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Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems.
To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the
traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the
above problem, a new classifier, MexicanHat wavelet KELM classifier, is proposed in this paper.The proposed classifier successfully
improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the
Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the
performance of the proposed classifier is significantly superior to the compared classifiers.

1. Introduction

Extreme learning machine, which was proposed by Huang et
al. [1] in 2004, is a model of single-hidden layer feedforward
neural network. In this model, input weights and hidden
layer biases are initialized randomly, and output weights are
obtained by using the Moore-Penrose generalized inverse of
the hidden layer output matrix. Compared with the conven-
tional BP neural networks, ELM has faster learning speed,
higher testing accuracy, and lower computational complexity.
Therefore, ELM is widely used in sales forecasting [2], image
quality assessment [3], power loss analysis [4], and so on. In
2006,Huang et al. [5] proposed incremental extreme learning
machine (I-ELM), which continuously increased the number
of hidden layer nodes to improve the training accuracy.
Subsequently, Li [6] combined I-ELM with the convex opti-
mization learning method and proposed ECI-ELM in 2014,
which reduced the training time of I-ELM.This improvement
overcame the weakness of randomly selecting weights in
I-ELM and eventually improved the training accuracy. At
the same time, Wang and Zhang [7] introduced the Gram-
Schmidt orthogonalizationmethod into I-ELMand saved the
training time of I-ELM to a large degree. But, in general, I-
ELM and its varieties only improve the training accuracy.
Their numbers of hidden layer nodes are very likely to exceed
the number of samples. Thus, I-ELM greatly improves the
training time. In another perspective, in order to achieve

a higher training accuracy, Rong et al. [8] used statistical
methods to measure the relevance of hidden nodes of ELM
and proposed P-ELM in 2008. Then, in 2010, Miche et al.
[9] proposed OP-ELM, which is an improvement of P-ELM.
In addition, Akusok et al. [10] proposed a high-performance
ELM model in 2015, which provides a solid ground for
tackling numerous Big Data challenges. However, none of
these methods has changed the characteristic of the random
selection of input weights. In addition, the linear weighted
mapping method in original ELM is not replaced at all.

Therefore, both ELM and its varieties have some
inevitable problems. A Because of the random selection of
input weights, some hidden nodes may be given an input
weight that is very close to 0, which are commonly called dead
nodes. This phenomenon leads to the minimal effect of these
nodes and eventually affects the output accuracy. B With
the increment of the number of samples, the hidden nodes
number also becomes large. Thus, some high dimensional
dot product operations will appear in the training process.
Eventually, that will cause the increase of computational
complexity and training time. This problem is commonly
called dimension explosion. C For nonlinear samples, the
linear weighted mapping method often has inevitable error,
which leads to the reduction of the training accuracy.

In order to solve the above problems, Huang et al. [11]
proposed the kernel extreme learning machine (KELM) in
2012, which utilized the kernel function to replace the linear
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weighted mapping method. Initially, the kernel function they
selected is a Gauss function. Although [11] solves the problem
of dead nodes and dimension explosion in a sense, the perfor-
mance of the traditional kernel function for multiclass classi-
fication problems is still not very good. From [12, 13], we know
that wavelet functions can be used in SVM and ELM, which
have a strong fitting capability. Therefore, in this paper, we
propose a Mexican Hat wavelet kernel ELM (MHW-KELM)
classifier, which effectively solves the problems in the con-
ventional classifier. Compared with the traditional KELM,
the MHW-KELM classifier achieves better results on dealing
with the multiclass classification problems. Because of that,
the new kernel function improves the training accuracy.

The basic principle of ELM and some theorems are shown
in Section 2 of this paper. In Section 3, the Mexican Hat
wavelet kernel ELM is proposed, and its validity is also
proved. Performance evaluation is presented in Section 4.
Conclusion is given in Section 5.

