal (Young and Shapiro, 2011b). In this experiment, the
same goal arm was entered from two different start arms, so the
same expected outcome was predicted by two different stimuli. If
OFC activity includes retrospective information, then firing rates
in the goal arm should distinguish the two start arms (Fig. 2Aii).
Indeed �25% of the neurons fired at different rates in the goal
arms depending on the start of the journey (Fig. 2B–Dii, “Retro-
spective”) and effect size corresponded with p-values (p level,
proportion with Cohen’s d value: LFR, p � 0.05, d � 0.8, 91%,
d � 0.5, 100%; HFR, p � 0.05, d � 0.8, 94%, d � 0.5, 100%).
Moreover, each goal arm was associated with equivalent numbers
of rewards in the LFR and HFR tasks and those rewarded journeys
were equally divided between the two start arms. If OFC firing
rates vary with reward number, then the proportion of units with
retrospective activity in the goal arms should be equivalent in
both tasks. Indeed, the proportion of OFC units with discrimina-
tive firing in the goal arms was independent of the rate of contin-
gency changes (Fig. 2B–Dii, “Retrospective”: LFR, 25% vs HFR,
23%, � 2 � 0.09, p � 0.76). After the choice point, OFC firing
rates distinguish stimulus– outcome associations but not the sta-
bility of contingencies.

Predictive signals
OFC firing patterns in the start arm that predict which goal will be
chosen imminently could reflect outcome expectancy, a repre-
sentation of the reward location associated with start arm (Fig.
2Aiii). OFC units distinguished the goal of journeys in the start
arms by firing at significantly different rates in both tasks and the
magnitude of start arm selectivity corresponded with effect size
(p level, proportion with Cohen’s d value: LFR, p � 0.05, d � 0.8,
100%; HFR, p � 0.05, d � 0.5, 100%, d � 0.8, 88%). If start arm
activity indeed reflects expected outcomes and forming these ex-
pectations depends upon relatively stable contingencies, then
predictive coding should be more common in LFR than in HFR
tasks. Predictive coding was more common in the LFR task, when
reward contingencies were relatively stable, than in the HFR task,
when contingencies changed more rapidly even as movement
variables were indistinguishable (predictive LFR, 19% vs HFR,
7%, � 2 � 5.88, p � 0.013; Fig. 2B–Diiii). Before rats reached the
choice point, OFC firing rates predicted choices most often when
contingencies were stable, showing that OFC signals associated

with the same reward distinguish identical spatial paths taken
toward different goals. Only predictive coding was affected by the
stability of contingencies, the task epoch in which OFC activity
could inform the pending choice, perhaps by signaling outcome
expectancy.

Predictive coding varied with reward history, not ongoing
performance levels
Although rats earned the same total number of rewards, overall
performance differed in the LFR and HFR tasks and in reward
stability and either factor could affect OFC activity. If predictive
OFC signals reflect reward history integration, then they should
vary with the stability of contingencies more than overall or in-
stantaneous performance levels. If predictive signals reflect over-
all or present performance, however, then unit activity should
vary with performance levels independently of the history of con-
tingency changes. We compared these hypotheses using two anal-
yses to quantify OFC coding as rats performed at identical levels
in the LFR and HFR tasks.

The first analysis compared a subset of full LFR and HFR
sessions matched for performance (Fig. 3A, top). Predictive cod-
ing was more common in LFR than HFR when performance
levels were statistically indistinguishable (Fig. 3A, “Coding”: LFR,
24% vs HFR, 7%, � 2 � 6.68, **p � 0.009) and the proportion of
predictive cells was similar in the performance matched and full
set of sessions (Fig. 2Diii). Retrospective coding was also equally
likely in the performance matched and full set of sessions, a pos-
itive statistical control (�25%; cf. Figs. 2Dii, 3A). The second
analysis included all sessions and compared all HFR trials with
performance matched blocks of truncated LFR trials (Fig. 3B,
top). To match the performance of the HFR trials (5/7 reversal
criterion), each block of LFR was truncated to include the first 10
correct trials within a moving window of 14 trials (10/14 rather
than five of seven LFR trials were used to maintain sufficient trial
numbers for statistical tests). Predictive coding was equally com-
mon in the truncated sessions: more units showed prospective
coding in LFR (21/98, 22%) than HFR (7/90, 8%), the propor-
tions differed significantly between the tasks (� 2 � 5.86, *p �
0.016; Fig. 3B) and matched the full sessions (cf. Figs. 2Diii, 3A).
As before, the �25% proportion of OFC units showing retro-
spective coding was similar across tasks and trial selection meth-
ods (cf. Figs. 2Civ, 3A,B). Retrospective signals discriminate the
start of behavioral episodes and were unaffected by different re-
versal frequencies. In summary, whereas contingency stability
had no effect on retrospective coding, predictive coding was re-
duced in HFR when performance levels and total number of
rewards were matched. Only predictive codes were affected by
the extended history of rewards and varied with the rate of
contingency changes, consistent with a representation of ex-
pected outcomes.

