Molecular cloning of human protein 4.2: A major component of the erythrocyte membrane

(band 4.2/membrane skeleton/factor XIII/transglutaminase/cDNA)

LANPING AMY SUNG^{*†}, SHU CHIEN^{*}, LONG-SHENG CHANG[‡], KAREL LAMBERT^{*}, SUSAN A. BLISS[‡], ERIC E. BOUHASSIRA[§], RONALD L. NAGEL[§], ROBERT S. SCHWARTZ[§], AND ANNE C. RYBICKI[§]

*Departments of Applied Mechanics and Engineering Sciences-Bioengineering and Medicine, and Center for Molecular Genetics, University of California at San Diego, La Jolla, CA 92093; [‡]Department of Biology, Princeton University, Princeton, NJ 08544; and [§]Division of Hematology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467

Communicated by Russell F. Doolittle, November 16, 1989

ABSTRACT Protein 4.2 (P4.2) comprises $\approx 5\%$ of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. We now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-pair insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of \approx 77 and \approx 80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human **RBC P4.2** has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates.

Membrane skeletal proteins play an important role in regulating the viability and mechanical properties of erythrocytes (RBCs) (1, 2). All major RBC membrane proteins have been identified, most have been characterized, and several have been cloned (3-6). Isoforms of many RBC membrane proteins have been identified in various types of cells and tissues (1, 2). Protein 4.2 (P4.2), which represents $\approx 5\%$ of the protein mass of human RBC membranes, is one of the last major membrane proteins to be characterized. P4.2 has an apparent molecular mass of \approx 72 kDa and associates with the cytoplasmic domain of the anion exchanger, band 3 (7). Recent evidence suggests that P4.2 interacts with ankyrin and may function to stabilize ankyrin in the membrane (8). Individuals whose RBCs are severely deficient in P4.2 experience various levels of anemia, further indicating an important functional role for this protein (8).

We now report the molecular cloning and characterization of the full-length cDNA for human RBC P4.2.[¶] Two cDNA sequences have been identified that differ only by a 90base-pair (bp) insert located near the 5' end of the coding region. The presence of two P4.2 cDNAs resembles the transcript heterogeneity found in membrane skeletal protein 4.1 (9–11) and nonerythroid α -spectrin (6) and suggests that regulation of P4.2 expression exists in human RBCs, possibly by alternative splicing.

MATERIALS AND METHODS

Screening of λ gt11 cDNA Library. Affinity-purified rabbit anti-human P4.2 IgG prepared by Rybicki *et al.* (8) was used to screen a cDNA expression library in λ gt11 constructed from human reticulocyte mRNA, kindly provided by J. G. Conboy and Y. W. Kan (5). Immunoscreening of the λ gt11 expression library was performed according to Huynh *et al.* (12), except that positive clones were identified with goat anti-rabbit IgG conjugated with horseradish peroxidase (Bio-Rad). For each 150-mm Petri dish, 5×10^4 plaque-forming units were used.

Subcloning and Sequence Analysis. cDNA inserts from positive phage clones were subcloned into pBS(+) plasmids (Stratagene). Unidirectional deletion clones were generated by using BAL-31 exonuclease (13), and cDNA fragments were sequenced with T3 and T7 primers by the dideoxynucleotide chain-termination method (14). Sequence analysis and GenBank data base searches were performed by IBI Pustell sequence analysis software (International Biotechnologies).

5'-End Extension of cDNA. Three oligonucleotides were prepared in a technique based on the polymerase chain reaction (PCR) to synthesize the missing 5' sequence of the partial cDNA clone: p1 was composed of nucleotides (nt) 7-23 of clone 7 (c.7); p2 was complementary to nt 36-52 of c.7 plus an EcoRI restriction site at its 5' end; p3 was composed of the EcoRI polylinker and the poly(dC) originally used for the first-strand cDNA synthesis when the library was constructed. The sequences of p1, p2, and p3 were, respectively, 5'-dTGAGGATGCTGTGTGTCC-3', 5'-dTC<u>GAATTC</u>GTACTC-CATGCGCTGAG-3', and 5'-dGCGGAATTCCCCCCCCC-CCCC-3', with the *Eco*RI sites underlined. p2 and p3 were used as PCR primers, and the reticulocyte cDNA library (5 μ l with 10⁶ phages per μ l) was used as a template. The reaction product was electrophoresed and stained with ethidium bromide. The major band was excised and subcloned into pGEM 3zf plasmids (Promega). From >500 transformants, 24 colonies were randomly chosen to make minipreparations of plasmid DNA, of which 80% were positive when hybridized with ³²P-labeled p1.

Western Blot Analysis of Fusion Proteins. Recombinant lysogens of three positive $\lambda g111$ clones were prepared and induced for expression of β -galactosidase fusion proteins (12). Clear lysate containing the fusion proteins was separated by SDS/PAGE (7.5% polyacrylamide gel) (15), transferred to

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviations: LTG, guinea pig liver transglutaminase; nt, nucleotide(s); ORF, open reading frame; PCR, polymerase chain reaction; P4.2, protein 4.2 of human erythrocytes; RBC, erythrocyte; XIII_a, subunit a of human factor XIII.

[†]To whom reprint requests should be addressed.

[¶]The sequences reported in this paper have been deposited in the GenBank data base (accession nos. M30646 and M30647).

nitrocellulose filters (16), and immunostained with the affinitypurified rabbit anti-human P4.2 IgG and a goat anti-rabbit IgG conjugated with alkaline phosphatase (Promega).

Generation of Cyanogen Bromide-Cleaved Fragments. Purified P4.2 ($50 \mu g$) prepared according to Korsgren and Cohen (7) was incubated with cyanogen bromide (17). The cleaved P4.2 mixture was concentrated in a Speed Vac Concentrator (Savant), and the peptide fragments were separated by HPLC (Aquapore C03-GU, 30×4.6 mm; Brownlee Lab) with a 0.1% trifluoroacetic acid/acetonitrile linear gradient (0–90% acetonitrile in 13 min) at a flow rate of 1 ml/min. The peptide peaks detected at 210 nm were collected, concentrated, and sequenced using an ABI 1470 gas phase protein sequenator (Applied Biosystems).