2. Preliminary Work

2.1. ELM Model. Let us suppose that there are arbitrary
distinct samples {(𝑥𝑖, 𝑡𝑖) | 𝑥𝑖 ∈ 𝑅𝐷, 𝑡𝑖 ∈ 𝑅𝑀, 𝑖 = 1, 2, . . . , 𝑁}.
If the number of the hidden nodes is 𝐿 and the activation
function is 𝑔(𝑥), then we can randomly select the initial value
of the inputweights𝑊 and the hidden biases 𝑏. So, the hidden
layer output function of ELM can be obtained. It is shown as

𝐻 = [[[[[

𝑔 (𝑤𝑇1 𝑥1 + 𝑏1)...
𝑔 (𝑤𝑇1 𝑥𝑁 + 𝑏1)

⋅ ⋅ ⋅
d⋅ ⋅ ⋅

𝑔 (𝑤𝑇𝐿𝑥1 + 𝑏𝐿)...
𝑔 (𝑤𝑇𝐿𝑥𝑁 + 𝑏𝐿)

]]]]]
, (1)

where 𝑤𝑖 ∈ 𝑅𝐷, 𝑏𝑖 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝐿.
If the output weights are 𝛽, according to the proof given

by Huang et al. [1], the norm of 𝛽 is smaller, and the
generalization performance of ELM is better. Therefore, the
output weights 𝛽 can be obtained by finding the least square
solution of the problem

Minimize: 𝐿𝑃 = 12 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩2 + 𝐶2
𝑁∑
i=1

󵄩󵄩󵄩󵄩𝜉𝑖󵄩󵄩󵄩󵄩2
Subject to: ℎ (𝑥𝑖) 𝛽 = 𝑡𝑇𝑖 − 𝜉𝑇𝑖 , 𝑖 = 1, 2, . . . , 𝑁,

(2)

where ℎ(𝑥𝑖) is the 𝑖th output vector of hidden layer, 𝑡𝑖 is the𝑖th label vector, and 𝜉𝑖 is the error between the 𝑖th network
output vector and the label vector.

According to KKT theory, the above problem can be
transformed into a Lagrange function

𝐿𝐷 = 12 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩2 + 𝐶2
𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝜉𝑖󵄩󵄩󵄩󵄩2

− 𝑁∑
𝑖=1

𝑀∑
𝑗=1

𝛼𝑖,𝑗 (ℎ (𝑥𝑖) 𝛽𝑗 − 𝑡𝑖,𝑗 + 𝜉𝑖,𝑗) ,
(3)

where each of the Lagrange multipliers 𝛼𝑖 corresponds to a
sample 𝑥𝑖. By calculating the partial derivative of (3), we can
get the following set of equations:𝜕𝐿𝐷𝜕𝛽𝑗 = 0 󳨀→

𝛽𝑗 = 𝑁∑
𝑖=1

𝛼𝑖ℎ (𝑥𝑖)𝑇 = 𝐻𝑇𝛼
(4a)

𝜕𝐿𝐷𝜕𝜉𝑖 = 0 󳨀→
𝛼𝑖 = 𝐶𝜉𝑖,

𝑖 = 1, 2, . . . , 𝑁
(4b)

𝜕𝐿𝐷𝜕𝛼𝑖 = 0 󳨀→
ℎ (𝑥𝑖) 𝛽 − 𝑡𝑇𝑖 + 𝜉𝑇𝑖 = 0,

𝑖 = 1, 2, . . . , 𝑁,
(4c)

where 𝛼 = [𝛼1, . . . , 𝛼𝑁]𝑇. And the least square solution of𝛽 can be obtained by calculating the three equations in (4a),
(4b), and (4c). The solution is

∧𝛽= 𝐻𝑇 ( 𝐼𝐶 + 𝐻𝐻𝑇)−1 𝑇 (5)

and the output function of ELM is

𝑓 (𝑥) = ℎ (𝑥)𝐻𝑇 ( 𝐼𝐶 + 𝐻𝐻𝑇)−1 𝑇. (6)

2.2. Translation-Invariant Kernel Theorem. Kernel function
method is often used in SVM as a method of replacing dot
product. According to the Mercer theorem (see [14]), by
introducing the kernel function𝐾(𝑥𝑖, 𝑥𝑗), we can replace the
calculation of dot product in ELM. In order to reduce the
computational complexity of high dimensional dot product,
it is necessary to ensure that 𝐾(𝑥𝑖, 𝑥𝑗) is only a mapping
method of the relative position of two input samples (see (7)).