Memory errors occur for several reasons, including trace de-
cay and miscoding during stimulus presentation or retrieval. In
miscoding, neural activity maintains strong discriminative sig-
nals for the incorrect option: in trace decay, the discriminative
signal diminishes (Hampson et al., 2002). If OFC activity informs
choices, then neuronal activity should differ in correct and error
trials, for example, by showing weaker discriminative signals. We
therefore compared outcome selectivity in LFR and HFR by as-
sessing firing rates during correct and error trials for each journey
(Fig. 2Aiv). During both LFR and HFR, �25% of the recorded
neurons fired at significantly different rates on correct and error
trials before the rat reached the goal and outcome selectivity cor-
responded with effect size (p level, proportion with Cohen’s d

Riceberg and Shapiro • Stable Contingencies Drive OFC Predictions J. Neurosci., February 22, 2017 • 37(8):2010 –2021 • 2015



LFR Selectivity HFR SelectivityExamples Proportions

(i)
 R

ew
ar

d-
si

te

LFR neurons HFR neurons

hz0 7.5

521921
0

2

4

6

8

10

12 *

1 35114
0

2

4

6

8

10

12

R
F

Δ

*

LFR HFR
0

25

30

20

15

10

5

%
 c

o
d

in
g

ns

(ii
) 

R
et

ro
sp

ec
tiv

e

HFR neurons
LFR HFR

0

25

30

20

15

10

5

0 4hz

%
 c

o
d

in
g

831131
0

1

2

3

4

5

6

7 * ns

(ii
i) 

P
re

di
ct

iv
e

0 3hz

**

10171
0

1

2

3

4

5

6

7 *

721421
0

1

2

3

4

5

6

7

 
R

F
Δ

*

LFRLFR neurons HFRHFR neurons
0

25

30

20

15

10

5

%
 c

o
d

in
g

(iv
) 