RNA Isolation and RNA Blot Analysis. Human reticulocyte RNA was prepared (8) from peripheral blood of an anemic individual with paroxysmal nocturnal hemoglobinuria. The RNA was electrophoresed on a 1% agarose/formaldehyde gel (18), transblotted onto nitrocellulose paper, and hybridized with ³²P-labeled probes generated by random-primer extension (Pharmacia LKB).

RESULTS

Isolation of P4.2 cDNA Clones. Immunoscreening of 5×10^5 recombinant phages with anti-human P4.2 antibody yielded 12 potentially positive clones, 6 of which contained large-sized inserts ranging from 1.2 to 1.8 kilobases (kb). The 1.8-kb insert of c.7 was found to cross-hybridize with those of c.4 (1.4 kb), c.8 (1.7 kb), and c.9 (1.2 kb), suggesting that these four clones contained overlapping nucleotide sequences.

Sequence analysis indicated that c.7 had a poly(A) tail and one long open reading frame (ORF) at the 5' end. Restriction analyses and partial nucleotide sequences showed that these cross-hybridizing clones contained the 3' portion of the cDNA with varying lengths from the 5' end (Fig. 1). Since P4.2 has an apparent molecular mass of 72 kDa, its cDNA is expected to have a coding region of ≈ 2.2 kb. Hence, the longest c.7 of 1.8 kb was not long enough for the entire coding region.

5'-End Extension of cDNA. To obtain the missing 5' end of the cDNA, we performed PCR 5'-end extension by using primers synthesized according to the sequences of c.7 insert and the λ gt11 clones in the cDNA library. Sequencing of the four largest PCR-extended cDNA clones (including c.12 and c.16 in Fig. 1) showed that they had identical sequences, except that the largest one (c.12) had a 90-bp insert near the 5' end of the coding region (Fig. 1). The combined length of c.7 and the 5'-extended cDNA is 2.4 kb (or 2.5 kb with the 90-bp insert). Sequence analyses showed that they contained ORFs of 2.1 and 2.2 kb, respectively, and thus were capable of encoding a protein of \approx 72 kDa.

FIG. 1. Schematic diagram of human RBC P4.2 cDNAs. Horizontal open bar represents the coding region. Lines flanking it represent the 5' and 3' untranslated regions. Three clones isolated by immunoscreening (c.7, c.8, and c.9) and two clones obtained by PCR extension (c.12 and c.16) are shown below. The dashed V-line on c.16 indicates the absence of the 90-bp insert found in c.12.

Expression of Fusion Proteins and Amino Acid Sequence Analysis of Cyanogen Bromide Fragments. In addition to the coding capacities of the cDNAs, two other lines of evidence support the identity of these cDNAs as P4.2. An \approx 175-kDa β -galactosidase fusion protein encoded by recombinant phage c.7 was detected by anti-P4.2 antibody (data not shown). Since β -galactosidase contributes 114 kDa to the fusion protein, c.7 insert encodes a peptide of \approx 61 kDa. The combined protein size of c.7 and c.16 (15 kDa) or c.12 (18 kDa) is close to the apparent molecular mass of P4.2. The most convincing evidence for the authenticity of the cDNAs was the complete match of 46 amino acids from three independent cyanogen bromide peptides of P4.2 with the amino acid sequence deduced from the cDNA (Fig. 2, boxes).

Sequence Analysis of the P4.2 cDNAs. The complete nucleotide sequence of P4.2 cDNA and the deduced amino acid sequence of P4.2 are shown in Fig. 2. The cDNA has a 227-nt untranslated region upstream from the putative ATG start codon. The nucleotide sequence CAACC ATG G around this initiation site is similar to the consensus sequence for initiation found in higher eukaryotes (19), except that the second nt in the P4.2 cDNAs is A rather than C. This ATG initiation site is followed by an ORF through the c.7 cDNA. There is another ATG at nt -179 to -177, but it is followed by an in-frame termination codon 19 nt downstream. The presence or absence of the 90-nt insert (underlined in Fig. 2) gives rise to two P4.2 cDNA sequences. The 2.4-kb cDNA contains 2382 nt with an ORF of 691 amino acids, predicting an \approx 77-kDa protein; the 2.5-kb cDNA contains 2472 nt with an ORF of 721 amino acids, predicting an \approx 80-kDa protein. The cDNA ends in a poly(A) tail, and the 3' untranslated region is relatively short, containing only 82 nt. There is no polyadenylylation signal sequence AATAAA, but a sequence AATCTAAA is located at nt 2204–2211.

RNA Blot Analysis of Human Reticulocytes. Northern blot analysis using c.7 insert as a probe detected a 2.4-kb RNA species in human reticulocytes (Fig. 3). This result indicates that the cDNAs obtained in this study (2382 and 2472 bp) are apparently the full-length cDNAs for P4.2. Overexposure of the blot showed two additional minor bands of 3.9 and 1.7 kb.

Structural Analysis of P4.2. The amino acid sequence derived from the 2.5-kb cDNA contains \approx 43% nonpolar, \approx 35% polar, \approx 10% acidic, and \approx 12% basic amino acid residues. The most abundant amino acids are leucine (82 residues) and alanine (60 residues). There are 49 serine and 43 threonine residues (potential sites for O-glycosylation), representing 13% of the total residues. There are 16 cysteine residues, 6 potential N-glycosylation sites (Asn-Xaa-Ser/Thr) at Asn-103, -420, -447, -529, -604, and -705, 1 potential cAMP-dependent phosphorylation site (basicbasic-Xaa-Ser) at Ser-278 (20), and 9 potential protein kinase C phosphorylation sites (Ser/Thr-Xaa-Arg/Lys) at Ser-7, -57, -58, -154, -222, -449, -455, and -666, and Thr-287 (21). There is one Arg-Gly-Asp sequence at 518-520. Secondary structure analysis using the Chou and Fasman method (22) predicted that P4.2 contains $\approx 33\% \beta$ -sheet, $\approx 24\% \alpha$ -helix, and $\approx 45\%$ reverse turns.

Hydropathy analysis of the deduced amino acid sequence using the algorithm and hydropathy values of Kyte and Doolittle (23) revealed a major hydrophobic domain (residues 298–322; Fig. 4, b). This hydrophobic region was predicted to be mainly a β -sheet structure with a possible turn. There is a strongly hydrophilic region (residues 438–495; Fig. 4, c). Toward the C terminus of this region, there is a highly charged segment predicted to be an α -helix (residues 470– 492; underlined in Fig. 5) and containing a large number of both positively and negatively charged residues, especially glutamic acid.