𝐾(𝑥𝑖, 𝑥𝑗) = 𝐾 (𝑥𝑖 − 𝑥𝑗) . (7)

The kernel functions which satisfy (7) are called the
translation-invariant kernel function. In fact, it is difficult
to prove that a translation-invariant kernel function satisfies
theMercer theorem. Fortunately, for the translation-invariant
kernel function, the following theorem provides a necessary
and sufficient condition to make it become an admissible
support vector kernel.

Theorem 1 (translation-invariant kernel theorem; see [15,
16]). A translation-invariant kernel 𝐾(𝑥𝑖, 𝑥𝑗) = 𝐾(𝑥𝑖 − 𝑥𝑗)
is an admissible support vector kernel, if and only if the Fourier
transform

𝐹 [𝐾] (𝜔) = (2𝜋)−𝐷/2 ∫
𝑅𝐷

exp (−𝑗𝜔𝑥)𝐾 (𝑥) 𝑑𝑥 (8)

is nonnegative.
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The kernel function selection method of ELM is the same
as SVM. Therefore, the above theorem can also be used to
determine whether a function is an admissible ELM kernel.
The commonly used translation-invariant kernel functions
are Gauss kernel function and polynomial kernel function.
In these two functions, Gauss kernel function is a kind of
translation-invariant kernel function. And the expression of
the two kernel functions can be given as

𝐺𝑎𝑢𝑠𝑠: 𝐾(𝑥𝑖, 𝑥𝑗) = exp(−󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩22𝜎2 )
𝑃𝑜𝑙𝑦: 𝐾(𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖𝑥𝑗)𝑑 .

(9)

In (9), 𝜎 is a Gauss core width and 𝑑 is an adjustable
polynomial power exponent.

3. Mexican Hat Wavelet Kernel ELM

3.1. Kernel ELM. In original ELMmodel, the linear weighted
hidden output function ℎ(𝑥) is usually not satisfied with the
mapping method of the nonlinear samples. In order to solve
this problem, we can replace ℎ(𝑥)𝐻𝑇 and𝐻𝐻𝑇 in (6) with a
kernel function𝐾(𝑢, V). And the result is

𝑓 (𝑥) = [[[[[

𝐾 (𝑥, 𝑥1)...𝐾 (𝑥, 𝑥𝑁)
]]]]]

𝑇

( 𝐼𝐶 + ΩELM)−1 𝑇, (10)

whereΩELM is the kernel function matrix of𝑋 (see (11)).

ΩELM = [𝐾 (𝑥𝑖, 𝑥𝑗)] ,
𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑁. (11)

3.2. Mexican Hat Wavelet Kernel Function. In this part, the
Mexican Hat wavelet kernel function is proposed. It is also
proved that Mexican Hat wavelet function is an admissible
ELM kernel.

Theorem 2 (see [12]). Let𝜓(𝑥) be a mother wavelet. Let 𝑎 and𝑐 denote the dilation and translation, respectively, and 𝑥, 𝑎, 𝑐 ∈𝑅. If 𝑥𝑖, 𝑥𝑗 ∈ 𝑅𝐷, then the dot product wavelet kernel is

𝐾(𝑥𝑖, 𝑥𝑗) = 𝐷∏
𝑑=1

𝜓(𝑥𝑑𝑖 − 𝑐𝑎 )𝜓(𝑥𝑑𝑗 − 𝑐𝑎 ) . (12)

If it satisfies the translation-invariant kernel theorem,
the following translation-invariant kernel function can be
obtained:

𝐾(𝑥𝑖, 𝑥𝑗) = 𝐷∏
𝑑=1

𝜓(𝑥𝑑𝑖 − 𝑥𝑑𝑗𝑎 ) . (13)

The proof ofTheorem 2 is given in [12]; we will not repeat
it in this paper. We use Mexican Hat wavelet as the mother
wavelet (see (14)). Then, the Mexican Hat wavelet kernel
function is derived (see (15)). In this paper, it is also proved
that Mexican Hat wavelet satisfies the translation-invariant
kernel theorem. In other words, it is also an admissible ELM
kernel.

