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Summary

Sequential multiple assignment randomization trial (SMART) is a powerful design to study 

Dynamic Treatment Regimes (DTRs) and allows causal comparisons of DTRs. To handle practical 

challenges of SMART, we propose a SMART with Enrichment (SMARTer) design, which 

performs stage-wise enrichment for SMART. SMARTer can improve design efficiency, shorten the 

recruitment period, and partially reduce trial duration to make SMART more practical with limited 

time and resource. Specifically, at each subsequent stage of a SMART, we enrich the study sample 

with new patients who have received previous stages’ treatments in a naturalistic fashion without 

randomization, and only randomize them among the current stage treatment options. One extreme 

case of the SMARTer is to synthesize separate independent single-stage randomized trials with 

patients who have received previous stage treatments. We show data from SMARTer allows for 

unbiased estimation of DTRs as SMART does under certain assumptions. Furthermore, we show 

analytically that the efficiency gain of the new design over SMART can be significant especially 

when the dropout rate is high. Lastly, extensive simulation studies are performed to demonstrate 

performance of SMARTer design, and sample size estimation in a scenario informed by real data 

from a SMART study is presented.
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1. Introduction

Dynamic Treatment Regimes (DTRs), also referred to as adaptive treatment regimes or 

tailored treatment regimens, are sequential treatment rules tailored at each stage by patients’ 

time-varying characteristics and intermediate treatment responses (Thall et al., 2000; Lavori 

et al., 2000; Murphy et al., 2007; Dawson and Lavori, 2004). For example, an oncologist 

aiming to prolong survival for a cancer patient might use intermediate outcomes such as 
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patient’s tumor response to induction therapy to guide the use of second-line therapy. 

Sequential multiple assignment randomization trials (SMARTs) (Lavori and Dawson, 2000, 

2004; Murphy, 2005) generalize conventional randomized clinical trials to make causal 

comparisons of such DTRs. In SMARTs, patients are randomized to different treatments at 

each critical decision stage, where randomization probabilities may depend on patients’ 

time-varying response (e.g., changes in symptom severity, drug-resistance, treatment 

adherence) up to that stage. These trials also provide rich information to infer optimal 

treatment regimens tailored to individual patients. Murphy (2005) provides inferences and 

sample size formula to compare two DTRs in SMARTs, Almirall et al. (2012) proposed to 

use SMART design as a pilot study for building effective DTRs, and Nahum-Shani et al. 

(2012) illustrated several important design issues and primary analyses for SMART studies. 

Cheung et al. (2015) introduced an adaptive randomization scheme for a sequential multiple 

assignment randomized trial of DTRs. Lastly, Shortreed et al. (2014) discussed handling 

missing data for SMART through multiple imputation with applications to the CATIE study 

(Stroup et al., 2003).

We use a real study (Kasari et al., 2014) to illustrate DTR and concepts in SMART. Kasari et 

al. (2014) conducted a SMART on communication intervention for minimally verbal 

children with autism. The study is a two-stage SMART targeted on testing the effect of a 

speech-generating device (SGD). We present the original diagram of the study in Figure 1. 

In the first stage, 61 children were randomized to a blended developmental/behavioral 

intervention (JASP + EMT) with or without augmentation of a SGD for 12 weeks with equal 

probability. At the end of the 12th week, children were assessed for early response versus 

slow response to stage 1 treatment. In the second stage, the early-responders continued with 

the first stage treatments. The slow-responders to (JASP + EMT) were randomized to (JASP 

+ EMT + SGD) or intensified (JASP + EMT + SGD) with equal probability. The slow 

responders to JASP+EMT+SGD were not re-randomized. The second stage lasted 12 weeks 

and followed by a follow-up stage of 12 weeks. In this article, the primary aim was to 

compare the first stage treatment options SGD (JASP + EMT + SGD) versus spoken words 

alone (JASP + EMT). Secondary aim was to compare the dynamic treatment regimes 

(DTRs), namely: 1) beginning with JASP + EMT + SGD and intensifying JASP + EMT + 

SGD for slow responders; 2) beginning with JASP + EMT and to increase the intensity for 

slow responders; 3) beginning with JASP + EMT and to switch JASP + EMT + SGD for 

slow responders.

The cost of multistage and multitreatment studies such as SMARTs is high and the length of 

trial period is long (March et al., 2010). The implementation for administering multiple 

stages of multiple treatment is likely to be complex and operational cost can be high. 

Furthermore, study dropout is a common phenomenon in randomized clinical trials (RCTs) 

regardless of investigator’s best efforts to keep patients in the study. For example, meta 

analyses of study dropout rate for RCTs of antipsychotic drugs treating schizophrenia 

reported an average attrition rate of greater than 30% (Martin et al., 2006; Kemmler et al., 

2005). In the Clinical Antipsychotic Trials of Intervention and Effectiveness (CATIE) study 

(Schneider et al., 2003), the attrition was 48% with 705 of 1460 patients staying for the 

entire 18 months. In some other SMARTs, the dropout rate was lower but still persists as in 

regular RCTs. In ExTENd for example (Lei et al., 2012), there was a drop-out rate of 17% 
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during the first-stage treatment (52 out of 302), and an additional 13% during the second 

stage (41 out of 302).