Homology searches of GenBank 59 (released March 1989) and NBRF-PIR Protein Sequence Database (release 19,

				GA	AC'	T GG	r cc	A GG	A GAT	1 10	CAG	C MGI	A GAG	G GGA	GT	\ GG	A GA	G AA	G AAA	CAT	GTC	: AGG	GTG	CTC	ACA	GGA	GTA	GTG	GGG	GG	GGT	TIT	GCT	ATT	TCC	AGA	TTC	TTA	AGC	-121
CAA	CAN		GTG	c ch	CA.	T AT	I TT	C TG	T CTO 10	; GAU	λ Gλ	C AGJ	* ***	5 CCC	AG	A AG	G AG		A GAA 20	GCA	ACA	GTI	TGA	GAG	AGG	CGC	TTT	CTG	CGG 30	cc)	AGT	GGA	TAA	GAG	GAG	CGG	CCT	GCA	ACC 40	-1
Het	Gly	Gli	n Gly	y Glu	Pre	o Se:	r Gl	n Ar	g Sez	: Th	r Gly	y Lex	a Ala	a Gly	Les	і Ту	r Ala	a A1.	a Pro	Ala	Ala	Ser	Pro	Val	Phe	Ile	Lys	Gly	Ser	Gly	Met	Asp	Ala	Leu	Gly	Ile	Lys	Ser	Cys	
ATG	GGA	CA	G <u>G G</u>	t GAG	: 00	A AG	CON	GCO	C TOC 50	; AC	A GO	<u>; ст</u>	r GC1	r ggi	CTC	TA	r GC	1 60	c ccc	GCA	GCA	TCA	CCT	GTT	TTC	ATT	777	GGĂ	NGT	GGG	ATG	GAT	GCC	CTG	GGT	ATC	AAG	AGC	TGT 80	120
λep	Phe	GL	n Ala	n Ala	Ar	a As	n As	n Glu	u Glu	1 H 1/	s Hic	a Thr		a la	Let	Se	r Ser	r Ar	a Ara	Leu	Phe	Val	λrg	λrg	Glv	Gln	Pro	Phe	Thr	Ile	Ile	Leu	Tvr	Phe	Arg	Ala	Pro	Val	Arg	
GAC	TTT	CA	5 GCJ	GCA	AG	A AM	C AN	T GM	GAG	CN	COM	C ACC	. M	GCC	CTC	NG	TO	: 03	GOC	CTC	TTT	GTG	AGG	AGG	GGG	CAG	œc	TTC	ACC	ATC	ATC	CTG	TAC	TTC	αc	GCT	CCA	GTC	ocr	240
			-						90	1									100										110										120	
Ala	Phe	Let	Pre	> Ala	Let	u Lyı	Ly	s Val	l Ala	Let	u Thi	r Ala	Gln	Thr	Gly	Glu	Gl	1 Pro	o Ser	Lys	Ile	An	Arg	Thr	Gln	Ala	Thr	Phe	Pro	Ile	Ser	Ser	Leu	Gly	Asp	Arg	Lys	Trp	Trp	
GCA	TTT	CLU		r GCC	СТС	5 A.M	5 A.K	GGT	3 GCC 1 20		C ACI	GCA	CN	ACT	GGI	GAG	CA		140	AAG	ATC	AAC	AGG	ACC	CAA	GCC	ACA	TTC	150	ATT	TCC	AGT	CTG	GGG	GAC	CGA	AAG	TGG	160	360
Ser	A1 a	Val	Va)	Glu	Gli				- Glo	Set	r Tre	The	- 11-	Ser	Ve 1	The	The	. Pr.	Ala	Ann		Val	71.	Glv	Hie	Twr	Ser	Len	Len	ī.eu	Gla	Val	Ser	Glv	h ra	Lva	Gln	Len	Leu	
AGT	GCA	GTC	GTO	GAG	GM	3 10	GN		: CAG	: 10	c 100	: 100	ATC	101	GTG	100	- 10	00		CAC	OCT	GTC	ATT	a	CAC	TAC	TIC	CTT	CTG	CTG	CAG	GTC	TCA	a	AGG	AAG	CAA	CTC	CTC .	480
									170	,									180										190										200	
Leu	Gly	Gln	Phe	Thr	Let	Leu	Phe	a Asc	Pro	Trr	o Asr	Arq	Glu	λsp	Ala	Val	Phe	Lev	Lys	Asn	Glu	Ala	Gln	Arg	Het	Glu	Tyr	Leu	Leu	Asn	Gln	Asn	Gly	Leu	Ile	Tyr	Leu	Gly	Thr	
TTG	GGT	CAG	; 770	: ACA	CTO	CTI	: TT	C AAC	: ∞	TOC	3 AAT	i ngà	GAG	GAT	GCT	GTG	TTC	CTO	; ŇG	AAT	GAG	GCT	CAG	COC .	ATG	GNG	TÀC	TTG	TTG	AAC	CAG	AAT	GGT	CTC	ATC	TAC	CTG	GGT	ACA	600
									210				-					•	220			-	-						230										240	
Ala	Asp	Cys	Ile	Gln	Ala	Glu	Sez	: Trp	ο λε ρ	Phe	s Gly	Gln	Phe	Glu	Gly	λер	Val	Ile	Авр	Leu	Ser	Leu	λrg	Leu	Leu	Ser	Lys	Хsр	Lys	Gln	Val	Glu	Lys	Trp	Ser	Gln	Pro	Val	His	
GCT	GAC	TGC	ATC	CAG	GCN	GAG	TOC	: TGG	GAC	TTT	6000	CNG	TTC	GNG	GGG	GAT	GIC	λTI	GNC	CTC	AGC	CTG	cac	TTG	CTG	AGC	AAG	GAC	AAG	CAG	GTA	GAG	AAG	TGG	AGC	CAG	œ	GTG	CINC .	720
				•			• •		250	-								-	260	-		_			_				270	_	-		-				-		280	
GTG	A18	Arg	Val	1490	GIY	A18	1.00		H18	Phe	Leu	Lys	GLU	GIN	Arg	Val	Leu	Pro	Thr	Pro	GIn	Thr	Gin	Ala	Thr	Gin	Glu	GIY	Ala	Leu	Leu	Asn	Lys	Arg	Arg	GIY	Ser	CTC	PTO I	
010	u.	~	910	110	001	u	110		290		. crc	- 1046		CARG	AUG	GIC	CIG	u	300	uu	016	ALL	016	GUL	ALL	CAG	GAA	666	310	116	CIG	AAL.	AAG	u	uuu	GGC	AGC	319 .	320	940
Ile.	Leu	λra	Gln	Tro	Leu	Thr	Glv	Ara	Glv	Ara	Pro	Val	Tvr	Asn.	Glv	Gla	A 1a	Tm	Val	Len	81a	81a	Val	3 1.	Cva	Thr	Val	Leu	Ara	Cva	Len	c1v	110	Pro	Ala	Ara	Val	Val '	Thr	
ATC	CTG	COG	CAG	TGG	CTC	ACC	GGC	CGA	GGC	CGA	CT 0	GTG	TAT	GAT	acc	CAG	GCC	TGG	GTG	TTG	GCT	GCT	GTT	GCT	TGC	ACA	GTG	CTG	CGA	TGC	CTG	GGA	ATC	сст	GCC	CCC	GTG	GTG /	NCC 9	960
									330										340										350										360	
Thr	Phe	Ala	Ser	Ala	Gln	Gly	Thr	Gly	Gly	λrg	Leu	Leu	Ile	Asp	Glu	Tyr	Tyr	Asn	Glu	Glu	Gly	Leu	Gln	Aen	Gly	Glu	Gly	Gln	Arg	Gly	Arg	Ile.	Trp	Ile	Phe	Gln	Thr :	Ser 1	Ihr	
