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Integrating Gene Expression with Summary
Association Statistics to Identify Genes
Associated with 30 Complex Traits

Nicholas Mancuso,1,* Huwenbo Shi,2 Pagé Goddard,3 Gleb Kichaev,2 Alexander Gusev,4,5,6,8

and Bogdan Pasaniuc1,2,7,8,*

Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the

causal variants and genes at these loci remain largely unknown. Here, we introduce a method for estimating the local genetic correlation

between gene expression and a complex trait and utilize it to estimate the genetic correlation due to predicted expression between pairs

of traits. We integrated gene expression measurements from 45 expression panels with summary GWAS data to perform 30 multi-tissue

transcriptome-wide association studies (TWASs). We identified 1,196 genes whose expression is associated with these traits; of these,

168 reside more than 0.5 Mb away from any previously reported GWAS significant variant. We then used our approach to find 43 pairs

of traits with significant genetic correlation at the level of predicted expression; of these, eight were not found through genetic corre-

lation at the SNP level. Finally, we used bi-directional regression to find evidence that BMI causally influences triglyceride levels and

that triglyceride levels causally influence low-density lipoprotein. Together, our results provide insight into the role of gene expression

in the susceptibility of complex traits and diseases.
Introduction

Although genome-wide association studies (GWASs) have

identified tens of thousands of common genetic variants

associated with many complex traits,1 with some notable

exceptions,2,3 the causal variants and genes at these loci

remain unknown. Multiple lines of evidence have shown

that GWAS risk variants co-localize with genetic variants

that regulate expression—i.e., expression quantitative trait

loci (eQTLs).4 This suggests that a substantial proportion of

GWAS risk variants influence complex traits by regulating

expression levels of their target genes.4–7 Analyses of geno-

type, phenotype, and gene expression measurements from

multiple tissues in the same set of individuals can directly

investigate this plausible chain of causality. However, do-

ing so is challenging because of cost and tissue availability;

therefore, GWAS and eQTL datasets remain largely inde-

pendent (i.e., no overlapping subjects).8,9 Recent work

has shown that one way to integrate GWAS and eQTL

data is to predict gene expression levels for GWAS samples

and then test for association between the predicted expres-

sion and traits.10–12 This approach, referred to as transcrip-

tome-wide association study (TWAS), can increase power

over GWAS when the causal mechanism includes genetic

variants that regulate the expression of susceptibility

genes. TWAS benefits from a lower multiple-testing burden

by probing several thousands of genes, whereas GWAS

probes several million SNPs. Although TWAS can also be
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performed with measured gene expression levels directly,

using predicted gene expression has several benefits. First,

expression measurements are usually not available in

GWAS data. Second, predicted gene expression removes

environmental noise by focusing on the genetically regu-

lated component, which can increase statistical power.

Third, using the predicted expression to test for association

can eliminate potential confounding from reverse causa-

tion, where traits affect gene expression levels.10,11 How-

ever, compared with GWAS, TWAS is underpowered

when risk is not mediated through expression or when

expression data are not available in the right tissue.

In thiswork, we introducemethods for estimating the ge-

netic correlation between gene expression and a complex

trait from summary GWAS and eQTL data. We utilize the

local (cis) genetic variation near a gene (i.e., 50.5 Mb

around the transcription start site [TSS]) to estimate the cor-

relation in the genetic effects between gene expression and

the trait. We show that under this framework, TWAS can be

viewed as a test for non-zero genetic covariance between

expression and a trait from summary association data. In

addition to identifying susceptibility genes, the predicted

expression can also be used for estimating the genome-

wide genetic correlation between pairs of complex traits

at the level of predicted expression. This is analogous to

computing genome-wide genetic correlation between com-

plex traits,13 whereby correlations are determined over pre-

dicted gene expression effects rather than SNP effects, and
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can give insights into the component of genetic correlation

mediated through expression. We demonstrate through

extensive simulations that our approach is approximately

unbiased and well calibrated under the null and slightly

conservative when true correlation is near the boundaries.

Finally, we utilize estimated effects of predicted expression

within a bi-directional regression approach14 to investigate

putative causal direction for pairs of complex traits that are

genetically correlated.

We analyze summary statistics from 30GWASs spanning

2.3 million phenotype measurements15–28 jointly with 45

expression panels8,29–34 sampled from more than 35 tis-

sues to gain insight into the role of expression in the etiol-

ogy of complex traits. First, we test each gene-tissue pair

across 45 panels to perform a multi-tissue TWAS for each

of the 30 traits to identify 1,196 gene associations. For

example, at four independent loci, we find 11 genes that

do not overlap a genome-wide significant SNP for educa-

tional years. Notably, all four loci were replicated in a

recent, larger GWAS for educational years.35 Second, we

identify 43 pairs of traits showing a genome-wide-signifi-

cant genetic correlation at the level of predicted expres-

sion. Overall, the predicted-expression correlation was

highly concordant with SNP-level genetic correlation

from cross-trait linkage disequilibrium (LD) score regres-

sion, which suggests that a large component of genetic

correlation between complex traits is driven by local regu-

lation of gene expression. Finally, we use our bi-directional

analysis to provide evidence of putative causal effects be-

tween pairs of these traits. Overall, our results shed light

on shared biological mechanisms responsible for suscepti-

bility to disease and complex traits, as well as potential

downstream effects between traits.
Material and Methods

Datasets
We used summary association statistics from 30 large-scale

(n ¼ 20,000 subjects) GWASs, including various anthropo-

metric15,27,28 (body mass index [BMI], femoral neck bone mineral

density [BMD], forearm BMD, lumbar spine BMD, and height),

hematopoietic23,25,26 (hemoglobin, HbA1c, mean cell hemoglo-

bin [MCH], MCH concentration, mean cell volume, number

of platelets, packed cell volume, and red blood cell count),

immune-related17,19 (Crohn disease [OMIM: 266600], inflamma-

tory bowel disease [OMIM: 266600], ulcerative colitis [OMIM:

266600], and rheumatoid arthritis [OMIM: 180300]), meta-

bolic16,20,22,24 (age of menarche, fasting glucose, fasting insulin,

high-density lipoprotein [HDL], HOMA-B, HOMA-IR, low-den-

sity lipoprotein [LDL], triglycerides [TG], type 2 diabetes

[OMIM: 125853], and total cholesterol [TC] levels), neurolog-

ical18 (schizophrenia [OMIM: 181500]), and social21 (college

and educational attainment) phenotypes (see Table S1). We

removed SNPs that were strand ambiguous or had a minor allele

frequency (MAF) % 1% (see Table S1).