𝜓 (𝑥) = (1 − 𝑥2) exp(−𝑥22 ) (14)

𝐾(𝑥𝑖, 𝑥𝑗)
= 𝐷∏
𝑑=1

[1 − (𝑥𝑑𝑖 − 𝑥𝑑𝑗𝑎 )2] exp[−12 (𝑥𝑑𝑖 − 𝑥𝑑𝑗𝑎 )2] . (15)

Lemma 3. As a kind of translation-invariant kernel function,
Mexican Hat wavelet is an admissible ELM kernel.

Proof. Firstly, it should be proved that the Fourier transform
of Mexican Hat wavelet is nonnegative (see (16)).

𝐹 (𝜔) = (2𝜋)𝐷/2 𝐷∏
𝑑=1

∫+∞
−∞

exp (−𝑗𝜔𝑑𝑥𝑑) (1 − 𝑥2𝑑𝑎2 )
⋅ exp(− 𝑥2𝑑2𝑎2)𝑑𝑥𝑑 ≥ 0.

(16)

Equation (17) can be decomposed into a set of integral
inequalities (see (19)). And the derivation process is

𝐹 (𝜔) = (2𝜋)𝐷/2 𝑎𝐷 𝐷∏
𝑑=1

∫+∞
−∞

{exp [−𝑗𝜔𝑎 (𝑥𝑑𝑎 ) − 12 (𝑥𝑑𝑎 )2] − (𝑥𝑑𝑎 )2 exp [−𝑗𝜔𝑎 (𝑥𝑑𝑎 ) − 12 (𝑥𝑑𝑎 )2]}𝑑(𝑥𝑑𝑎 )
= (2𝜋)𝐷/2 𝑎𝐷 𝐷∏

𝑑=1

exp(−12𝑎2𝜔2𝑑){∫
+∞

−∞
exp [−12 (𝑥𝑑 + 𝑗𝑎𝜔𝑑)2] 𝑑𝑥𝑑 − ∫+∞

−∞
𝑥2𝑑exp [−12 (𝑥𝑑 + 𝑗𝑎𝜔𝑑)2] 𝑑𝑥𝑑} .

(17)

The integral term in (17) can be written as

𝐼 = 𝐷∏
𝑑=1

(𝐹(𝑑)1 (𝜔) − 𝐹(𝑑)2 (𝜔)) , (18)

where 𝐼 is the integral term in (17),

𝐹(𝑑)1 (𝜔) = ∫+∞
−∞

exp [−12 (𝑥𝑑 + 𝑗𝑎𝜔𝑑)2] 𝑑𝑥𝑑, (19)
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Table 1: Basic features of 12 data sets.

Data set Training number Testing number Attribute Category
Abalone 2000 2177 8 3
Auto MPG 200 198 7 5
Bank 2000 2521 16 2
Car Evaluation 1000 728 6 4
Wine 100 78 13 3
Wine Quality 2000 4497 11 7
Iris 100 50 4 3
Glass 100 114 9 2
Image 100 110 19 7
Yeast 1000 484 8 4
Zoo 50 51 16 7
Letter 2000 18000 16 26

𝐹(𝑑)2 (𝜔) = ∫+∞
−∞

𝑥2𝑑 exp [−12 (𝑥𝑑 + 𝑗𝑎𝜔𝑑)2] 𝑑𝑥𝑑. (20)

According to the translation invariance of the integral, it
is easy to get (21) by using the partial integrationmethod.The
answer is

𝐹(𝑑)1 (𝜔) = (2𝜋)1/2 ,
𝐹(𝑑)2 (𝜔) = (2𝜋)1/2 (1 − 𝑎2𝜔2) . (21)