ACG	TTT	œc	TCA	GCY	CAG	GGC	ACC	GGT	GGG	CGT	CTT	CIC	ATA	GAT	GAA	TAC	TAT	хат	GNG	GAG	GGA	CIT	CAG	AAC	GGA	GAA	GGC	CAG	AGA	GGC	AGA	ATC	TGG	ATC	TTC	CAG	ACT	rcc i	NCA 1	1080
C 1	~	T	Mark	1	hee	<u>C1</u>	1		370			-		-		-			380		• • •		••••	•					390	~ 1	••••	• • •	•	•		n			400	
GAG	TGC	TOG	ATG	AAG		and	CTG	007		CAC	CONT	TAT	CAT	COCA	TTP	GIN	110	CTRC	H10	Pro	SOF	ALLA COT	PTO .	A80 >>T	GIY	COT	CIY	var.	CTC	ciy coc	Ser .	Cys	CAT	CTRC	CTC	210		ACA (2014 I	1200
							010	~~~	410		001	101			100	CAU	A11	C10	420	un	AG1	GC I		~~ 1	Jun	001	Gan	GIC	430	000	I.C.	101	Gen	010	010	~	010 1	1011	440	
Val	Lys	Glu	Gly	Thr	Leu	Gly	Leu	Thr	Pro	Ala	Val	Ser	λsp	Leu	Phe	Ala	Ala	Ile	Ann	Ala	Ser	Cvs	Val	Val	Trp	Lvs	Cvs	Cvs	Glu	Asp	Gly	Thr	Leu	Glu	Leu	Thr	λsp :	Ser /	\an	
GTC	AAG	GAG	GGG	ACG	CTG	GGG	CTG	λœ	CCA	GCA	GTG	TCA	GAC	CTT	TTT	GCT	GCC	ATA	AAT	GCC	TCA	TGT	GTG	GTC	TCC	ŃG	TGC	TGT .	GAG	GAT	GGG	ACA	CTG	GAG	TTG	ACT	GAC	rcc /	VAC 1	320
_	_	_							450										460										470										480	
Thr	Lys	Tyr	Val	Gly	Asn	Asn	Ile	Ser	Thr	Lys	Gly	Val	Gly	Ser	λар	λrg	Cys	Glu	λap	Ile	Thr	Gln	λan '	Tyr	Lys	Tyr I	Pro	Glu	Gly	Ser	Leu	Gln	Glu	Lys	Glu	Val	Leu (ilu /	lrg	
ACA .	AAG	TAT	GTT	GGC	AAC	AAC	ATC	AGC	ACC	AAG	GGT	GTG	GGC	NGT	GAC	œc	TGC	GAG	GAC	ATC	ACT	CAG	NAC 1	TAC	YYC .	TAT (CCT (GAA	GGG	TCT	CTT	CAG	GAA	***	GAG	GTG	CTG	SAG A	NGA 1	440
Val	Glu	Lwa .	Glu	Lvs	Hat	G1.,	3 m	Glu	1.40			614	71.		Bro	B			500 Clu	-							T		510		Dro .		Ser	1	Pro	1.001	.	:1v I	520	
GTC	GAG		GAG	AAA	ATG	GAA	CGT	GAG	AAA	GAC	AAC	a	ATC	007	~~ ·	m	ACT		CAG	ACT		ACT .			TAC			TTG A	LAN .	0.0	conc i	MGC -	TOC /	CTA	ŝ	CTG	AGA	acio	AT 1	560
									530										540										550										560	
Ala (Gln 🗆	Ile	Ser	Val	Thr	Leu	Val	λan	His	Ser	Glu	Gln (Glu 🛛	Lys	Ala '	Val	Gln	Leu	ALa	Ile	Gly	Val 🛛	Gln /	Ala	Val 1	His 1	Tyr i	Asn (31y '	Val	Leu i	Ala J	Ala 🗆	Lys	Leu	Irp /	Arg I	ys I	ŊЗ	
GCC (CAG I	ATC	TCA	GTG	ACG	CTG	GTT	AAT	CAC	AGT	GAG	CAG	GNG i	ŇG	GCA	GTG	CAG	CTG	GCA	ATT .	GGG	GTC	CING (GCT	GTA (CAC 1	TAC I	MAC 0	GT (GTC	CTT	ст (GOC	AAG	CIC .	IGG /	NGG A	AG A	AG 1	680
			_	_					570										580									5	590										500	
Leui		Leu	Thr	Leu	Ser	Ala	Asn	Leu	Glu	Lys	Ile.	Ile ?	Thr :	Ile.	Gly I	Leu	Phe :	Phe	Ser	Asn i	Phe (Glu	Arg /	Asn :	Pro 1	Pro C	Glu /	Asn 1	Thr I	Phe	Leu)	Arg 1	Leu 1	Thr	Ala I	det /	Ala 1	hr H	is .	
		cic .		CIC	NGT	GCC	AAC	CTG	GAA 610	ANG .	ATA	ATA J	NCC 1	ATC	GGC	CTG	TTC	пс	TCC	AAT	TTT	GNG	CGA I	MAC (CCA		SAG 1	NAC 1		FTC /		IGA (crc /	ACC	GCC /	ATG C	JCA A			800
Ser (ilu s	Ser i	Aan 1	Leu	Ser	Cva -	Pha		G10	61	Ann.	11.			~				620 Tan			r	-	200	<u><u>c</u>1 1</u>	lue 1	11.	1111	10 1	Bur I	2) n I	270 1		The	A1.	Car 1	Zall S	ier I		
TCT (-	rcc i	AAC O	CTT	AGC	TGC		GCT	CAG	GAA	GAC	ATT (ATT	тат и	ACA (CCA (CAC	CTT	â	ATC A	and a		ma i			20.4	346 0	AG 1	TAT (CAA (nc c	CTC /	NCA	acc :	ICA (TC A	GC C	TC 1	920
	-				'				650						•				660										70								· •		80	
Gln /	lan S	ier i	Leu J	Asp	Ala I	Pro I	Met (Glu /	λsp	Cys 1	Val	Ile f	Ser 1	11e	Leu (ily i	Arg (Gly	Leu	Ile I	His J	Arg (ilu J	lrg :	Ser 1	lyr A	Arg E	he j	Irg 1	Ser '	Val 1	Irp E	Pro (Glu i	Asn 1	/hr I	iet C	ys A	la	
CNG 1	NC 1	roc (CTA (GAT	GCC (coc i	ATG (GAG	GAC	TGT	GTG /	ATC T	roc <i>i</i>	TC	CTG (CÂ I	NGĠ (3GG (CTC	ATT (CINC 1	ngá (ing J	NGG 1	NGC 1	riac a	NGÁ 1	тс с	xri 1	ICA (5TG 1	GG C	ст о	GAA I	NAC 1	VCC 7	ATG T	GT G	CC 2	040
						_			690	_		_		_					700									7	10							_		7	20	
LYS F	ne G	un I No 1	rne 1	inr	Pro 1		118	val (GLY	Leu	Gin A	Arg I	Leu 1	Thr	Val (ilu 1	Val J	/sp	Cys	Asn 1	Net 1	Phe (in J	lan 1	Leu 1	Thr A	\sn 1	lyr I	ys :	Ser \	/a1 7	hr V	Al \	/al i	ALA E	'ro G	Slu L	eu S	er	160
		~ ~					unr (916 (فاهاه	CIC (CAGI	AGA C	лси	CT I	STG (ina (JTG (SAC 1	ICC	ANC I	ATG 1	FTC (AG I	MC 0	CTA J	ACC: N	WC 1	AT A	~ ~	GC (are a		<i>s</i> tg (JIA (rr 6	ana C	IA T	un 2.	100