Gene expression data from RNA sequencing data were obtained

from the CommonMindConsortium29 (brain, n¼ 613), the Geno-

type-Tissue Expression Project8 (GTEx; 41 tissues; see Table S2
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for sample size per tissue), and the Metabolic Syndrome in Men

study31,32 (adipose, n ¼ 563). Expression microarray data were

obtained from the Netherlands Twins Registry34 (NTR; blood,

n¼ 1,247), and the Young Finns Study30,33 (YFS; blood, n¼ 1,264).

Performing TWAS with GWAS Summary Statistics
We estimated SNP heritability for observed expression levels parti-

tioned into cis-h2
g (1 Mb region surrounding the TSS) and trans-h2

g

(rest of genome) components.We used the AI-REML algorithm im-

plemented in Genome-wide Complex Trait Analysis (GCTA),36

which allows estimates to fall outside of the (0, 1) boundaries to

maintain unbiasedness. To control for confounding, we included

batch variables and the top 20 principal components estimated

from genome-wide SNPs. Genes with significant cis-heritability

in expression data were used for prediction (cis-h2
g p < 0.05 in a

likelihood ratio test between the cis-only and joint models). The

average number of genes with significant cis-h2
g across expression

studies was 816 (min ¼ 70 genes from GTEx small intestine sam-

ples; max ¼ 3,704 genes from the YFS).

We performed 45 TWASs for each of the 30 GWASs;11 for each

trait, we used Bonferroni correction for all gene-tissue pairs tested

(see Table S2). In brief, we estimated the strength of association be-

tween the predicted expression of a gene and a complex trait

(zTWAS) as a function of the vector of GWAS summary Z scores at

a given cis-locus, z
0
T (i.e., vector of SNP associationWald statistics),

and the LD-adjusted weight vector learned from the gene expres-

sion data, wGE, as

zTWAS ¼ w
0
GEzTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
�
w

0
GEzT

�q ¼ w
0
GEzTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w
0
GEVwGE

p ;

whereV is a covariancematrix across SNPs at the locus (i.e., LD).We

estimated wGE by using GBLUP37 from eQTL data and computed

zTWAS by using GWAS summary data for all 30 traits and the

~36,000 gene expression measurements across all studies. We

removed all loci in the human leukocyte antigen (HLA) region as

a result of complex LD patterns.

Estimating the Proportion of Trait Variance Explained by

Predicted Expression
We use the LD score regression38,39 approach described in

Guseve et al.11 to quantify the heritability explained by pre-

dicted expression for a complex trait (denoted here as h2
GE).

The expected c2 statistic under a polygenic trait is E½c2� ¼
1þ ðNT[=MÞh2

GE þNTa, where NT is the number of individuals

in the GWAS, M is the number of genes, [ is the LD score, and

a is the effect of population structure. We estimate [ for each

gene by predicting expression for 503 European samples in

1000 Genomes40 by using the GBLUP weights (see above) and

then computing sample correlation. For each trait, we perform

LD score regression by using z2TWAS (which follows a c2 distribu-

tion asymptotically) to infer h2
GE. We estimate heritability for

each expression study separately to account for varying sample

sizes and repeated gene measurements.

Estimating Genetic Correlation of Expression and

Complex Traits from Summary Data
Let expression and traits be modeled as a linear function of the ge-

notypes in a ~1 Mb locus flanking the gene: yGE ¼ XbGE þ eGE and

yT ¼ XbT þ eT, where X is the standardized genotype matrix, bGE

and bT are the standardized effects for expression and traits,
2, 2017



Figure 1. Causal Diagram Illustrating the Genetic Component
of a Trait
The total effect of SNPs on a trait can be partitioned into compo-
nents that are mediated through cis-regulated (i.e., predicted,
indicated by an asterisk) gene expression ðbGE 3aÞ or through
alternative pathways ðbaltÞ. In contrast to rg, which quantifies
the correlation of the total SNP effects between two traits
(bGE 3a; balt), rGE focuses exclusively on the effects of cis-regulated
gene expression (a).
respectively, and eGE and eT are the environmental noise for

expression and traits, respectively. The local covariance between

expression and complex traits is

cov
�
yGE; yT

� ¼ covðXbGE þ eGE;XbT þ eTÞ
¼ b

0
GEcovðX;XÞbT þ covðeGE; eTÞ

¼ b
0
GEVbT þ covðeGE; eTÞ;

where V is the LD matrix. If no individuals are shared between

studies, then covðeGE; eTÞ ¼ 0 (as in eQTL studies and GWASs).

The local genetic correlation between expression and traits can

be computed as

rg;local ¼
b

0
GEVbTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
g;localðGEÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
g;localðTÞ

q ;

where h2
g;localðGEÞ and h2

g;localðTÞ are the local SNP heritability41 for

expression and traits, respectively, estimated at the locus. How-

ever, this requires knowledge of the true effect sizes. Given associ-

ation statistics zT, we estimate an LD-adjusted effect size asbbT ¼ 1ffiffiffiffiffi
NT

p V�1zT. Hence, an estimate of the local genetic covari-

ance42 is given by

bb 0

GEV
bbT ¼ 1ffiffiffiffiffiffiffiffiffi

NGE

p ffiffiffiffiffiffi
NT

p �
z

0
GEV

�1
�
V
�
V�1zT

� ¼ bb 0

GEV
�1bbT;

where bbGE and bbT are the marginal (i.e., LD-unadjusted) standard-

ized effect-size estimates.41,43 It follows that

1ffiffiffiffiffiffi
NT

p zTWAS ¼ 1ffiffiffiffiffiffi
NT

p
bb 0

GEzTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

�bb 0

GEzT

�r ¼
bb 0

GEV
�1bbTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
g;localðGEÞ

q
¼ rg;local

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
g;localðTÞ

q
:

We standardize this estimate to obtain our final local genetic cor-

relation estimate as

brg;local ¼
zTWASffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NT 3 h2
g;localðTÞ

q :

In practice, we use the variance explained by the local index SNP

(i.e., smallest p value) as a proxy for h2
g;localðTÞ.
The Ameri
Genetic Correlation between Traits at the Level of