In this article, we propose a stage-wise enrichment design to improve efficiency of SMART 

estimations. The key component is to include an enrichment sample who have received first 

stage treatments in a naturalistic fashion but will undergo randomization for the second stage 

treatments. This new design can be considered as a meta-analytic approach to enrich 

SMART sample and to synthesize single-stage trials without sacrificing the central feature of 

SMART to make causal conclusions. We show that the proposed SMART with Enrichment 

design (SMARTer) and its appropriate analysis method will boost the efficiency of SMART, 

improve practicability of SMART, address the attrition issue from the design and analysis 

perspective, and avoid pitfalls of incorrect inference on long-term DTR effect when 

combining single-stage randomized trials. Specifically, the proposed methodology can 

potentially 1) synthesize single-stage trials to integrate information to make causal inference 

on DTRs as is possible in a multi-stage SMART, while substantially shortening the trial time 

frame; 2) extract information from patients dropping out from the first stage; 3) recruit and 

randomize additional patients to the second-stage treatments without requiring 

randomization of the first-stage treatments, and thus achieve the same or superior efficiency 

as if there were no dropouts, which reduces the sample size of the initial stage and the 

overall sample size.

It is of interest to note that SMARTer design differs from an intuitive approach that pieces 

together results from separate randomized trials conducted at separate stages, as criticized in 

previous literature (Murphy et al., 2007; Collins et al., 2014). For the latter, an investigator 

may determine the best first-line treatment based on a conventional randomized trial 

comparing several first-line treatments and then next, compare second-line treatments for a 

new group of subjects already treated by the “best” first-stage treatment. Essentially, this 

intuitive approach compares available intervention options at each stage separately to infer 

the best DTR. It has several disadvantages (Murphy et al., 2007): first, it does not capture the 

delayed effect when the long-term effect begins to appear in latter stages; second, it fails to 

take into account the prescriptive effect of an early stage treatment which may not yield a 

larger intermediate outcome; third, single-stage trials tend to enroll more homogeneous 

patients to increase power for detection of treatment differences whereas SMART would not. 

In terms of design, SMARTer does not recommend enriching the sample with only the 

subjects who have received the “best” first-line treatment inferred from a single-stage trial. 

Instead, we recruit enrichment samples from subjects who have received any of the first-line 

treatments so that the enrichment population includes patients with all possible combinations 

of both lines of treatments to properly account for delayed effect and prescriptive effect. The 

main focus of SMARTer design is to improve efficiency through enrichment samples who 

only receive randomization in the latter stages. In terms of the analysis, instead of inferring 

the best treatment from each single stage separately, SMARTer can be used to infer optimal 

DTRs with backward induction algorithms such as Q-learning (Murphy and Collins, 2007), 

which uses the randomized samples for each stage including the enrichment participants.
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2. SMARTer Design

2.1. Rationales of SMARTer Design

The essential idea of a SMARTer design is to consider stage-wise enrichment: at the kth 

stage (k > 1), augment the original SMART with new patients randomized among the kth 

stage treatment options without requiring randomization of previous stage treatments. Figure 

2 illustrated the enrichment for a two-stage SMART with no intermediate outcomes. 

Generalizations to more than two stages and including intermediate outcomes are similar. 

Assume that n patients are randomized at the first stage in a SMART. Some patients 

complete the first stage treatment and undergo the second stage randomization (group 1), 

while some patients drop out before the second stage randomization (group 2). To improve 

efficiency and mitigate the problem of attrition after the first stage treatment, while the 

original SMART is progressing, we concurrently recruit m new patients as the enrichment 

sample (group 3). One key eligibility criterion for the enrichment group is that they have 

received one of the first stage treatments without randomization prior to the enrollment. For 

the enrichment subjects in group 3, their second-stage treatments will be randomized as in 

the original SMART.

Taking the autism study (Kasari et al., 2014) as an example, the primary outcome for this 

study was the total number of spontaneous communicative utterances (TSCU). The response 

status to the first stage treatment was the intermediate outcome that the second stage 

treatment choice and randomization probability depended on. For example, for a DTR 

starting with JASP + EMT, whether a patient participates in the second randomization to add 

SGD or intensify depends on whether he/she is a slow responder or not. Group 1 patients 

would be those who were randomized in the first stage and stayed through the trial until the 

end of the second stage. Group 2 patients include the six patients who dropped out after 

randomization in the first stage, and the additional three patients who dropped out after 

finishing first stage and on whom the intermediate response variables were recorded. In the 

next few sections, we will provide analysis of efficiency and sample size computation for the 

enrichment group three patients in the new SMARTer design to estimate the mean outcome 

of a given DTR and compare DTRs.