O
ut

co
m

e

LFR HFR
0

25

30

20

15

10

5

%
 c

o
d

in
g

ns

LFR neurons
1 65124

0

1

2

3

4

5

6

7

 
R

F
Δ

*

correct

error

50 hz

HFR neurons
931831

0

1

2

3

4

5

6

7 *

LFR neurons
1 97144

0

1

2

3

4

5

6

7

 
R

F
Δ

*

A B C D

Figure 2. Task-related differences in firing rates. A, Single-unit activity examples showing firing rate selectivity (scale shown below each example). Ai, Reward-site-selective neuron that fired at
higher rates in the east than the west goal. Aii, Retrospective coding neuron that fired with higher rates in the west goal arm in journeys from the south start arm compared with journeys from the
north. Aiii, Predictive neuron that fired at higher rates in the north start arm before the rat entered the west than the east goal arm. Aiv, Outcome-elective neuron that fired at higher rates during
correct than incorrect northeast journeys. B, C, Differential firing rates quantify selectivity. Differences in mean firing rates (vertical axis) are plotted for each eligible unit (horizontal axis) in the LFR
(B) and HFR (C) tasks. Each black square shows the mean firing rate difference of one single unit (vertical lines:� SEM) and the gray columns show the mean of permuted firing rate differences. Units
with significant selectivity are left of the dashed vertical lines (set off by4*:1: examples in A). D, Proportion of reward site, retrospective, and outcome selective neurons were equally common
in both tasks; predictive coding was significantly more common in LFR than HFR.
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value, LFR: p � 0.05, d � 0.8, 78%, d�0.5, 100% HFR: p � 0.05,
d � 0.8, 61%, d � 0.5, 100%; Fig. 2Biv–D). Differential activity in
correct and error trials could signal uncertainty or confidence
about pending reward and correlate, for example, with the total
number of rewards independently of contingency stability, which
was similar in LFR and HFR (Fig. 1B). Alternatively, outcome
selectivity could reflect the strength of expectancies, for example,
if trace decay causes errors. If outcome coding reflects expectan-
cies that require stable contingencies, then error coding should be
stronger in the LFR than HFR tasks, but it was not (LFR, 27% vs
HFR, 27%, � 2 � 0.2062, p � 0.05; Fig. 2Div). If predictive coding
reflects expected outcomes, however, then units that both predict
choices and signal errors should be more common with stable
contingencies—and they were. The proportion of outcome-
selective neurons that also predicted goals were more common in
LFR (9/42, 21%) than HFR (1/38, �2%; Fig. 2), as was the pro-
portion of predictive units that also differentiated outcome (LFR,
9/24, 38%; HFR, 1/7, 16%). In both cases, however, the distribu-
tion of conjunctive coding cells matched the proportion of pre-
dictive units (predictive vs conjunctive: � 2 � 0.002, p � 0.96),
suggesting that the same mechanisms may drive conjunctive goal
and outcome prediction coding, for example, by integrating re-
ward history.

OFC ensemble activity predicted learning of
stable contingencies
Contingency changes alter PFC unit activity so that population
codes become anticorrelated as rats learned to select different
goals (Rich and Shapiro, 2009; Young and Shapiro, 2011a). To
assess the effects of contingency stability on predictive coding, we
analyzed OFC ensemble activity in the start arms as rats ap-
proached the choice point during correct trials. We sorted LFR
trials into two contingency blocks divided into sub-blocks during
initial learning (sub-blocks 1–3; Fig. 4A, left) and early, middle,

late, and stable performance of the new contingency (Fig. 4A, left)
and sorted HFR trials into four contingency blocks divided into
two sub-blocks using split-half procedures (sub-blocks 1– 8; Fig.
4A, right). PVs included the mean activity of every unit in each
ensemble, were defined for each sub-block, and the correlation
between PVRs measured coding dynamics across the learning
curve. PVRs measured ensemble transitions by comparing “seed”
PVs to the PV of each other sub-block (LFR, rfirst, rfinal; HFR,
r1–r4; Fig. 4A). Each ensemble included �4 active units and the
analyses compared statistically indistinguishable numbers of
neurons, ensembles, and neurons per ensemble in the 2 tasks
(number of ensembles: LFR, 10, HFR, 11; mean number of units
per ensemble: LFR, 10, HFR, 8, t(19) � 1.4, p � 0.17).

In both tasks, OFC PVs were stable and highly correlated
across successive trials before the contingency reversed (mean
PVRs before: LFR sub-blocks 1–3, 0.4 � r � 0.8; HFR sub-blocks
1–2, 0.5 � r � 0.80) and then changed rapidly after (LFR,
0.2 � rfirst, early � 0.01; HFR, 0.1 �rfirst, block 3 � 0.2; Fig. 4A).
Population coding differences between tasks emerged as reversal
performance improved. As rats learned a new and stable contin-
gency in LFR, OFC ensembles developed new and distinct firing
patterns that predicted performance changes and PVs became
increasingly anticorrelated with the stable PVs recorded before
the reversal (r 
 0: LFR, rfirst, block M ��0.2, z � 2.18, p � 0.05;
rfirst, block L ��0.35, z � 2.6, p � 0.01; rfirst, block S ��0.45, z �
2.74, p � 0.01; Fig. 4A). The anticorrelation reflected both the
decline of the original state (blue line) and the emergence of a new
one (red line) and both types of coding changes correlated with
learning (LFR, rfirst vs performance: r 2 � 0.83, p � 0.05; rfinal vs
performance: r 2 � 0.96, p � 0.05). OFC ensembles developed
distinct activity patterns that distinguished pending choices when
contingencies were stable.