GCT TAN ACT TOC AGC TCT ATC ACC ACT CTC CTG CCA ACC CTT GTT CTA CAN TCT ANA CCA AAC ATG TGC TAG GAA GAG AAA AAA A

FIG. 2. Composite nucleotide sequence of P4.2 cDNA and deduced amino acid sequence. The first nucleotide of the putative ATG initiation codon is designated as nucleotide position 1. The underlined (without arrow) sequence represents the 90-bp insert in the larger cDNA. Boxed residues are those matched with the amino acid sequences obtained from three independent cyanogen bromide-cleaved peptides of purified P4.2. Positions where the primer sequences were derived for PCR extension are underlined with double arrowheads (p1) and a single arrowhead (p2).

updated December 1988) revealed that the amino acid sequence of human RBC P4.2 has significant homology with subunit a of human placental factor XIII (XIII_a, plasma transglutaminase; refs. 24, 26, 27) and also with the guinea pig liver transglutaminase (LTG; ref. 25) (Fig. 5). While the two transglutaminases are themselves 35.3% identical, P4.2 has 24.6% and 33.5% identity with XIII_a and LTG, respectively. Fig. 5 shows the alignment of these three proteins by the method of Feng and Doolittle (28). In this alignment, a total of 122 residues are identical in all three proteins (Fig. 5, asterisks). The strongest homology is found in residues

293–325 of P4.2 (Fig. 5, large box), in which 20 of the 33 residues, or 60.6%, are identical for all three proteins. This highly conserved region contains the catalytic thiol sites of XIII_a and LTG where Cys-Trp is required for transglutaminase activity (24, 26). P4.2, however, despite the high homology around the active site, has an alanine (residue 298 of P4.2; Fig. 5, arrow) instead of cysteine at the corresponding position.

The hydropathy plots for XIII_a, LTG, and P4.2 show similarities (Fig. 4), especially with regard to the hydrophobic region labeled b (residues 298–322 in P4.2), which overlaps with the 60.6% identity area (residues 293–325 in P4.2) in the larger box of Fig. 5. This region begins with the critical cysteine residue in XIII_a and LTG and the corresponding alanine in P4.2. In the region marked c in Fig. 4, P4.2 has a strongly hydrophilic region; it is less hydrophilic in LTG and least in XIII_a. Near the center of this hydrophilic region in P4.2 lies a potential Ca²⁺ binding site (Fig. 5, small box), as identified by its alignment and homology with XIII_a and other Ca²⁺ binding proteins (24).