The final analysis sample of SMARTer consists of three groups of patients (also shown in 

Figure 2). Specifically, group 1 is the n1 SMART subjects who stay through two stages of 

randomization and treatments; group 2 is the n2 SMART subjects who drop out before the 

second randomization; and group 3 is the m enrichment subjects who only receive the 

second-stage randomization with known first-stage treatment history. Let Zi denote the 

indicator of stage 2 completion status for subject i, Si denote pre-treatment information at 

stage 1, Aki denote treatment at stage k (k = 1, 2), and Yi denote the observed outcome from 

the study. Then SMARTer data consists of the data from the original SMART subjects, (Si, 
A1i, ZiA2i, ZiYi, i = 1, …, n), and the data from the m enrichment subjects, (Sj, A1j, A2j, Yj, 
j = 1, …, m). In the subsequent presentation, we assume Si to take a finite number of discrete 

values for convenience.

To understand why SMARTer enables valid evaluation of DTRs under certain assumptions, 

we first focus on a two-stage trial and assume that there is no intermediate information after 
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stage 1. For any DTR (d1, d2), a sequence of decision rules with dk representing a function 

mapping historical information to the domain of Ak for k = 1, 2, our goal is to estimate the 

value function of (d1, d2) defined as E[Y (d1, d2)]. Here, Y (a1, a2) is the potential outcome 

associated with the treatment assignment (a1, a2). We assume the following conditions hold:

(C.1) Y = Σa1,a2 Y (a1, a2)I (A1 = a1, A2 = a2); (C.2) sequential ignorability or non-

informative dropout: the dropout is independent of {Y (a1, a2)} given (S, A1); (C.3) no 

selection bias: the conditional mean of Y given (S, A1) in the enrichment group is the same 

as that in the original SMART population; (C.4) the first stage domain of A1 (treatment 

options) for the enrichment group is identical to the treatment A1 in the SMART population.

Condition (C.1) is the standard stable unit treatment value assumption (SUTVA) in causal 

inference. Condition (C.2) is the sequential ignorability, non-informative dropout, or missing 

at random (MAR) assumption also required in any analysis of an RCT. The key condition 

(C.3) requires no selection bias in the sense that the conditional treatment effect given S is 

the same between the original SMART samples and the enrichment samples. This 

assumption is required to use the enrichment sample to estimate E(Y (a1, a2)|S, A1 = a1, A2 

= a2) and ensure the DTR estimands are the same in the enrichment population and the 

original SMART population. (C.4) ensures the first stage treatments are comparable in the 

SMART and enrichment samples. We further discuss these assumptions in Section 6.

Under conditions (C.1)–(C.4), we show SMARTer can provide an unbiased estimation of the 

average potential outcome under the DTR (d1, d2), that is, E[Y (d1, d2)]. Due to sequential 

ignorability, potential outcomes {Y (a1, a2)} are conditionally independent of A2 given (S, 
A1) in the enrichment sample, even if their first stage treatments is received in a naturalistic 

fashion without randomization. When comparing first stage treatment options, we only use 

the non-dropouts from the original SMART and estimate outcomes for n2 dropouts whose 

first stage treatments are randomized. Thus potential outcomes {Y (a1, a2)} for these 

subjects are also independent of A1. Let pk (ak |sk ) denote the randomization probability of 

Ak given a patient’s covariates collected up to stage k, that is, sk. Note that for simplicity, 

here we assume the second stage randomization probabilities depend on baseline covariates 

and first stage treatments. In Section 2.3, we generalize to allow them to depend on 

intermediate outcomes. Our key result is to show

Eg[·] denotes the expectation for subjects in group g, and Y* denotes the conditional mean of 

Y given (S, A1, A2 = d2(S, A1)) for subjects in group 1 and 3. The rationale is that if this 

equality holds, then the average causal outcome, E[Y (d1, d2)], can be estimated unbiasedly 

using the data from SMARTer since Y*, E1[·], and E2[·] can be estimated unbiasedly using 

their corresponding empirical averages. There are three observations of this result: 1) since 

group 1 subjects’ final outcomes Y are observed, we estimate their average causal mean 
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using their observed outcomes; 2) group 2 subjects drop out after first-stage and have 

missing Y, but their outcomes can be estimated as Y* from subjects in group 1 and 3; 3) 

group 3 subjects contribute to the estimation through estimating missing outcomes for 

subjects in group 2.

To see why the above equalities hold, first note that under condition (C.1), we obtain

By randomization, A2 is independent of potential outcome Y (d1, d2) given (S, A1). Thus, 

since E1[·] is equivalent to E[·] under the non-informative dropout condition (C.2), the above 

expression becomes

Furthermore, by randomization of A1 in the first stage for group 1 subjects, we obtain the 

above equation to also equal the average causal outcome, that is,

Next, due to randomization of A2 for subjects in group 1 and group 3, under condition (C.3), 

we obtain

Consequently,

Again, by the randomization of A1 for subjects in group 2, we conclude μ2 = E[Y (d1, d2)].