In contrast to LFR, PVs did not become anticorrelated when
rats switched between HFR contingencies (r 
 0: mean r �
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Figure 3. Predictive coding and performance accuracy. Example sessions in the top row use boxes to depict correct (filled) and error (empty) trials in LFR (black) and HFR (gray) sessions: red boxes
indicate excluded trials. A, Overall mean performance was equivalent in nine complete LFR and 12 HFR sessions (bottom left, mean �SEM). In these performance-matched sessions, predictive
coding was more common in LFR than HFR, whereas retrospective coding was equally common (bottom right). B, Each block in every LFR session was truncated when rats performed 10/14 correct
trials (black) to match the performance in full HFR sessions (gray). Predictive coding (left) was more common in LFR than in HFR in these performance matched sessions, whereas retrospective coding
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Figure 4. OFC population dynamics and predictive decoding. Firing restricted to the start arms in behaviorally indistinguishable correct trials was used to analyze predictive coding and decoding.
A, Transitions between activity states were quantified by mean PV correlations of each trial block with a seed PV based on the performance of each contingency block (LFR, rfirst blue, rfinal red; HFR,
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for each rat. LFR trials were decoded accurately; HFR trials were not. Bottom, Goal decoding by all active neurons in all rats combined was accurate in LFR trials (�99%), but not in HFR
trials (�64%).
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�0.09, Z � 0.85, p � 0.19; 1 of 24 correlations differed signifi-
cantly from 0, as expected by chance; Fig. 4A) and PVR dynamics
did not predict HFR learning (r1– 4 vs performance: 0.21 � r 2 �
0.46, p � 0.05). Furthermore, new OFC firing patterns developed
each time contingencies switched so that PVRs comparing OFC
activity as rats followed identical contingencies were uncorre-
lated (e.g., R1 and R3). Rather than representing stable stimulus–
reward associations, OFC ensembles developed new ensemble
codes after each contingency change as though predictive codes
were associated with contiguous episodes rather than abstract
rules.

Stable contingencies supported single trial goal decoding
Linear classifiers decode neural activity states associated with dif-
ferent choices or goals (Rich and Wallis, 2016). To determine
whether prospective goal decoding differed in LFR and HFR
tasks, we used OFC ensemble activity recorded in the start arm to
predict goal choices as rats learned to choose a new goal correctly
in five of seven trials. OFC ensembles predicted goals more accu-
rately in LFR than HFR in each rat considered separately and in all
rats taken together. During LFR, ensembles in each rat predicted
choices accurately in �83% of all trials, significantly better than
chance (rats 1–3: 90%, 99.9%, and 83.14%: p � 0.04, p � 0.002,
p � 0.053 in permutation tests, respectively; Fig. 4B, top). In
contrast, the number of choices predicted accurately in HFR was
not better than chance (37.8%, 35.3%, and 45.2%; p � 0.84, p �
0.79, p � 0.56, respectively; Fig. 4B, top). Similar results were
obtained when activity in all three rats was pooled (accuracy:
LFR, 98.9%, p � 0.005; HFR, 62.4%, p � 0.249; Fig. 4B, bottom)
and after constraining LFR ensemble size to match HFR ensem-
ble size (100 randomly selected ensembles of 47 units showed
decoding �94% accurate). OFC ensembles predicted goal
choices accurately when stable contingencies were maintained
across trials.

Discussion
OFC function improves learning when new outcomes conflict
with reward expectancies established by stable contingencies and
OFC firing rates predict goal choices in similar testing conditions
(Young and Shapiro, 2011a). Here, we altered contingency sta-
bility by varying the number of rewarded trials between goal
reversals in a plus maze and compared unit activity as rats used
identical behaviors to approach the choice point on the way to
two different spatial goals. When contingencies were stable, the
firing rates of single OFC units signaled pending choices, OFC
population dynamics correlated with learning, and ensemble ac-
tivity correctly predicted choices of most single trials. When re-
ward contingencies changed more rapidly, the firing rates of
single units were less likely to predict choices, OFC population
dynamics did not correlate with learning, and ensembles pre-
dicted choices of single trials no better than chance. Reward sta-
bility did not affect goal site, outcome, or retrospective selectivity,
demonstrating that stable contingencies are required selectively
for choice prediction. Together, the results are consistent with the
claim that OFC integrates reward history, show that integration
requires repeated episodes, and suggest that integration mecha-
nisms are constrained by network dynamics (e.g., the size of in-
cremental learning steps) that associate stimuli with reward to
represent expected outcomes.