DISCUSSION

In this communication, we report the cloning and sequencing of cDNA encoding the human RBC membrane P4.2. Two P4.2 cDNA sequences were obtained: one contains 2382 nt with an ORF of 691 residues; the other, with a 90-nt insert, contains 2472 nt with an ORF of 721 residues. These predictions are in good agreement with the apparent molecular mass of P4.2 (\approx 72 kDa). The finding of the two P4.2 cDNAs is consistent with the immunostaining pattern of P4.2 on SDS/

FIG. 4. Hydropathy plot of the deduced amino acid sequence of human P4.2 (with regions marked a, b, and c) and its comparison with subunit a of human factor XIII and guinea pig liver transglutaminase LTG. The hydropathic index was obtained from windows of seven amino acids. The three plots are aligned according to the highly conserved hydrophobic region (designated b: residues 298–322 in P4.2), which contains the transglutaminase active site in XIII_a (24) and LTG (25). The catalytic cysteine of the active sites of the transglutaminases and the corresponding alanine in P4.2 (see arrow in large box in Fig. 5) are all located at the point of transition from hydrophobic regions—i.e., the beginning of area b. In the P4.2 panel, area a (residues 4–33) shows the hydrophobic characteristics of a 30-amino acid insert in the 2.5-kb cDNA, and area c (residues 438–495) shows the strongly hydrophilic region of P4.2.

PAGE, which showed a diffuse band slightly higher than the major 72-kDa band (data not shown).

PCR-extended sequences contain 44 nt (including the 17-nt primer) overlapping with the 5' end of c.7 obtained directly from the cDNA library. Furthermore, both the PCR-extended sequences (after removal of the nucleotides overlapping with c.7) and c.7 insert hybridized strongly with a P4.2 partial genomic DNA clone (unpublished observation). All of the above show that the PCR products were part of the P4.2 gene. The c.12, however, does not have the first 7 nt (ACAAACT) at the 5' end of c.7. These 7 nt may represent the end of another insertion/deletion sequence that was not amplified and subcloned during PCR extension. Interestingly, an ACAAACT sequence is found further upstream at nt 279–285.

The mechanism by which the two P4.2 isoforms arise is unknown. Alternative splicing is an attractive possibility, especially in light of recent findings that isoforms of protein 4.1 mRNAs are generated by such a mechanism (9-11). The junction sequence around the 90-bp insert are G/G and T/G, which have been reported as junction nucleotides between exons (29, 30). This 30-amino acid insert has the characteristics of signal peptides containing a stretch of hydrophobic residues and shows homology with the internal sequences of a group of tyrosine kinase-related transforming proteinse.g., c-src (31). This 30-amino acid insert may represent an imported exon. The expression and possible function of this insert warrants further study. RNA blot analysis indicates that the cDNAs obtained in this study represent the fulllength message for P4.2 in reticulocytes, although the 90-nt difference of these two isoforms cannot be resolved. Whether the two minor hybridizing RNA species (3.9 and 1.7 kb) represent additional isoforms or messages of related proteins in reticulocytes needs to be investigated.

P4.2 binds to the cytoplasmic pole of band 3 in membranes (32, 33) and to ankyrin and protein 4.1 in solution (33). The availability of the P4.2 cDNAs has allowed us to conduct preliminary studies on the functional domains of P4.2, including those involved in its binding to other proteins. P4.2 contains 43% hydrophobic amino acid residues and shows at

	* * * * * * * * * * * *
XIIIa LTG P4.2	GVNLQEFLNVTSVHLFKERWDTNKVDHHTDKYENNKLIVRRGQSFYVQIDFS RPYDPRRDLFRVEYVIGRYPQENKG MAEDLILERCDLQL EVNGRDHRTADLCRERLVLRRGQPFWLTLHFEG RGYEAGVDTLTFNAVTGPDPSEEAG MGQALGIKSCDFQA ARNNEHHTKALSSRRLFVRRGQPFTILLYFRAPVRAFLPALKKVALTAQTGEQPSKINR
XIIIa LTG P4.2	TYI PVPI VSELQSGKWGAKI VMREDRSVRLSI QSSPKCI VGKFRMYVA VWTPYGVLRTSRNPETDTYI LFNPW CEDDA VY TMARFSLSSAVEGGTWSASAVDQQDSTVSLLLSTPADA PIGLYRLSLEASTGY TQATF PISSLGDRKWWSAVVEERDAQSWTISVTTPADA VIGHYSLLLQVSG RKQLLLGQFTLLFNPWNREDA VF
XIIIa LTG P4.2	LDNEKE REEYVLNDIGVIFYGE VNDIKTRSWSYGGFEDGILDTCLYVMDRAQMDLSG RGPPIKVSRVGSAMVN MDSDQE RQEYVLTQQGFIYQGSAKFINGIPWNFGQFEDGILDICLMLLDTNPKFLKNAGQDCSRRSRPVYVGRVVSAMVN LKNEAQRMEYLLNQNGLIYLGTADCIQAESWDFGQFEGDVIDLSLRLLSKDKQVEK WSQPVHVARVLGALLH
XIIIa LTG P4.2	AKDDEGVLVGSWDNIYAYGVPPSAWTGSVDILLEYRSSE NP <mark>VRYGQCWVFAGVFNTFLRCLGIPARIVTNYFSA</mark> HDNDA CNDDQGVLQGRWDNNYSDGVSPMSWIGSVDILRRWKDYGCQRVKYGQCWVFAAVACTVLRCLGIPIRVVTNFNSAHDQNS FLKEQRVLPTPQTQATQEGALLNKRRGSVPILRQWLTGRGRP <u>VYDGQAVVLAAVACTVLRCLGIPARVVTTFASA</u> DGTGG
XIIIa LTG P4.2	NLQMDIFLEEDGNVNSKLTKDSVWNYHCWNEAWMTRPDLPVGFG GWQAVDSTPQENSDGMYRCGPASVQAIKHGHVCFQ NLLIEYFRNESGEIEGN KSEMIWNFHSLLGGVVDDQAGPGAWVRGVQALDPTPQEKSEGTYCCGPVPVRAIKEGHLNVK RLLIDEYYNEEGLQNGEGQRGRIWIFQTSTECWMKRGLPCQGYD GWQILHPSAPNGGGVLGSCDLVPVRAVKEGTLGLT
XIIIa LTG P4.2	FDAPFVFAEVNSDLIYITAKKDOTHVVENVDATHIGKLIVTK <mark>QIGGDGMMDITD</mark> TYKFQEGQEEERLALETA LMYGA YDAPFVFAEVNADVVNWIRQKDGS LRKSINHLVVGLKISTKSVGRDEREDITHTYKYPEGSEEER EAF VRANH PAVSDLFAAINASCVVWKCCEDGTLELTDSNTKYVGNNISTK <u>GVGSDRCEDITG</u> NYKYPE <u>GSLQEKEVLERVEKEKMERE</u>
XIIIa LTG P4.2	KKPLNTEGVMKSRSNVDMDFEV ENAVLGKDFKLSITFNNSHNRYTITAYLSANITFYTGVPKAE FKKETFDVTLEPL LNKLATKEEAQEETGVAMRIRVGQNMTMGSDFDIFAYITNGTAESHECQLLLCARIVSYNGVLGPVCSTNDLLNLTLDPF KDNGIRPPSLETASPLYLLLKAPSSLPLRGDAQISVTLVNHSEQEKAVQLAIGVQAVHYNGVLAAKLWRKK LHLTLSAN
XIIIa LTG P4.2	SFKKEAVLIQAGEYMGQLLEQASLHFFVTARIN ETRDVLAKQKSTVLTIPEIIIKVRGTQVVGSDMTVTVEFTNPLKET SENSIPLHILYEKY GDYLTESNLIKVRGLLIEPAANSYVLAERDIYLENPEIKIRVLGEPKQNRKLIAEVSLKNPLPVP LEKIITIGLFFSNF ERNPPENTFLRLTAMATHSESNLSCFAQEDIAICRPHLAIKMPEKAEQYQPLTASVSLQNSLDAP
	** *** *
XIIIa LTG P4.2	LRNVWVHLDGPGVTRPMKK MFREIRPNSTVQWEEVCR PWVSGHRKLIASMSSRSLRHVYGELDV QIQRRPS LLGCIFTVEGAGLTKDQKS VEVPDPVEAGEQAKVRVDLLPTEVGLHKLVVNFECDKLKAVKGYRNV IIGP MEDCVISILGRGLIHRERSYRFRSVWPENTMCAKFQFT PTHVGLQRLTVEVDCNMFQNLTNYKSVTVVAPELSA