2.2. Value Estimation and Inference in SMARTer

Given a DTR (d1, d2), for a patient with S = s and treatment assignment a1 = d1(s) and a2 = 

d2(s, a1), an estimator of the expected outcome value associated with this DTR is
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(1)

where Ŷ(s, a1, a2) is the predicted outcomes for group 2 subjects using group 1 and group 3 

data:

The essential idea is to estimate the group 2 outcomes from the outcomes of group 1 and 3. 

The enrichment sample improves estimation efficiency by adding more samples for the 

nonparametric estimation. Note that from (1), even without an enrichment sample (i.e., m = 

0), we can still estimate group 2 subjects’ outcomes using group 1 subjects’ to improve 

efficiency with no bias. It is clear that the estimator in (1) adheres to the intention-to-treat 

principal (Fisher et al., 1989) such that all subjects randomized are analyzed according to 

their original treatment assignments.

Next, we derive the asymptotic variance formula for estimator (1) under the conditions (C.1) 

through (C.4) assuming m = O(n). Specifically, we wish to obtain the asymptotic expansion 

of μ̂(d1, d2) − μ(d1, d2). To this end, we let p(s) be the probability of S = s and p(a1|s) be the 

randomization probability of A1 = a1 given S = s in the SMART population in the first stage 

and let p(a2|s, a1) be the randomization probability of A2 = a2 given S = s and A1 = a1 in the 

second stage. These two conditional probabilities are known by design. Furthermore, we let 

q(s) and q(a1|s) be the probability of enrichment sample with S = s and receiving first-stage 

treatment A = a1 given S = s. Note that we allow the baseline covariates to have different 

distribution in the enrichment sample (q(s)) and SMART sample (p(s)), and the observed 

conditional probability q(a1|s) can be different from the randomization probability p(a1|s). 

We denote π1(s, a1, a2) = p(a2|s, a1)p(a1|s)p(s), π2(s, a1, a2) = p(a1|s)p(s)I (d2(s, a1) = a2), 

and π3(s, a1, a2) = p(a2|s, a1)q(a1|s)q(s). Finally, denote α(s, a1) = P (Z = 1|S = s, A1 = a1), β 
= m/n, and r(s, a1) = q(a1|s)q(s)/[p(a1|s)p(s)].

We show in Web Appendix A the asymptotic variance of μ̂(d1, d2) is V/n, where
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The first term is the variability from subjects in group 1 and imputing outcomes for group 2, 

and the second term is the variability from enrichment subjects in group 3. The variance can 

be estimated by its empirical form.

Finally, to compare two DTRs, we can use the difference of SMARTer estimators for two 

DTRs (d1, d2) and ( ), that is, . Then its asymptotic variance is 

, where

This variance can also be estimated by its empirical form.

2.3. Incorporating Intermediate Outcomes

The previous section assumes no intermediate outcome is available especially for subjects 

who drop out from the SMART. When intermediate outcomes are available, the treatment 

rule d2 may depend on the intermediate outcome. In this case, the observed data from a 

SMARTer consist of (S1i, A1i, S2i, ZiA2i, ZiYi), i = 1, …, n, for i in the original SMART 

group, and the enrichment group observations (S1j, A1j, S2j, A2j, Yj), j = 1, …, m. Here, we 

use S1 to denote pre-treatment covariates at stage 1 and S2 to denote intermediate outcomes 

and other covariates collected prior to stage 2. For simplicity of derivation, we assume S1i 

and S2j to be discrete. Similar to (1), a consistent estimator of the associated value using 

both the SMART and enrichment observations is

where Ŷ(s1, a1, s2, a2) is the imputed outcome from the second-stage data given as
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The asymptotic variance is similar to before by re-defining πk (s, a1, a2) as πk (s1, a1, s2, a2) 

through conditioning on both the baseline covariates S1 and intermediate outcome S2. That 

is,

3. Design Efficiency of SMARTer

In this section, we study the efficiency gain or loss of the proposed design as compared to a 

SMART with no dropout. For simplicity of illustration, we assume P(Z = 1|A1, S) to be a 

constant α and let ω(s) = r(d1(s), s). Furthermore, we denote p(d1(s)|s) = p1(s) and p(d2(s, 
d1(s))|d1(s), s) = p2(s), so the variance of μ̂(d1, d2) is V/n with

where Es[·] is the expectation with respect to S in the SMART population,

When α = 1, that is, no participant drops out from SMART, V reduces to

which is the variance formula given in Murphy (2005) for SMART. Therefore, to measure 

the efficiency gain of the proposed design over SMART design without dropouts, we define 
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relative efficiency ρ = V0/V, where ρ > 1 implies the proposed enrichment design is more 

efficient than the original SMART without dropout.