Predicted Expression
Consider a simple model where the genetic component of a trait

can be decomposed into genetic effects that are mediated through

cis-gene expressions of k genes plus genetic effects not mediated

through expression at other loci in the genome:

yT ¼
Xk

i¼1

�
XibGEi

�
ai þ Xaltbalt þ eT;

whereXi is a vector of genotypes at the cis-locus of gene i,bGEi is the

casual eQTL effect vector for gene i, ai is the direct effect of gene

expression on a trait, and Xalt and balt refer to the genotype and

causal effects, respectively, of variants not mediated through

expression. We define the genome-wide genetic correlation at the

level of expression between two complex traits as the correlation

across the gene effects: rGE ¼ corðaT1
;aT2

Þ. In practice, we do not

know a, but we can estimate it as

ba ¼ cov
�
XbGE; yT

�
varðXbGEÞ

¼ b
0
GEVbT

h2
g;localðGEÞ ¼ brg;local

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
g;localðGEÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
g;local

�
yT

�q
to obtain an estimate of expression correlation by using predicted

expression ðbrGEÞ. In practice, we use the standardized estimates ofba, which are proportional to brg;local. Unlike SNP-based genetic cor-

relation ðrgÞ, which captures genetic correlation across all com-

mon variants in the genome, rGE captures only the component

of genetic correlation driven by cis genetic effects on expression

(see Figure 1). For instance, a pair of traits with highly correlated

effects in cis-regions but weakly correlated effects in trans-regions

will result in rGE > rg. In the absence of large trans-eQTL effects,

we expect rGEzrg. Furthermore, because rGE accounts for only

the shared effect from predicted expression, any genetic effect

on a trait not driven through expression in the measured eQTL

data will not be represented in rGE. We test for significance by

assuming brGE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � 2Þ=ð1� br2GEÞ

q
� tðM � 2Þ, where M is the

number of genes and t is the t distribution with M � 2 degrees of

freedom. This procedure requires the effects ofM genes on the trait

to be independent, which could be violated in practice; hence, we

compute brGE by using one gene per 1 Mb locus.

Estimating Putative Casual Relationships between Pairs

of Traits
To glean insight into the underlying causal relationship between

pairs of traits, we perform a bi-directional regression14 and esti-

mate two different values of rGE by varying gene sets. Before

describing the approach, we first review several causal models

that explain non-zero rGE between two traits (see Figure 2). Models

A and B depict causal relationships in which the effects of a gene

set are mediated by one trait on the other. We can formally state

model A (without loss of generality for B). Let trait 1 (T1) be defined

as yT1
¼ GT1

bT1
þ eT1

, where GT1
denotes the matrix of predicted

expression at the causal genes, bT1
is the effect size, and eT1

is envi-

ronmental noise. We define trait 2 (T2) as

yT2
¼ yT1

gT1
þ GT2bT2 þ eT2 ¼ GT1bT1gT1

þ GT2bT2 þ e
T
0
2
;

where gT1
is the causal effect of T1 on T2, GT2

and bT2
are the

remaining causal genes and their effects, respectively, for T2,

and e
T
0
2
is the combined environment component. Under model A,

the causal gene set for T1 will have a non-zero effect on T2 (i.e.,
can Journal of Human Genetics 100, 473–487, March 2, 2017 475



A B C Figure 2. Illustration of Several Causal
Models That Explain Expression Correla-
tion for Traits 1 and 2 Given Their Causal
Gene Sets
(Model A) Trait 1 directly influences trait 2.
In this case, the effect of genes G1

1; .; G1
p

on trait 2 is mediated by trait 1, which im-
plies fG1

i g
p

i¼1=fG2
i g

q

i¼1.
(Model B) Trait 2 directly influences trait 1.

Similarly, the effect of genes G2
1; .; G2

q on trait 1 is mediated by trait 2, which implies fG2
i g

q

i¼1=fG1
i g

p

i¼1.
(Model C) Traits 1 and 2 are influenced independently through an unobserved trait or traits.
gT1
s0); however, if T1 does not cause T2, this effect will be zero

given that unrelated genes have no downstream effect. Bi-direc-

tional regression provides a test to distinguish between models

A and B by regressing estimated effect sizes for gene sets under

model A (i.e., bT1
� bT1

gT1
) and comparing to estimates under

model B (i.e.,bT2
� bT2

gT2
). Because the causal gene sets for each trait

are unknown, we use their identified susceptibility genes as a proxy.

Weestimate rGE byconditioningon thegene set for trait i anddenote

its value as rj j i.We repeat this procedure by ascertaining the gene set

for trait j to obtain ri j j. We perform a Welch’s t test44 to determine

whether estimates of ri j j and rj j i are significantly different, thus

providing evidence consistent with a causal direction. To minimize

spurious results, we require at least ten genes for estimation in each

conditional test. This approach mirrors bi-directional regression

analyses of estimated SNP effects on two complex traits.45,46 We

stress that although a bi-directional approach is capable of rejecting

model A in favor of model B (or vice versa), it cannot rule out

model C, in which a shared pathway (or set of pathways) drives

both traits independently (see Figure 2).

Simulation Framework
We simulate gene expression levels by using real genotype data

measured in 503 European individuals from the 1000 Genomes

Project.40 Given a gene locus, we generate expression levels under

the linear model E ¼ Xw þ e, where E is a gene expression vector

of lengthN,X is theN32mean-centeredandvariance-standardized

genotypematrix over two randomly selected SNPs in the locus,w is

the causal effect, and e is the environmental noise.We sample effect

sizeswi � Nð0; ½h2
g=2�Þ for i¼ 1 and2 andnoise fromanormal distri-

bution to yield h2
g ¼ 0:1 (consistent with what we observe in real

gene expression data). We consider only SNPs with a MAF R 0.01

and Hardy-Weinberg equilibrium deviation p R 1 3 10�5. We

simulate a complex trait as a linear function of predicted gene

expression for k¼ 100 genes, given by y ¼ Pk
i¼1ðXiwiÞai þ e, where

Xiwi is the predicted expression of the ith gene with effect sizes

ai � Nð0;h2
GE=kÞ. For simulations involving rGE, we simulate the

two traits y1 and y2 by using the same process, except effects for

the ith gene are drawn from a bivariate normal distribution:�
ai;1

ai;2

�
� MVN

	�
0
0

�
;

�
s2
a;1 rGEsa;1sa;2

rGEsa;1sa;2 s2
a;2

�

;

where s2a;� ¼ ðh2
GE;�Þ=k. Lastly, we perform an association scan on y

by using all SNPs at each gene locus to obtain SNP-level Z scores zT.
Results

Accurate Estimation of Expression-Trait Genetic

Correlation in Simulations

To validate our statistical framework for estimating rg;local,

we used real genotype data to perform simulations under
476 The American Journal of Human Genetics 100, 473–487, March
various architectures (see Material and Methods). In brief,

we simulated gene expression for 100 independent gene

loci, which we then used to simulate a complex trait. Using

our approach, we performed a GWAS and estimated rg;local
from TWAS summary statistics (see Material andMethods).