Substituting (21) into (18), we have

𝐷∏
𝑑−1

(𝐹(𝑑)1 (𝜔) − 𝐹(𝑑)2 (𝜔)) = (2𝜋)𝐷/2 𝑎2𝐷𝜔2𝐷. (22)

Then, substituting (22) into (17), we can obtain the
Fourier transform

𝐹 (𝜔) = (2𝜋)𝐷 𝑎3𝐷 exp(−𝑎22
𝐷∑
𝑑=1

𝜔2𝑑) 𝐷∏
𝑑=1

𝜔2𝑑. (23)

From (23), it is known that if 𝑎 ≥ 0, 𝐹(𝜔) ≥ 0. Therefore,
according to the translation-invariant kernel theorem, Mexi-
can Hat wavelet is an admissible ELM kernel.

3.3. MHW-KELM Classifier. We have already proved that
Mexican Hat wavelet is an admissible ELM kernel. So, we can
substitute (15) into (10) and constructMHW-KELMclassifier.
For a binary classification problem, the output function of the
new classifier is

𝑓 (𝑥) = sgn
{{{{{{{{{
[[[[[

𝐾 (𝑥, 𝑥1)...𝐾 (𝑥, 𝑥𝑁)
]]]]]

𝑇

( 𝐼𝐶 + ΩELM)−1 𝑇
}}}}}}}}}

. (24)

Besides, this classifier can also be used for the multiclass
classification problems. And the output function is

𝑓 (𝑥)

= argmax
{{{{{{{{{
[[[[[

𝐾 (𝑥, 𝑥1)...𝐾 (𝑥, 𝑥𝑁)
]]]]]

𝑇

( 𝐼𝐶 + ΩELM)−1 𝑇
}}}}}}}}}

. (25)

Equation (25) means the classification result is expressed
by the index value of the maximum value in output vector. In
addition, we can combine the nonnegative constant param-
eter 𝑎 of Mexican Hat wavelet and the penalty factor 𝐶 into
an individual and use some evolutionary algorithms such as
PSO [17, 18] to find the best values of these parameters. Next,
we will analyze the performance of the proposed classifier.

4. Performance Evaluation

This section will analyze the performance of MHW-KELM
and compare it with the traditional Gauss-KELM, Poly-
KELM, original ELM, and BP classifier. All these algorithms
run on the R2014a MATLAB software. The operating envi-
ronment is Core-i7, 2.6GHz CPU, 8G RAM. We choose
scaled conjugate gradient algorithm to optimize BP neural
network, which is faster than normal BP neural network. In
order to get excellent performance, the number of hidden
nodes of original ELM and BP is selected as 100% and 30%
of training samples, respectively. The data sets used in the
experiment are from theUCI database [19].They areAbalone,
AutoMPG, Bank, Evaluation,Wine,WineQuality, Iris, Glass,
Image, Yeast, Zoo, and Letter, respectively. The basic features
of these 12 data sets are shown in Table 1.

Then, we use the 12 data sets given in Table 1 to test the
running time and training accuracy of 5 algorithms. Each
data set will be tested by each algorithm 100 times. For each
time, the training sample will be randomly selected from
the total sample. In order to conduct a rigorous comparison,
paired Student’s test is performed, which gives the probability
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Table 2: Performance comparison with statistical test on Abalone.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Abalone (2000, 3)

Mean 79.42 79.26 77.24 62.53 64.20
Std. ±0.36 ±0.44 ±0.92 ±2.89 ±3.13𝑝 value 1.00 0.44 7.35e − 04 2.12e − 07 3.47e − 07
Time 0.665 0.673 0.968 3.357 7.835

Table 3: Performance comparison with statistical test on Auto MPG.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Auto MPG (200, 5)

Mean 82.24 73.55 79.01 56.71 <10
Std. ±0.51 ±1.22 ±0.90 ±3.24𝑝 value 1.00 1.15e − 06 7.35e − 04 5.16e − 05 0
Time 0.070 0.071 0.075 0.058 1.235