To further gain insights on efficiency comparison, we consider a special situation when 

treatment randomization does not depend on tailoring variables, that is, p1(S) = p1, p2(S) = 

p2. We assume that the enrichment population is close to the SMART population so ω(s) ≈ 
1, and let the ratio of within- and between-strata variance to be γ ≈ Eσ(s)2/E(ν(s) − μ(d1, 
d2))2. Let α denote the completion (non drop-out) rate, and β = m/n denote the enrichment 

rate. We can show (2) holds and details are included in Web Appendix B.

(2)

From (2), the relative efficiency depends on randomization probabilities, within- and 

between-strata (S) variability and distribution ratios between the enrichment and SMART 

populations. Note that ρ > 1 implies the proposed SMARTer is more efficient than a 

SMART without enrichment and no dropout. From the expression of ρ, we thus conclude:

i. When α = 1, there is no dropout after the first stage in SMARTer, our estimator 

reduces to be the same as the estimator in Murphy (2005), and thus ρ = 1.

ii. When α = 0, that is, all subjects drop out after the first stage, ρ ≈ (1 + γ)/(p2 + γ/
β). There is efficiency gain if β >γ /(1 + γ − p2). More specifically, there is 

always efficiency gain if β > 1. Note that this is the extreme case in the sense 

that all subjects drop out and we synthesize two independent randomized trials 

on the two stages.

iii. For any 0 < α < 1, if α(1 + β)2 + β(1 − α)2 ≤ (α + β)2, ρ > 1 implies efficiency 

gain. Particularly, the latter condition holds if we choose β ≥ 1.

Figure 3 is the contour plot of ρ as a function of completion rate α and the enrichment rate β 
= m/n under γ = 0.5, 2, where each line represents the contour line of the marked relative 

efficiency ρ as defined above. For example, for the ρ = 0.9 line, α = 0.6 corresponds to β = 

0.5. That is, at 60% completion rate, a study needs to enrich 50% sample to obtain a 

SMARTer estimator with variance 1/0.9 ≈ 1.11 times the variance of SMART estimator with 

the same initial sample size but no dropout. Similarly, at the same completion rate, to 

achieve the same efficiency, β needs to be above 0.75; and to achieve a relative efficiency of 

ρ = 1.1, β needs to be above 1.05. Note that the line with equal efficiency has a slow change 

rate indicating the increase of enrichment sample size is not sensitive to completion rate. 

The contour lines above the equal efficiency line (ρ = 1) are convex and increasing, 

indicating with lower dropout rate after the first stage, SMARTer requires more enrichment 

patients at the second stage to achieve higher efficiency than a SMART with no dropout. The 

opposite can be seen from the contour lines below the equal efficiency line which are 

concave and decreasing: with lower dropout rate, SMARTer requires less enrichment 

patients or no enrichment to achieve efficiency slightly lower than a SMART with no 

dropout.
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Another way to understand the design efficiency of SMARTer is through sample size 

calculation for comparing two DTRs in a SMARTer study. We denote the difference in the 

mean outcome value as Δμ and assume the type I error rate of a two-sided test is 0.05 and 

80% power to detect a difference. In the above simplified setting, the total sample size of 

SMARTer is , where σ2(d̄2) = var(Y |Ā2 = d̄2), and zq represents the q-

th upper quantile of a standard normal distribution. With a completion rate of α, the sample 

size of SMART inflates to  to ensure sufficient power at the end of the 

second stage. For two DTRs with different first stage treatments, that is,  for 

any S, one can compute the variance of the difference as . 

Assuming , then ρ is also the ratio of variance of SMART and SMARTer 

estimator for comparing two DTRs. Thus the sample size of initial recruitment (n) for a 

SMARTer is  to achieve the same efficiency. Table 1 provides the 

sample sizes for a SMARTer with an initial sample of n subjects and an enrichment sample 

of m subjects to achieve the same efficiency as a SMART recruiting 100 subjects and in an 

ideal case of no dropout. For example, if 40% patients drop out after the first stage 

randomization of SMARTer and the within- and between-stratum variance ratio γ = 1, Table 

1 provides three combinations of initial stage and enrichment sample sizes for SMARTer to 

achieve the same efficiency: (109, 54), (80, 80), and (62, 124). In contrast, when accounting 

for dropouts at the design stage for a SMART without enrichment, one needs 100/0.6=250 

subjects.

4. Simulation Studies

Simulations results are based on 1000 replications of samples with initial enrollment of n = 

800 patients. They demonstrate the consistency and comparative efficiency of SMARTer 

compared with SMART under various scenarios with or without intermediate outcomes.

4.1. Simulation Results without Intermediate Outcomes

Here, we assume there are two stages each with 2 candidate treatments, A1 and A2, and a 

randomization probability of 1/2. The baseline covariate S1 takes random integer values (0, 
1, 2) with probabilities (1/3, 1/3, 1/3). Let S2 = A1(1 − S1), and the final outcome after the 

second stage is Y = S2 + A2(1 − S1) + I (S1 = 1, A1 = 1, A2 = −1) + e, where e ~ (0, 1). 