We observed unbiased estimates for rg;local both when

causal variants were typed and when they were masked

from the data (see Figure S1). Estimated values of rg;local
were highly correlated with their true values (r ¼ 0.73;

p < 2.2 3 10�16), which indicates that using weights in-

ferred from GBLUP maintains moderate power levels.

This slight loss in power extended to h2
GE estimates, which

quantify the total effect of predicted expression on a trait

(r ¼ 0.74; p < 6.7 3 10�12; see Table S3). As eQTL datasets

increase in sample size, and predictive models become

more accurate, we expect this attenuation bias to decrease.

We next performed extensive simulations to validate our

procedure for estimating genetic correlation due to pre-

dicted expression ðrGEÞ between pairs of traits. We simu-

lated genetically correlated complex traits from predicted

expression by sampling effects from a bivariate normal dis-

tribution with correlation rGE (see Material and Methods).

We first estimated rg;local for each gene-trait pair, which

served as input for estimating rGE. Overall, we observed

our estimator to be approximately unbiased, with conser-

vative estimates for rGE when its underlying value was

near the boundaries (see Figure 3). Importantly, estimates

were relatively unbiased when causal variants were un-

typed in the data. Our method appropriately accounted

for LD among variants, resulting in a large improvement

over the naive SNP correlation approach (which simply

correlates the Z scores by ignoring LD). We also assessed

our approach for testing for deviations from rGE ¼ 0 and

found estimates consistent with the null distribution

with lGC ¼ 0.97 (Jack-knife 95% CI ¼ [0.86, 1.08]; see

Figure S2). To measure how sensitive our approach is to es-

timates of h2
g;localðGEÞ at each gene, we repeated simula-

tions by using variance explained by the top eQTL as a

proxy for local heritability. Although estimates were highly

similar (r ¼ 0.99; p < 6.6 3 10�7), our approach produced

estimates closer to the ground truth (see Figure S3).
TWAS Identifies 1,196 Genes Associated with 30

Complex Traits and Diseases

We integrated GWAS summary data of 30 complex traits

with gene expression to identify 1,196 susceptibility genes

(i.e., genes with at least one significant trait association),
2, 2017



A B Figure 3. Simulation Results for brGE and
Correlation of SNP Z Scores
Each point represents the mean estimate
over 100 simulations. Error bars represent
the 95% confidence interval estimated
by the mean SE across simulations. The
dotted line represents the identity line.
(A) Causal SNPs for gene expression are
typed in the data.
(B) Causal SNPs are untyped.
comprising5,490 total associations (afterBonferroni correc-

tion; see Material and Methods). Of these associations, we

observed 1,789 distinct gene-trait pairs, of which 783 were

found in anthropometric traits, 423 in metabolic traits,

215 in immune-related traits, 213 in hematopoietic traits,

137 inneurological traits (e.g., schizophrenia), and 18 in so-

cial traits (see Tables 1, S4, and S5). For example, the 137 sus-

ceptibility genes found for schizophrenia included SNX19

(e.g., GTEx cerebellum; p < 2.2 3 10�8) and NMRAL1 (e.g.,

GTEx skeletal muscle; p < 9.7 3 10�7); this is consistent

with a previously reported study12 that used different

methods and expression data (see Table S6). We did not

find susceptibility genes for forearm BMD, HOMA-B, or

MCH concentration, consistent with low GWAS signal for

these traits (see Table 1). Indeed, the number of GWAS risk

loci strongly correlated with the number of identified sus-

ceptibility genes (r ¼ 0.99; p < 2.2 3 10�16). Using the

PANTHERdatabase,47we explored putativemolecular func-

tion and pathways enriched with identified susceptibility

genes but were underpowered to detect molecular function

for most individual traits (see Appendix A).

Next, we quantified the overlap of susceptibility genes

and GWAS signals. Of the 1,789 identified gene-trait pairs,

168 (9%) were not proximal (more than 0.5 Mb from the

TSS) to any genome-wide-significant SNP for that respec-

tive trait (see Table 2). This measure was robust to increases

in window size, such that 140 (8%) gene-trait pairs did

not overlap a genome-wide-significant SNP within 1 Mb

of the TSS.We observed increased SNP association statistics

at these genes (mean c2 ¼ 6.5; see Figure S4), which sug-

gests that GWASs with an increased sample size will

discover genome-wide-significant SNPs nearby. We tested

this hypothesis by assessing the new TWAS loci for educa-

tional years21 (n ¼ 126,599) in a recent, much larger

GWAS for educational years35 (n ¼ 293,723). All four inde-

pendent loci contained a genome-wide-significant SNP in

the larger GWAS (see Table S7). Of the 1,526 GWAS risk

loci, 1,405 (92%) overlapped at least one eGene (i.e., a

gene with heritable expression levels in at least one of

the considered expression panels), and 551 (36%) overlap-

ped at least one susceptibility gene (see Table 1). Focusing
The American Journal of Human G
on the 1,621 TWAS associations that

overlapped a genome-wide-signifi-

cant SNP, we observed 1,350 (83%)

genes that were not the closest, sug-

gesting that the traditional heuristic
of prioritizing genes closest to GWAS SNPs is typically

not supported by evidence from eQTL data48 (see

Figure S5). This is also supported by the mean c2 associa-

tion statistics for genes closest to index SNPs (c2 ¼ 43.9)

and the top association (c2 ¼ 72.9; see Figure S6). In addi-

tion, lead GWAS SNPs typically have a weaker eQTL effect

for the proximal gene than for the TWAS-implicated gene

in 1,088 of 1,350 TWAS associations. This result, consistent

with earlier reports,11,12 highlights the importance of uti-

lizing the entire locus and estimates of LD to prioritize

genes.

Although GWAS SNPs provide the majority of the power

in this approach, the flexibility of TWASs to leverage allelic

heterogeneity provides a significant gain.11 We found 219

instances across 19 traits where association signal was

stronger (20% higher c2 statistics on average) in TWASs

than in GWASs. For example, predicted expression in

CCDC88B (OMIM: 611205; a gene involved in T cell matu-

ration and inflammation49) exhibited strong association

with Crohn disease (pTWAS ¼ 6.32 3 10�8), whereas the

index SNP (i.e., top overlapping GWAS SNP) at site

rs11231774 was only suggestive (pGWAS ¼ 2.47 3 10�6).