FIG. 5. The alignment of human P4.2 with XIII_a (694 amino acids) and LTG (689 amino acids). Asterisks indicate residues that are identical in all three proteins. The alignment necessitates removal of the 30-amino acid insertion from the long isoform of P4.2-i.e., the shorter isoform (691 amino acids) is used in this plot. Gaps are allowed for maximizing identity. The region with the greatest identity is enclosed in the larger box (residues 293-325 of P4.2), which contains the highly conserved active site with Cys-Trp (CW) in XIII_a and LTG (24). Arrow indicates the presence of alanine in P4.2 instead of cysteine at this site. Smaller boxed area (residues 452-463 of P4.2) is the potential Ca²⁻ binding site of XIIIa. Underlined sequence (residues 470-492 of P4.2) is the highly charged region in P4.2 with a predicted α -helical structure flanked by nearby proline residues. Amino acids are designated by the single-letter code.

least one domain of high hydrophobicity (Fig. 4, b). The hydrophobic region(s) might interact with membrane lipids or allow P4.2 to fold within itself. Since the hydrophobic domain labeled b is highly conserved in P4.2 and the two transglutaminases, it may be important in forming the active site itself and/or positioning the sites in cells.

It is interesting that P4.2 contains one potential cAMPdependent phosphorylation site, since Suzuki et al. (34) have previously reported that P4.2 was phosphorylated by a cAMP-dependent protein kinase and that phosphorylation was stimulated by heavy metal ions.

P4.2 has significant homology with XIII_a (24, 26, 27) and LTG (25), especially around their active sites. $XIII_{a}$, the final component in the coagulation pathway, plays an important role in the stabilization of fibrin clots by covalently crosslinking fibrin monomers through γ -glutamyl- ε -lysine bridges and by preventing proteolysis (35). Liver transglutaminase has some of the activity associated with the plasma membrane and may be responsible for forming covalently crosslinked matrices of proteins at sites of cell-to-cell contact (36). P4.2, however, has alanine instead of the cysteine indispensible for transglutaminase activity (37) in the active site area. It is possible that P4.2 may use this site to bind other RBC membrane proteins without forming covalent crosslinks. P4.2, along with protein 4.1, has been proposed to be one of the last membrane proteins synthesized during RBC maturation (38). P4.2 may contribute to the stabilization of the membrane skeleton through its binding with membrane proteins and thus protects them from being degraded (e.g., by proteases) or crosslinked (e.g., by cytoplasmic transglutaminase). Many proteins that are labile in the cytosol become resistant to degradation once assembled into the skeletal network (39).

The phylogenetic history of the three proteins can be inferred from their relative similarities. The human P4.2 is more similar to LTG than XIII_a, but it appears to have undergone a faster rate of change, suggesting that P4.2 is an offshoot of a tissue enzyme.

Our finding of P4.2 cDNAs in the human reticulocyte cDNA library indicates that circulating reticulocytes retain intact P4.2 mRNAs. Immunoreactive analogs of P4.2 are also present in nonerythroid cells and tissues, including platelets, brain, and kidney (40, 41). These results raise the possibility that P4.2, like protein 4.1, may be a ubiquitous component of cell membranes, although its function in other cells may differ from that in RBCs. The availability of the cDNA for P4.2 should aid considerably in the study of structure-function relationships of this protein, including investigations on the mechanisms responsible for P4.2 deficiency in human patients and the expression of P4.2 in different tissues and during differentiation.

Note. Korsgren et al. (42) have also obtained a cDNA sequence of human RBC membrane P4.2. Their nucleotide sequence, except for the following, is identical to our shorter isoform: (i) Absence of the first 39 nucleotides at the 5' end; (ii) C instead of A at -188 and absence of T at -37; (iii) four synonymous differences: G instead of A at 420, T vs. G at 531, and C vs. G at both 1137 and 1215; (iv) two nonsynonymous differences: G vs. C at both 1138 and 1216; (v)absence of AG at 1094-1095 and presence of extra CC after 1109, causing a frameshift in the intervening nucleotides. iv and v result in seven amino acid differences.

We thank Drs. John G. Conboy, Y. W. Kan, and Narla Mohandas for their generous gift of the cDNA library, Drs. Al Smith and John Gardner for amino acid sequence analysis of P4.2 peptides, Dr. Thomas Shenk for his laboratory facilities, Dr. Michael G. Rosenfeld for his valuable advice and help throughout this study, Dr. John Trombold for blood samples for RNA preparations, and Dr. Russell F. Doolittle for his expert advice and help in alignment and hydropathy analysis of proteins. We appreciate the technical expertise of Sylvia Musto, June Wang, Eugene Leung, and Gerard Norwich. This

work was supported by Research Grants HL19454, HL21016, HL33084, HL38655, and HL44147 from the National Heart, Lung and Blood Institute.