The optimal dynamic rules for this setting are d1(S1) = 2I (S1 < 2) − 1 and d2(S1, A1) = 2I 
(S1 < 1) − 1. Under this rule ν(S1 = 0) = 2, ν(S1 = 1) = 1, ν(S1 = 2) = 2, thus the optimal 

rule has a value of μ(d1, d2) = 1.667. We consider two levels of completion rates α = 0, 0.5, 

three levels of enrichment proportions β = 0.5, 1, 2 and two scenarios for the m enrichment 

patients: scenario 1 simulates the distribution of A1 for the enrichment patients the same as 

initially recruited patients, that is, q(A1|S1) = p(A1|S1) = 1/2, the baseline covariate has the 

same distribution in the enrichment sample and the SMART sample; and scenario 2 

simulates different observed A1 distribution q(A1 = 1|S1) = 1/(1 + exp(−0.5(2I(S1 < 2) 

− 1))), that is, the enrichment patients are more likely to receive the optimal first-stage 

treatment, and the baseline covariate S1 takes random integer values (0, 1, 2) with 

probabilities (1/2, 1/4, 1/4) for the enrichment sample.
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Table 2 presents SMARTer estimators of a single DTR and comparison of two DTRs, as 

well as their efficiency gain (ρ) compared with SMART without dropout. We provide the 

estimates for the optimal treatment regime d1(S1) = 2I(S1 < 2) − 1 and d2(S1, A1) = 2I (S1 < 

1) − 1, and its comparison with an one-size-fits-all regime,  and 

, for which the mean outcome is μ′ = 0

The results show the accuracy of the variance estimation and the simplified formula (2) of 

comparative efficiency. When all patients drop out (α = 0), the relative efficiency ρ increases 

from about 0.5 to 2 when the enrichment size m increases from 0.5 to 2 times the original 

sample size n; when half of patients drop out (α = 0.5), the relative efficiency ρ increases 

from about 0.9 to 1.3. As β increases, SMARTer is more efficient compared to SMART 

design even when all patients drop out after the initial randomization (α = 0) and SMARTer 

combines two single-stage randomized trials. We also observe that the relative efficiency ρ 
for comparing two DTRs is greater (more efficient) than estimating a single DTR.

4.2. Simulation Results with Intermediate Outcomes

The general settings are the same with Section 5.1. The intermediate outcome before the 

second stage treatment S2 is simulated from a logistic model, where logit{P(S2 = 1|S1, A1)} 

= A1(1 − S1), and the outcome after the second stage treatment is Y = S2 + A2(1 − X) + I (X 
= 1)A2(2S2 − 1) + e, where e ~ (0, 1). The dynamic rules we are considering is the 

optimal rule under this scenario, which also depends on the intermediate outcome S2: d1(S1, 
A1) = 2I (S1 = 1) − 1 and d2(S1) = I (S1 ≠ 1)(2I(S1 = 0) − 1) + I (S1 = 1)sign(2S2 − 1). Under 

this rule , ν(S1 = 1) = 1.5, . Thus the mean outcome for 

the optimal rule is μ(d1, d2) = 1.654 with equal baseline distribution for S1.

Table 3 presents SMARTer estimators of both a single DTR and comparison of two DTRs, 

as well as their efficiency gain (ρ) compared with SMART estimator with no dropout. We 

present the estimates for the optimal DTR and its comparison with an one-size-fits-all rule: 

 and , for which the mean outcome is μ′ = 0.5. The true 

mean difference is 1.154. The results are similar to the case without intermediate outcome. 

When β = 1, ρ̂ is approximately equal or larger than 1, and it is higher for the difference 

comparison in Table 3. We observe that SMARTer estimator has efficiency gain even with β 
= 1 and it may boost efficiency especially when comparing two DTRs.

5. Sample Size Calculation for an Autism SMART Study

We illustrate the sample size calculation and potential efficiency gain using results from the 

autism study (Kasari et al., 2014) introduced in Section 2.1. For the primary aim, the study 

found that SGD(JASP + EMT + SGD) has a better treatment effect compared with spoken 

words alone (JASP + EMT). Secondary aim results suggest that the adaptive intervention 

beginning with JASP + EMT + SGD and intensifying JASP + EMT + SGD for children who 

were slow responders led to better post-treatment outcomes.

Suppose we stratify by baseline variables and responding status (early or slow) after the first 

stage. Here, we provide the sample size calculation for comparing two adaptive treatment 
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regimes as in the secondary study aim: one is starting with JASP + EMT + SGD and 

intensifying JASP + EMT + SGD for children who are slow responders (d̄2); the other is 

starting with JASP + EMT, and the slow-responders to JASP + EMT receive 

.