Contingency stability, reward history, and expectancies
Contingencies define the link between environmental opportu-
nities, actions, and their potential outcomes. When contingen-

cies are stable, common actions in similar circumstances lead to
reliable outcomes, accumulated evidence supports stronger pre-
diction, and integrated reward history supports computations
that represent expected outcomes. When contingencies are un-
stable, identical actions lead to unreliable outcomes so that accu-
mulated positive and negative evidence cancels and undermines
prediction. In the present experiment, obtaining reward in every
correct choice was certain, whereas the rate of reward for a given
choice differed between the LFR and HFR tasks. The same con-
tingency manipulations that altered the effects of OFC lesions on
learning (Riceberg and Shapiro, 2012) modulated predictive cod-
ing by OFC units: OFC lesions impaired LFR but improved HFR
and OFC units predicted choices only in LFR. Learning informed
by the OFC also established predictive OFC firing patterns and
both require relatively stable contingencies.

OFC dynamics
As stimulus–reward associations repeat over sufficient trials,
OFC population vectors developed predictive activity that re-
mained stable while the same contingency applies. After a new
and stable contingency was established, the same neural ensem-
bles predicted correct choices to the new goal with distinct and
anticorrelated PVs Through the course of reversal learning, how-
ever, OFC activity changed in two phases. Almost immediately
after a new contingency is imposed, OFC PVs that predict correct
choices to the first goal disappeared, replaced by new and uncor-
related firing patterns. This “collapse” (van Wingerden et al.,
2010b) of the initial PV was identical in LFR and HFR. In con-
trast, the formation of new and anticorrelated population vectors
occurred more gradually in the LFR task, as would be expected if
OFC circuits accumulate reward associations slowly over re-
peated trials. In LFRs, anticorrelated PVs formed and OFC le-
sions impaired reversal learning (Riceberg and Shapiro, 2012).
The gradual formation of anticorrelated PVs during reversal
learning parallels the slow emergence of NMDA-receptor-
dependent odor discrimination codes by OFC neurons (van
Wingerden et al., 2012) and predicts faster olfactory reversal
learning (Stalnaker et al., 2006). The combined results suggest
that stable contingencies may let OFC circuits accumulate reward
associations over repeated trials, integrate reward history into
expected outcomes, and speed learning by providing discrimina-
tive error signals.

PVs were almost never anticorrelated in HFR (Fig. 4), perhaps
because contingencies changed too quickly for accumulated
stimulus–reward associations to separate OFC representations
fully. Moreover, OFC representations differed even when behav-
ioral episodes were supported by the same contingency. PVs as-
sociated with one contingency were uncorrelated after two
reversals, for example, when “go east” blocks were separated by a
“go west” contingency (Fig. 4A, r1 vs r3; r2 vs r4), suggesting that
OFC representations may be tied more closely to reward in prox-
imal episodes then to more generalized rules. Future experiments
should determine how repeated stable contingencies affect OFC
representations.

OFC dynamics may account for the paradoxical improvement
in HFR learning after OFC lesions (Riceberg and Shapiro, 2012).
When contingencies change frequently, predictive coding is weak
and population codes associated with each goal remain uncorre-
lated. If OFC activity nonetheless influences reversal learning,
then poorly separated OFC signals would likely increase interfer-
ence, for example, by reducing hippocampal prospective coding,
and thereby slow reversal learning. From this view, OFC lesions
may reduce interference and allow other circuits to inform
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choices, for example, via “recency-weighted” rewards (Walton et
al., 2010).