This effect was most dramatic for height, such that 108

susceptibility genes had a stronger signal thanGWAS index

SNPs. We observed that the c2 statistics for predicted

expression in CRELD1 (OMIM: 607170; pTWAS ¼ 1.55 3

10�10) were 2.63 higher than those for the index SNP

rs1473183 (pGWAS ¼ 6.33 3 10�5).

Recent work50 applied a similar approach12 that used

summary eQTLs from blood and GWAS data to identify

71 genes for 28 complex traits.50 Of the investigated traits,

12 overlapped those in our study. Overall, whereas that

study reported 63 genes for these traits, we identified 564

genes. Surprisingly, despite using independent methods

and expression data, we replicated 40 out of 51 associa-

tions for genes assayed in both studies (see Table S8).

This increase in power can be attributed to two reasons.

First, we integrated many more expression panels sampled

from many tissues, leading to many more genes for the

assay. Second, we used a method that jointly tests the

entire locus rather than the index SNPs. We have shown
enetics 100, 473–487, March 2, 2017 477



Table 1. Summary of GWAS and TWAS Results

Trait Abbreviation

Number of GWASs Number of Susceptibility Genes

Loci

Loci
with an
eGene

Loci with
a Single
Susceptibility
Gene

Loci with
at Least One
Susceptibility
Gene

Genes Overlapping
GWASs

Genes Not
Overlapping
GWASs

Age at menarche AM 70 60 14 19 34 9

Body mass index BMI 76 60 10 18 44 11

College COL 5 5 2 2 1 4

Crohn disease CD 50 48 4 17 65 5

Educational years EY 7 4 2 2 2 11

Fasting glucose FG 12 11 2 5 8 1

Fasting insulin FI 0 0 0 0 0 1

Femoral neck bone mineral density FN 20 20 2 2 2 1

Forearm bone mineral density FA 3 3 0 0 0 0

Hemoglobin HB 22 21 2 5 22 3

HbA1c – 10 10 0 1 4 0

Height – 482 454 94 225 669 52

High-density lipoprotein HDL 100 95 11 29 98 4

HOMA-B – 4 3 0 0 0 0

HOMA-IR – 0 0 0 0 0 1

Inflammatory bowel disease IBD 63 59 12 23 70 11

Low-density lipoprotein LDL 75 72 8 25 84 3

Lumbar spine LS 24 23 2 3 4 0

Mean cell hemoglobin concentration MCHC 5 3 0 0 0 0

Mean cell hemoglobin MCH 35 31 5 17 46 7

Mean cell volume MCV 43 40 8 20 49 1

Number of platelets PLT 35 34 6 13 30 8

Packed cell volume PCV 14 13 1 3 5 1

Red blood cell count RBC 25 21 3 10 35 2

Rheumatoid arthritis RA 44 41 7 13 30 5

Schizophrenia SCZ 95 74 15 31 113 24

Total cholesterol TC 88 85 13 40 117 0

Triglycerides TG 70 67 4 18 59 1

Type 2 diabetes T2D 12 12 0 1 3 0

Ulcerative colitis UC 37 36 5 9 27 2

Total 1,526 1,405 232 551 1,621 168

The first four numeric columns summarize GWAS risk loci. The last two numeric columns summarize identified TWAS susceptibility genes. The majority (92%) of
GWAS risk loci overlap at least one eGene, of which 40% contain at least one susceptibility gene. We report 168 (9%) identified gene-trait pairs that do not overlap
a GWAS variant, providing risk loci for follow up.
that many identified susceptibility genes contain signals of

allelic heterogeneity; therefore, using individual SNPs will

decrease power.

Genes Associated with Multiple Traits

We investigated the degree of pleiotropic susceptibility

genes (i.e., genes associated with more than one trait) in
478 The American Journal of Human Genetics 100, 473–487, March
our data and found 380 (32%) genes associated with mul-

tiple traits (see Figure S7). For example, IKZF3 (OMIM:

606221) displayed strong associations with Crohn disease

(NTR; p ¼ 1.6 3 10�9), HDL levels (NTR; p ¼ 6.6 3 10�15),

inflammatory bowel disease (NTR; p ¼ 7.9 3 10�16), rheu-

matoid arthritis (NTR; p ¼ 6.0 3 10�8), and ulcerative

colitis (NTR; p ¼ 9.2 3 10�10). Indeed, IKZF3 has been
2, 2017



Table 2. Susceptibility Genes That Do Not Overlap a Genome-wide Significant SNP within 0.5 Mb of the Transcription Start and End Sites
for Each Trait

Trait Genes

AM CCDC65, COG6, INO80E, NUCKS1, PMS2P5, RAB7L1, SLC26A9, STAG3L2, and TMEM180

BMI CDK5RAP3, CERCAM, DHRS11, GGNBP2, INO80E, RP11-6N17.10, RP11-6N17.9, SLC27A4, STAG3L1, TUBA1C, and URM1

CD CCDC88B, CISD1, PPP1R14B, RIT1, and SMIM19

COL ABCB9, AC091729.9, AFF3, and RNF123

EY ABCB9, EIF3CL, MIR4721, MPHOSPH9, NFATC2IP, RP11-1348G14.4, SDCCAG8, SH2B1, STK24, SULT1A1, and TUFM

FG MAPRE3

FI KNOP1

FN FGFRL1

HB CCDC117, UBE2Q2, and WNT3

HDL HRAS, KNOP1, RETSAT, and TYRO3

HEIGHT ARL17A, ATF1, ATP5J2, C20orf194, C9orf156, CCDC116, CNIH4, COX6B1, CRELD1, CRHR1, DAB2IP, DESI1, DLG5, DUS3L,
ECHDC2, FAM35A, FUCA2, H2AFJ, HIBADH, INO80E, IQGAP1, KANSL1, LBX2-AS1, LRRC37A2, MAPT, MAT2A, MED4,
MEGF9, MGMT, MORC2-AS1, MSRB2, P4HTM, PHF19, PLEKHA1, PSMD5, PSMD5-AS1, RP11-173M1.8, RP11-455F5.3,
RP11-4O1.2, RP11-67A1.2, RP13-39P12.3, RP4-612B15.3, RRN3, SFTPD, SH3YL1, SUSD1, TMEM128, UBE2L3, UTP18,
WDR60, YPEL3, and YWHAB