The original planned sample size was based on the primary aim to compare TSCU for two 

treatments in stage 1. The study assumed an attrition rate of 10% by week 24, and the 

planned total sample size was n = 97 to detect a moderate effect size of 0.6 in TSCU with 

80% power using a two-sided two-sample t-test with a type I error rate of 5%. The actual 

study recruited 61 patients. The effect size for the primary aim comparison was 0.62 and it 

was significant at 0.05 level despite the insufficient power. As a secondary aim of the study, 

the effect size of the embedded DTRs d̄2 and  for TSCU at week 24 was 0.55. There were 

approximately 15% patients dropped out after the first stage at week 12. The comparison of 

two DTRs in the secondary aim had approximately a power of 37% to detect a moderate 

effect size of 0.5.

We examine whether one can design a SMARTer to enrich the trial in the second stage so 

that the power for comparing two DTRs can be improved. To this end, note that , 

where Δμ is the effect size, and . When γ = 0.5, we 

have Zβ ≤ −0.115 and we can achieve at most 55% in power by enrichment in the second 

stage. To achieve 80% power, at least 151 patients need to be recruited in the first stage.

Table 4 provides sample sizes for SMARTer and SMART that achieve the same power of 90, 

85, or 80% for two-sided tests with a type I error rate of 5%. The sample size for the initial 

stage of SMARTer is computed by , where we take into account 

d̄2 was randomized only in the first stage and for , only the 40% slow responders received 

two-stages of randomization. The enrichment ratio β is computed by solving 

 (by independence of subjects following d̄2 and ), that is, to 

solve the following equation 

. The solution is .

Since we do not have information on the ratio of within and between stratum variances γ, 

we provide results for three ratios γ = 0.2, 0.5, 1 and also two rates of attrition 15 and 40% 

after the first stage. According to Table 4, for this specific example, SMARTer would have 

smaller total sample size for initial recruitment and enrichment when γ is small (γ = 0.2) 

with attrition rate 15% and for γ = 0.5 with attrition rate 40%. SMARTer requires a smaller 

total number of patients than SMART if the within stratum variance is small, where one can 

estimate Ŷi for dropouts using enrichment sample with more accuracy due to using a more 

homogeneous enrichment group. When the dropout rate is high, recruiting an enrichment 

sample to recover the missing information is more beneficial and SMARTer demonstrates 

greater advantages in terms of a smaller total sample size.
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6. Discussion

We propose a SMARTer design to improve efficiency of SMART by stage-wise enrichment 

in a multi-stage trial. We have shown that the new design retains the validity of making 

causal inference for DTRs and the efficiency gain is significant if the enrichment sample size 

is substantial and drop out rate is considerable. In all numerical results, we compared 

efficiency of SMARTer to SMART with no dropout. When comparing with SMART 

accounting for dropouts, the efficiency gain is expected to be greater than that shown here. 

One interesting application of SMARTer design is the extreme case when α = 0, the 

proposed design is equivalent to synthesizing different independent trials from each stage. 

One important implication is that if the conditions (C.1)–(C.4) hold, that is, the treatment 

response profiles given covariates are the same for the participants from each stage, and the 

treatment history in previous stages can be obtained from the enrichment sample, then it 

may be possible to not conduct a full SMART study but to synthesize existing trials 

conducted at separate stages to evaluate and compare DTRs, at least for the purpose of 

discovering optimal DTRs. At the other extreme, when there is no attrition (i.e., α = 1) 

SMARTer can still be used to gain efficiency by replacing Yi in μ̂ (d1, d2) by the 

corresponding stratum mean estimated from the combined SMART and enrichment sample, 

which is less variable.

Although enrichment can improve the power for comparing DTRs, the maximal power that 

can be achieved still depends on the sample size in the first stage recruitment. Recruiting an 

enrichment sample can decrease the within-stratum variation of estimated DTRs but cannot 

decrease the between-stratum variation. Therefore, in a SMART with high dropout rate in 

the first stage of treatment, SMARTer may act as a salvage design to mitigate high drop out 

rate and improve power. In addition, one reason for the low participation rate in clinical 

trials and high attrition is the need for frequent in-person visits and the resulting time and 

travel costs (Ross et al., 1999), which can be reduced for the enrichment samples in 

SMARTer since these participants have already received first stage treatments. For the 

enrichment sample, the cost of monitoring first stage treatment is saved, and the duration of 

trial for this group can be less than recruiting patients to undergo multiple randomizations.