Learning by distributed networks
Many brain networks respond to changing contingencies and
their interactions affect learning and memory (Kim and Baxter,
2001). Functional interactions between the OFC and the ventral
tegmental area (VTA), ventral striatum, dorsal raphe nucleus,
and the basolateral nucleus of the amygdala (BLA) could provide
mechanisms that link stable reward to OFC and support predic-
tive coding. VTA error prediction signals depend on OFC (Taka-
hashi et al., 2011), optogenetic excitation of the dorsal raphe
increases prospective coding in the OFC (Zhou et al., 2015), and
striatal serotonergic manipulations reverse compulsivity caused
by OFC damage (Schilman et al., 2010). OFC and BLA interac-
tions are especially relevant to reward associations, the effects of
OFC lesions on learning, and the present results linking contin-
gencies to predictive coding. OFC lesions reduce flexible, out-
come related responses in BLA neurons (Saddoris et al., 2005)
and BLA lesions reduce OFC outcome expectancy signals (Schoe-
nbaum et al., 2003). Moreover, reversal learning impaired by
OFC lesions is rescued by adding BLA lesions (Stalnaker et al.,
2007). This paradoxical effect suggests that the combined lesion
reduces interference in other circuits that support reversal learn-
ing, perhaps by eliminating spurious reward predictions. OFC
lesions may improve rapid reversal learning (Riceberg and Sha-
piro, 2012) by the same mechanism, facilitating intact circuit
function by removing noisy or unreliable outcome expectancy
signals.

Different tasks and species
Observed OFC activity patterns vary with task parameters, exper-
imental design features, analytic methods, and species (Boulou-
gouris et al., 2007; Butter et al., 1969; Kennerley and Wallis, 2009;
Mar et al., 2011; Meunier et al., 1997; Rich and Wallis, 2016).
OFC function is often investigated in terms of stimulus–reward
mapping using time locked stimulus and reward presentation,
for example, odor sampling, waiting, reward consumption ep-
ochs. Although behavior is more extended in space and time in
the plus maze, the start arm, goal arm, and reward site of the task
correspond operationally to features used in stimulus-based
tasks. OFC neurons are engaged during extended actions (van
Wingerden et al., 2014; Young and Shapiro, 2011b), but the ex-
tent to which a place can be considered a stimulus is less clear. In
both spatial and nonspatial tasks, however, predictive OFC pop-
ulation activity is acquired relatively slowly and follows similar
learning dynamics, for example, when rats perform olfactory go/
no-go reversals (van Wingerden et al., 2012), suggesting that both
kinds of tasks engage similar OFC computations. Although pri-
mates are rarely tested in spatial navigation tasks and their OFC
neurons are seldom observed to encode spatial variables (Zald,
2006), analogous firing dynamics have been reported in mon-
keys. As in the present experiment, reward prediction by OFC
neurons was acquired relatively slowly and the proportion of
predictive neurons varied with contingency stability in monkeys
learning an oculomotor reversal task (Kobayashi et al., 2010).
Predictive coding dynamics by OFC neurons in primates also
varied with outcome valence. Nearly equivalent proportions of
OFC neurons responded differently to positive and negative out-
comes when monkeys associated visual stimuli with either liquid
reward or an air puff punishment (Morrison et al., 2011). After
reversals, reward- and punishment-selective OFC neurons re-
sponded maximally to contingency reversals within �17 trials

(cf. Fig. 5A,B in Morrison et al., 2011), similar to the number of
LFR trials needed for predictive coding here.

Theory reconciliation
Fast and slow plasticity mechanisms may help to reconcile two
theoretical mechanisms proposed to account for the effects of
OFC lesions on behavioral flexibility. One view suggests that the
OFC associates stimuli and outcomes rapidly and represents
stimulus–reward mappings that provide flexible, “online” re-
ward predictions (Rolls, 2004). A more recent view suggests that
the OFC integrates the history of stimulus–reward associations to
compute outcome expectancies—representations of the hedonic
value and quality of rewards evoked by conditioned stimuli
(Schoenbaum et al., 2009, Stalnaker et al., 2015). The present
results show that OFC firing patterns respond to new contingen-
cies with both slow and fast dynamics, so that predictive codes
emerge slowly as the same contingency holds for a sufficient
number of repeated trials and are lost rapidly when contingencies
change. In theoretical terms, stable stimulus–reward associations
may be integrated slowly to form expected outcomes, but reset
rapidly by changing contingencies via stimulus–reward remap-
ping. Although more extensive training in rapid reversals might
let OFC populations follow rapid contingency changes with cor-
responding switches between anticorrelated activity states, lesion
experiments suggest otherwise. OFC activity tends to support
reversal learning transiently, speeding learning when a well estab-
lished contingency is altered for the first time (Schoenbaum,
2002; Riceberg and Shapiro, 2012). Other brain regions, such as
the medial prefrontal cortex, may switch more rapidly between
pattern-separated stimulus–reward representations (Spellman et
al., 2015).
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