HOMA-IR KNOP1

IBD ADCY3, CCDC88B, FAM189B, GBA, GBAP1, HCN3, PPP1R14B, RMI2, SATB2, TMEM180, ZFP90

LDL DHRS13, ERAL1, and WDR25

MCH AP003419.16, GSTP1, PABPC4, PTPRCAP, RP11-69E11.4, RP1-18D14.7, and RPS6KB2

MCV COX4I2

PCV PLEKHH2

PLT ACTR1A, BAZ2A, CCDC17, IPP, MUTYH, PRIM1, TESK2, and TMEM180

RA METTL21B, RNF40, RPS26, SLC26A10, and SUOX

RBC COX4I2 and FBXL20

SCZ ALMS1P, ARL14EP, CAD, CBR3, CEBPZ, CORO7, CPNE7, DND1, EMB, ENDOG, EPN2, GRAP, IK, NMRAL1, NRBP1, PCNX,
PFDN1, PRR12, PRRG2, RNF112, RP11-135L13.4, SEPT10, SRA1, and TMCO6

TG L3MBTL3

UC SATB2 and TNPO3

For details on individual genes, expression studies, and association statistics, see Table S4. Genome-wide significance: p < 5 3 10�8.
shown to influence lymphocyte development and differ-

entiation.51,52 These traits are known to have a strong

autoimmune component;53 hence, association with pre-

dicted IKZF3 expression levels is consistent with a model

where cis-regulated variation in IKZF3 product levels

contributes to risk. Similarly, we observed three suscepti-

bility genes shared between educational years (EY) and

height (see Figure 4): ABCB9 (OMIM: 605453; GTEx heart

left ventricle; pheight ¼ 1.38 3 10�15; pEY ¼ 1.28 3 10�6),

BTN2A3P (OMIM: 613592; GTEx subcutaneous adipose;

pheight ¼ 3.82 3 10�12; pEY ¼ 1.90 3 10�7), and

MPHOSPH9 (OMIM: 605501; GTEx thyroid; pheight ¼
5.84 3 10�18; pEY ¼ 1.30 3 10�6). Although not direct

evidence of co-localization of educational years and

height at these loci, this result is consistent with a

recent study13 that reported a non-zero genetic correla-

tion between height and educational years (brg ¼ 0.13;

p ¼ 3.82 3 10�6).
The Ameri
The Effect of cis Expression on Traits Is Consistent across

Tissues

Having established the importance of individual predicted

gene expression levels for these traits, we next estimated

the amount of trait variance explained by predicted expres-

sionbyusingall examinedgenes, including thosenot signif-

icantly associated, and an LD score regression approach

(see Material and Methods). We found 108 tissue-trait

pairs across 17 traits and 33 tissues where the cumulative

effect of all measured genes on the trait was significantly

greater (p < 0.05/45) than for the significant-only set (see

Table S9). For example, in height we estimated h2
GE ¼ 0.07

(Jack-knife SE ¼ 0.02; p ¼ 5.6 3 10�4) by using all

3,733 measured genes in YFS and h2
GE ¼ 0.015 (Jack-knife

SE¼ 6.9; p ¼ 0.03) by using only the 169 YFS susceptibility

genes (pall>sig ¼ 5.6 3 10�3). This suggests that height

hasadditional susceptibility genes,whichweareunderpow-

ered to detect. Strikingly, the predicted expression from all
can Journal of Human Genetics 100, 473–487, March 2, 2017 479



Figure 4. Susceptibility Genes Shared for Educational Years and Height
We indicate –log10 p values for eQTLs in green and trait-specific GWASs in black on separate axes to simplify illustration.

Figure 5. Histogram and Density Estimate for Correlation of
rg;local across Tissues
We computed the correlation across pairs of different tissues by us-
ing local estimates of genetic correlation between expression and
traits. Most tissues exhibited a high correlation over the underly-
ing gene effects on traits with an estimated mean of r ¼ 0.82.
YFS genes accounts for 12% of SNP heritabilitymeasured in

height.54 However, for most trait-tissue pairs, we did not

observe a significant difference at our given sample sizes.

Indeed, we measured a significant association between

expression-study sample size and number of eGenes

(r ¼ 0.73; SE ¼ 0.10; p ¼ 1.3 3 10�8), which indicates that

smaller studies lack power to find eGenes and thus underes-

timate the total h2
GE.

We next asked whether any tissues are burdened with

increased levels of risk for a given trait. To test this hypoth-

esis, we examined the difference between estimated trait

variance explained per gene and the average. Our results

did not suggest tissue-specific enrichment at the current

sample sizes (see Table S10). We observed a significant cor-

relation between gene expression sample size and tissue

enrichment estimates (p ¼ 62.4 3 10�6). One explanation

for this relationship is that the number of eGenes identi-

fied per study increases with sample size, which increases

h2
GE estimates. Given no observable difference in tissue-spe-

cific risk, we expect local estimates of genetic correlation to

be highly similar across tissues. When estimating rg;local,

we observed consistent effect-size estimates in both sign

and magnitude estimates across tissues (mean tissue-tissue

r ¼ 0.82; see Figure 5). These results are compatible with

earlier work that found that cis effects on expression are

largely consistent across tissues.55 To obtain a meta-esti-

mate of local genetic correlation for gene-trait pairs with

measurements in multiple tissues, we used the mean ge-

netic correlation across all expression panels in all of the

following analyses.

Genetic Correlation between Traits at the Level of

Predicted Expression

To evaluate the shared contribution of predicted expression

on pairs of traits, we used nominally significant (p < 0.05)

genes to compute the genome-wide genetic correlation at
480 The American Journal of Human Genetics 100, 473–487, March
levels of predicted expression (see Material and Methods).

For 435 distinct pairs, we discovered 43 significant expres-

sion correlations, 22 of which had previously reported

non-zero genetic correlations13 (see Figure 6 and Table 3).