- Bennett, V. (1985) Annu. Rev. Biochem. 54, 273-304. 1.
- Becker, P. S. & Benz, E. J. (1990) in Molecular Biology of the 2. Cardiovascular System, ed. Chien, S. (Lea & Febiger, Philadelphia), in press.
- 3. Curtis, P. J., Palumbo, A., Ming, J., Fraser, P., Cioe, L., Meo, P., Shane, S. & Rovera, G. (1985) Gene 36, 357-362.
- Kopito, R. R. & Lodish, H. F. (1985) Nature (London) 316, 234-238. Conboy, J., Kan, Y. W., Shohet, S. B. & Mohandas, N. (1986)
- Proc. Natl. Acad. Sci. USA 83, 9512-9516. McMahon, A. P., Giebelhaus, D. H., Champion, J. E., Bailes, 6. J. A., Lacey, S., Carritt, B., Henchman, S. K. & Moon, R. T.
- (1987) Differentiation 34, 68–78.
 Korsgren, C. & Cohen, C. M. (1986) J. Biol. Chem. 261, 5536–5543.
 Rybicki, A. C., Heath, R., Wolf, J. L., Lubin, B. & Schwartz, R. S. 8. (1988) J. Clin. Invest. 81, 893-901.
- Ngai, J., Stack, J. H., Moon, R. T. & Lazarides, E. (1987) Proc. 9. Natl. Acad. Sci. USA 84, 4432-4436.
- 10. Tang, T., Leto, T. L., Correas, I., Alonso, M. A., Marchesi, V. T. & Benz, E. J. (1988) Proc. Natl. Acad. Sci. USA 85, 3713-3717.
- Conboy, J. G., Chan, J., Mohandas, N. & Kan, Y. W. (1988) Proc. 11. Natl. Acad. Sci. USA 85, 9062-9065.
- 12 Huynh, T. V., Young, R. A. & Davis, R. W. (1985) in DNA Cloning: A Practical Approach, ed. Glover, D. M. (IRL, Oxford, U.K.), Vol. 1, pp. 49–78.
- 13. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY), pp. 135-139.
- Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. 14. Sci. USA 74, 5463-5467
- Laemmli, U. K. (1970) Nature (London) 227, 680-685. 15.
- Towbin, H., Staehelin, T. & Gordon, J. (1979) Proc. Natl. Acad. 16. Sci. USA 76, 4350-4354.
- Drickamer, L. K. (1977) J. Biol. Chem. 252, 6909-6917. 17.
- Ausubel, F. M., Brent, R., Kingston, R. G., Moore, D. D., Smith, 18. J. A., Seidman, J. G. & Struhl, K. (1987) Current Protocols in Molecular Biology (Wiley, New York), p. 4.1.2.
- 19. Kozak, M. (1987) J. Mol. Biol. 196, 947-950.
- 20. Krebs, E. G. & Beavo, J. A. (1979) Annu. Rev. Biochem. 48, 923-959.
- Woodget, J. R., Gould, K. L. & Hunter, T. (1986) Eur. J. Biochem. 21. 161, 177-184.
- Chou, P. Y. & Fasman, G. D. (1974) Biochemistry 13, 222-245. 22.
- 23. Kyte, J. & Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132.
- Takahashi, N., Takahashi, Y. & Putnam, F. W. (1986) Proc. Natl. 24. Acad. Sci. USA 83, 8019-8023.
- 25. Ikura, K., Nasu, C., Yokota, H., Tsuchiya, Y., Sasaki, R. & Chiba, H. (1988) Biochemistry 27, 2898-2905.
- 26. Ichinose, A., Hendrickson, L. E., Fujikawa, K. & Davie, E. W. (1986) Biochemistry 25, 6900-6906.
- 27. Grundmann, U., Amann, E., Zettlmeissl, G. & Kupper, H. A. (1986) Proc. Natl. Acad. Sci. USA 83, 8024-8028.
- Feng, D.-F. & Doolittle, R. F. (1987) J. Mol. Evol. 25, 251-260. 28.
- 29. Yamada, Y., Avvedimento, V. E., Mudryi, M., Ohkubo, H., Vogeli, G., Meher, I., Pastan, I. & deCrombrugghe, B. (1980) Cell 22, 887-892
- 30. Mount, S. M. (1982) Nucleic Acids Res. 10, 459-472.
- 31. Hanks, S. K., Quinn, A. M. & Hunter, T. (1988) Science 241, 42 - 52
- 32. Steck, T. L. (1974) J. Cell Biol. 62, 1-19.
- 33. Korsgren, C. & Cohen, C. M. (1988) J. Biol. Chem. 263, 10212-10216.
- Suzuki, K., Ikebuchi, H. & Terao, T. (1985) J. Biol. Chem. 260, 34. 4526-4530.
- 35. Lorand, L., Downey, J., Gotoh, T., Jacobson, A. & Tokura, S. (1968) Biochem. Biophys. Res. Commun. 31, 222-230.
- 36. Slife, C. W., Dorsett, M. D. & Tilotson, M. L. (1986) J. Biol. Chem. 261, 3451-3456.
- 37. Folk, J. E. (1980) Annu. Rev. Biochem. 49, 517-531.
- 38. Chang, H., Langer, P. J. & Lodish, H. F. (1976) Proc. Natl. Acad. Sci. USA 73, 3206-3210.
- Moon, R. T. & Lazarides, E. (1984) J. Cell Biol. 98, 1899-1904. 39.
- 40. Schwartz, R. S., Rybicki, A. C., Heath, R., Shew, R. & Lubin, B. (1987) Blood 70, Suppl. 1, 42a (abstr.).
- Friedrichs, B., Koob, R., Kraemer, D. & Drenckhahn, D. (1989) 41. Eur. J. Cell Biol. 48, 121-127.
- 42. Korsgren, C., Lawler, J., Lambert, S., Speicher, D. & Cohen, C. M. (1990) Proc. Natl. Acad. Sci. USA 87, 613-617.