Here, the enrichment sample is only used to estimate outcomes for those who drop out from 

the original SMART randomized for the first stage treatments, and thus the enrichment 

samples are not directly included in the comparisons of the first-stage treatments. The 

second stage treatments are randomized in the enrichment samples and health information 

collected right before second stage randomization (including intermediate outcomes) is 

matched with the SMART group. Thus under the assumption (C.2) and (C.3) of the same 

conditional distribution given health information up to stage 2, valid inference can be drawn 

by estimating outcomes using enrichment sample for dropouts from the SMART. When no 

unmeasured confounding assumption is likely to hold, one can consider including 

enrichment sample for the first-stage treatment comparisons through propensity score 

adjustment. Data collected from the SMARTer can also be used to find optimal DTR (details 

in Web Appendix E). When two DTRs of interest start with the same first stage treatment, 

there are shared data used in the estimation of DTRs. Our method can be extended to allow 

for shared path between DTRs being compared by properly handling correlation between 
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observations on the shared path using the asymptotic linear expansion of the variance given 

in the Web appendix A. More discussion of this issue is given in Kidwell and Wahed 

(Kidwell and Wahed). In practice, when continuous pre-treatment covariates S may be 

encountered, the proposed method can be directly applied by discretizing S. An alternative is 

to estimate Ŷ(s, a1, a2) by regression model. The former may lead to a less tailored DTR, 

that is, DTR only depends on discretized S; while the latter leads to a more tailored DTR but 

can be biased if the model is misspecified.

When the dropout patterns are complicated and depend on many intermediate outcomes, our 

simple estimation by stratification and matching may need to be improved. A 

straightforward modification is to match by cumulative summaries of main variables (e.g., 

number of interim outcome measures). Other model based methods or doubly robust 

estimation may be considered for more complex situations especially when auxiliary 

variables are available for estimating missingness. When exact measures of treatment history 

or health history are not available in the enrichment sample, one may consider collecting 

proxies such as summary statistics or cumulative information of treatment history (e.g., 

treatment history within past few months) to replace exact measures. In the recent literature 

(March et al., 2010), extended follow-up is implemented using survey methodology or 

through extracting clinical data from electronic health records. New research methods may 

be considered in designing a SMARTer. From a design point of view, although we allow the 

distribution of first-stage treatment history and covariates on the enrichment participants to 

be different from the SMART population, the more similar they are, the more efficiency we 

will gain by using the enrichment participants. This implies that when recruiting enrichment 

patients for the second stage treatments, similar inclusion/exclusion criteria as SMART may 

be used and appropriate sampling design may be implemented to improve matching.

Four assumptions are required for a valid inference using SMARTer. Assumptions (C.1) is 

required for regular RCTs and SMARTs to ensure causal interpretation. In practice, 

assumptions (C.2) and (C.3) might be violated when there is informative dropout or 

selection bias between SMART and enrichment sample, that is, when the conditional mean 

response is different due to different distribution of some unmeasured baseline covariates 

associated with the outcome. Sensitivity analyses in Web Appendix C and D show that 

results are robust to small or moderate deviation from the assumptions.

One complication regarding assumption (C.4) is that the quality and delivery of A1 in the 

SMART and enrichment samples may be different. In the enrichment sample, A1 is 

delivered in a naturalistic fashion, which may be subject to less monitoring as in a SMART. 

However, the purpose of conducting SMART/SMARTer is to inform clinical decision-

making in practical settings. It may not be very useful to test a highly-standardized treatment 

that is not likely to be correctly implemented in practice. In SMARTs designed as pragmatic 

trials (March et al., 2010), both academic centers and community centers were recruited, 

which may represent a wide range of quality of treatment and assessment fidelity. For 

SMARTer, the interpretation of the effects of DTRs involving A1 is necessarily a pragmatic 

one and potential differences of treatment delivery in each specific application needs to be 

discussed.
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When the initial intervention is a novel treatment not immediately available in communities, 

it may be challenging to recruit patients who have naturally received this treatment. 

However, enrichment sample can still be recruited to improve efficiency of the estimation of 

DTRs containing a conventional first-stage treatment. In addition, for SMARTs such as 

CATIE (Stroup et al., 2003) and STAR*D (Rush et al., 2004), most first-line 

pharmacotherapies for treating depression and schizopherenia are commonly prescribed in 

practice. SMARTer design is useful in these settings where the first-line treatments are 

readily available but considerable uncertainty is encountered for second-line treatments 

when individuals do not achieve adequate response after a first-line treatment.

7. Supplementary Materials

Web Appendices contain the derivation of the asymptotic variance for μ̂(d1, d2) in Section 

2.2, the derivation of simplified comparative efficiency in (2) from Section 3, sensitivity 

analysis for assumption C.2 and C.3 mentioned in Section 6, simulation results for learning 

the optimal DTR from SMARTer in Section 6, and description for the code and software 

provided with the paper. Web Appendices, Tables, Figures referenced in Sections 1,2,3,4,5,6 

and the code are available with this paper at the Biometrics website on Wiley Online 

Library.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram for the autism example.
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Figure 2. 
Diagram of SMARTer design.
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Figure 3. 
Contour Plot of Comparative Efficiency of SMARTer and SMART. α is the completion rate, 

β is the sample size ratio between enrichment group and original SMART group.
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