For example, age of menarche and BMI had brGE ¼ �0.32

(95% CI ¼ [�0.32, �0.21]; p ¼ 7.97 3 10�8). This nega-

tive correlation is consistent with estimates published in
2, 2017



A B Figure 6. Estimates of Genetic Correla-
tion brg Obtained from LD Scores versus
Estimates of Expression Correlation brGE

from Nominally Significant TWAS Results
(A) Correlation matrix for 30 traits. The
lower triangle contains brGE, and the upper
triangle contains brg estimates. Correla-
tion estimates that are significantly non-
zero (p < 0.05/435) are marked with an
asterisk (*). The strength and direction of
correlation are indicated by size and color.
We found 43 significantly correlated traits
by using predicted expression and 62 by
using genome-wide SNPs.
(B) Linear relationship between estimates
of brGE and brg. We indicate whether indi-
vidual estimates were significant in either
approach by color. Non-significant trait
pairs are reduced in size for visibility.
epidemiological studies,56 in addition to studies probing

genetic correlation across complex traits.13 To determine

whether estimates were sensitive to changes in scale, we re-

computed brGE by using the top eQTL as a proxy for local

heritability of gene expression and observed similar results

(r ¼ 0.99; p ¼ 2.2 3 10�16; see Figure S8). Results were also

robust to increasing window size for gene pruning, such

that there was no significant difference in estimates be-

tween2 and4Mbwindows (r2Mb¼ 0.99; r4Mb¼0.98).Using

estimates of brGE, we clustered traits and observed groups

forming naturally in the trait-trait matrix (see Figure 6).

Interestingly, BMI clustered with insulin-related traits

(HOMA-B, HOMA-IR, and fasting insulin). Our estimates

were highly consistent with the results of LD score regres-

sion (see Figure 6 and Table S11). Out of 435 pairs of traits,

35 demonstrated significance for brGE and brg, whereas 8 and

27 were exclusive to brGE and brg, respectively. Given the

high degree of concordance between estimates, we tested

for significant differences and found four insulin-related

pairs of traits and three blood-related pairs with more

extreme values for brGE (see Table S11). Differences for these

pairs of traits can be partially explained by overconfident

standard errors for brGE (see Table S12). Overall, we foundbrGE to explain most of the variation in brg (r2 ¼ 0.72). We

compared this to the naive approach of computing the cor-

relation of SNP Z scores across susceptibility gene loci and

observed a much smaller proportion of variance explained

in brg (r2¼ 0.46). This reinforces that, compared to the naive

approach, our method incorporates LD to aggregate signal.
Bi-directional Regression Suggests Putative Causal

Relationships

Given pairs of traits with significant estimates of rGE, we

aimed to distinguish among possible causal explanations

by performing bi-directional regression analyses (see Mate-

rial and Methods). To empirically validate our approach,

we regressed HDL, LDL, and TG with TC. TC is the direct
The Ameri
consequence of summing over TG, HDL, and LDL levels,

so we expected to observe higher signal for rTC j lipid than

for rlipid jTC. Of these three, we found evidence that TG

influences TC (p ¼ 2.34 3 10�3). We observed consistent,

but not significant, evidence for the effects of LDL on TC

(p ¼ 0.07) and HDL on TC (p ¼ 0.55; see Figure 7). These

results suggest that point estimates from the bi-directional

approach favor the correct model but might not have

adequate power required for significance.

We tested the 43 pairs of traits identified above (see

Table 3) while ascertaining susceptibility genes and

observed asymmetric effects at p < 0.05 for BMI-TG and

LDL-TG (see Figure 8 and Table 4). For example, in the

bi-directional analysis on BMI and TG, we observed a sig-

nificant effect for rTG jBMI ¼ 0.62 (95% CI ¼ [0.27, 0.83];

p¼ 2.063 10�3). By contrast, the reverse analysis estimate

overlapped 0 at rBMI jTG ¼ �0:04 (95% CI ¼ [�0.49, 0.42];

p ¼ 0.86). Individual estimates for rTG jBMI and rBMI jTG
were significantly different (p¼ 0.01,Welch’s t test), which

is consistent with a model where BMI directly influences

TG levels. In practice, we used susceptibility genes found

through a TWAS (p ~ 13 10�6), but this could be too strict

an inclusion threshold for genes for which we lack power

to detect. We conducted analyses with weaker thresholds

and observed similar results (see Tables S13 and S14). Our

results reinforce previous estimates of putative causal ef-

fects where BMI influences TG levels.45,57
Discussion

In this work, we described an approach to estimate the local

genetic covariance and correlation between gene expres-

sion and complex traits by using GWAS summary data.

We also introduced a method of estimating genome-wide

genetic correlation between complex traits at the level of

predicted expression. Using simulations, we demonstrated

that both approaches are relatively unbiased under realistic
can Journal of Human Genetics 100, 473–487, March 2, 2017 481



Table 3. Pairs of Traits with Significant Estimates of rGE

Trait 1 Trait 2

All Nominally Significant Genes

brGE 95% CI M

AM BMI �0.33 �0.43 �0.21 257

BMI COL �0.31 �0.44 �0.18 190

BMI EY �0.31 �0.43 �0.18 210

BMI FI 0.39 0.25 0.51 164

BMI HDL �0.34 �0.45 �0.23 256

BMI HOMA-B 0.31 0.17 0.44 168

BMI HOMA-IR 0.36 0.22 0.49 162

BMI TG 0.29 0.17 0.41 233

CD IBD 0.93 0.91 0.94 366

CD UC 0.51 0.41 0.60 218

COL EY 0.95 0.94 0.96 363

FA FN 0.57 0.44 0.67 149

FA LS 0.60 0.49 0.69 170

FG FI 0.65 0.53 0.74 133

FG HOMA-B �0.60 �0.70 �0.47 125

FG HOMA-IR 0.92 0.89 0.94 136

FI HDL �0.31 �0.44 �0.17 168

FI HOMA-B 0.97 0.96 0.98 243

FI HOMA-IR 0.99 0.99 0.99 383

FI TG 0.57 0.45 0.66 152

FN LS 0.86 0.83 0.89 264

HB MCH 0.37 0.23 0.50 156

HB MCHC 0.40 0.23 0.55 105

HB PCV 0.97 0.96 0.97 338

HB PLT �0.36 �0.49 �0.20 141

HB RBC 0.95 0.94 0.96 260

HbA1c T2D 0.46 0.30 0.59 110

HbA1c TG 0.37 0.21 0.50 137

HDL HOMA-IR �0.32 �0.46 �0.18 159

HDL T2D �0.32 �0.45 �0.19 186

HDL TG �0.74 �0.79 �0.69 274

HOMA-B HOMA-IR 0.97 0.96 0.98 227

HOMA-B TG 0.43 0.27 0.56 127

HOMA-IR TG 0.48 0.34 0.60 138

IBD UC 0.96 0.95 0.96 415

LDL TC 0.97 0.96 0.97 452

LDL TG 0.54 0.44 0.63 231

MCH MCHC 0.63 0.51 0.72 127

MCH MCV 0.96 0.95 0.97 320

MCH RBC �0.81 �0.85 �0.76 207

MCV RBC �0.80 �0.85 �0.75 208

Table 3. Continued

Trait 1 Trait 2

All Nominally Significant Genes

brGE 95% CI M

PCV RBC 0.96 0.95 0.97 278

TC TG 0.61 0.53 0.68 248

Estimates were computed with M pruned genes that were nominally signifi-
cant (p < 0.05) in both traits.
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scenarios. We used GWAS summary statistics from 30

complex traits and diseases jointly with expression data

collected across 45 expression panels to identify 1,196 sus-

ceptibility genes for complex traits. Interestingly, suscepti-

bility genes that were identified for educational years and

not proximal to a genome-wide significant SNP were vali-

dated in a much larger GWAS.35 We leveraged estimates of

local genetic correlation between gene expression and traits

to compute rGE for 435 trait pairs. This quantified the shared

effect of predicted expression levels between two complex

traits. To provide evidence of possible causal direction, we

adapted a recently proposed causality test45 to operate at

the level of predicted gene expression. Our results suggest

that TG influences LDL and that BMI influences TG. As

more GWAS and eQTL summary results become publicly

available, we expect additional studies to integrate cross-

trait information tomake inferences aboutmechanistic ba-

ses for complex traits. Indeed, recent work has combined

chromatin phenotypes with alternatively spliced introns

and total gene expression (the latter of which overlaps

expression used in this study) to identify regulatory mech-

anisms for schizophrenia.58

Under the assumption that gene expression mediates

the effect of genetics on complex traits, testing for asso-

ciation between predicted gene expression and traits is

equivalent to a two-sample Mendelian randomization

test for a causal effect of expression on a trait.59,60 This

test for causality is valid if SNPs do not exhibit pleio-

tropic effects, which is difficult to prove; therefore,

TWAS associations do not provide direct evidence of

causal relationships between gene expression and com-

plex traits but rather reflect associations between expres-

sion levels and traits. This set of assumptions extends to

our bi-directional approach to inferring causal direction.

A bi-directional regression is capable of distinguishing

between directions of effect but cannot rule out pleiot-

ropy. Therefore, our results show consistency with a pu-

tative causal mechanism and should not be interpreted

as direct proof of causality.

We conclude with several caveats. First, we note that us-

ing estimates of genetic correlation to find susceptibility

genes could still be biased as a result of confounding. The

expression weights used for TWASs could tag variants that

are causal through other genes or non-genic mechanisms.

In principle, this can be partially remedied by joint testing

of multiple genes and a trait. In this work, we combined
2, 2017



Figure 7. Estimates of Expression Correlation rGE between TC and HDL, LDL, and TG
(Left column) Estimates of rGE with the use of nominally significant genes (p < 0.05).
(Middle column) We repeated the analysis by using only susceptibility genes found in the x axis trait but not found in the y axis trait.
(Right right) Same analysis as in the middle column but with the other trait’s susceptibility genes.
All three analyses resulted in stronger point estimates for rTC j lipid when conditioning on HDL, LDL, and TG genes than for rlipid jTC;
however, significance was observed only for rTC jTG (p ¼ 2.34 3 10�3). Shaded regions indicate the estimated 95% confidence interval
for the regression line.
estimates across tissues by taking the mean effect to

compute the genetic correlation between traits and expres-

sion. This approach is unbiased but could be inefficient.

Recent work61 has described a random-effect model that

combines estimates across tissues to increase power. Finally,

our method of estimating correlation between traits by us-

ing the genetically predicted component of gene expres-

sionmakes several simplifying assumptions. First, we reme-

died the non-independence of genes by sampling single

genes within a 1 Mb region, an approach that has been

used previously.46 However, a more powerful approach

could take correlations across genes into account. Second,

we limited predictive models to the local (or cis) effects
The Ameri
on gene expression, which ignores distal (or trans) effects

that regulate gene expression. Although the predictive

accuracy of models for gene expression used in this

study can account for most of the variation due to ge-

netics,11 we believe that incorporating additional sources

of genomic information (e.g., functional priors on SNP

effects39,62,63) could make additional refinement possible.
Appendix A: Pathway Analysis

We used the PANTHER database47 to explore putative mo-

lecular function and pathways enriched with identified
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Figure 8. Estimates of brGE for TG with BMI and for TG with LDL
We present results for pairs of traits that displayed a significant difference (p < 0.05, Welch’s t test) in their conditional estimates. These
results are consistent with a causal model where BMI influences TG and TG influences LDL. Shaded regions indicate the estimated 95%
confidence interval for the regression line.
susceptibility genes. Using all susceptibility genes across

all traits, we found 13 significantly enriched categories,

of which seven were related to binding functions. Catalytic

activity exhibited the strongest enrichment at 1.33 (GO:

0003824; p ¼ 5.17 3 10�9; see Figure S9). We next focused

on individual traits (see Figure S10); however, most indi-

vidually tested gene sets did not indicate significant

enrichment, except for height, LDL, and TC. For example,

height had a significant enrichment of genes with catalytic

activity (1.313; p ¼ 4.77 3 10�4). We next looked at bio-

logical processes and found TWAS genes enriched at 1.23

for metabolic processes (GO: 0008152; p ¼ 7.29 3 10�11)

and 1.573 cellular catabolic processes (GO: 0044248;

p ¼ 2.51 3 10�2; see Figures S11 and S12). Enrichment
Table 4. Bi-directional Estimates of Genome-wide Genetic Correlation

Trait 1 Trait 2

Results when Ascertaining for Trait 1 Result

brGE SE p M brGE

BMI TG 0.62 0.10 2.06 3 10�3 22 �0.04

LDL TG 0.07 0.19 7.25 3 10�1 25 0.56

TC TG 0.24 0.14 1.63 3 10�1 36 0.76

We denote the number of ascertained genes used in the test asM. We tested for a
degrees of freedom determine by the Welch-Satterthwaite equation.
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was most pronounced in susceptibility genes specific to

height (1.33; p ¼ 1.03 3 10�6).
Supplemental Data

Supplemental Data include 12 figures and 14 tables and can

be found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2017.01.031.
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castle, L.L., Morken, M.A., et al. (2012). Hyperglycemia and

a common variant of GCKR are associated with the levels of

eight amino acids in 9,369 Finnish men. Diabetes 61, 1895–

1902.
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