Table 4: Performance comparison with statistical test on Bank.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Bank (2000, 2)

Mean 89.71 89.89 86.50 65.85 87.99
Std. ±0.43 ±0.36 ±0.64 ±1.43 ±1.25𝑝 value 0.21 1.00 4.47e − 06 1.09e − 09 0.03
Time 0.657 0.652 0.8917 3.227 7.611

that two sets come from distributions with an equal mean.
Tables 2–13 record the results of these experiments, and each
table corresponds to a data set. All tables have four elements
which represent mean accuracy, standard deviation, 𝑝 value
obtained by paired Student’s test, and the running time,
respectively. For each data set, the data with bold type means
this is the best accuracy or the best running time (𝑝 value
= 1.00), while the data with italic type means there is no
statistical difference between this one and the best accuracy
or it is very close to the best time (𝑝 value ≥ 0.05).

By drawing the running time in all tables to a line graph,
we can get Figure 1. In Figure 1, the horizontal coordinate
corresponds to the number of training samples, 50, 100,
200, 1000, and 2000, respectively. Without loss of generality,
we can select five data sets, Zoo, Image, Auto MPG, Car
Evaluation, and Abalone, as the representations of different
numbers of samples. The vertical coordinate shows the mean
running time of each data set. Moreover, the running times
ofMHW-KELM andGauss-KELM are very close. So, we only
draw the running time ofMHW-KELM. Four lines are drawn
with different styles.

From all tables and Figure 1, it is clear to see that when
the training number is larger than 1000, compared to other
algorithms, MHW-KELM shows an obvious advantage in
running time. For the data sets whose training number is
more than 1000, such asAbalone, Bank, Car Evaluation,Wine
Quality, Yeast, and Letter, we can obtain that the running
time of MHW-KELM and Gauss-KELM is less than that
of other algorithms. That means translation-invariant kernel
is superior to other kernels. Therefore, it can be concluded
that the choice of translation-invariant kernel function can
effectively shorten the running time when the training size is
large enough.
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Figure 1: Comparison of running time of 4 algorithms.

From Tables 2–13, it can be obviously seen that the clas-
sification performance of MHW-KELM is better than other
algorithmswhen the number of categories ismore than 4.The
results of paired Student’s test show that the performance of
MHW-KELM is significantly different (𝑝 value ≤ 0.05) from
that of the original ELM and SCG-BP on all data sets, and it
is also different from Gauss-KELM and Poly-KELM on Auto
MPG, Car Evaluation, Wine Quality, and Image. These four
data sets have one thing in common, which is the fact that
the category numbers of these data sets are all more than 4.
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Table 5: Performance comparison with statistical test on Car Evaluation.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Car Evaluation (1000, 4)

Mean 97.58 96.12 92.98 31.94 70.25
Std. ±0.38 ±0.90 ±1.11 ±12.36 ±5.53𝑝 value 1.00 0.01 1.97e − 06 8.24e − 10 3.68e − 08
Time 0.204 0.217 0.240 0.548 2.751

Table 6: Performance comparison with statistical test on Wine.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Wine (100, 3)

Mean 99.82 83.63 99.28 50.10 36.87
Std. ±0.09 ±0.81 ±0.13 ±2.93 ±1.28𝑝 value 1.00 5.52e − 07 0.67 4.14e − 09 8.05e − 10
Time 0.070 0.072 0.058 0.058 1.088

Table 7: Performance comparison with statistical test on Wine Quality.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Wine Quality (2000, 7)

Mean 54.59 49.69 52.14 45.79 <10
Std. ±0.35 ±0.52 ±0.28 ±0.85𝑝 value 1.00 1.04e − 06 7.82e − 03 3.27e − 09 0
Time 1.159 1.133 1.372 3.520 7.159

Table 8: Performance comparison with statistical test on Iris.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Iris (100, 3)

Mean 99.20 99.32 98.85 61.34 35.41
Std. ±0.16 ±0.11 ±0.12 ±0.78 ±0.33𝑝 value 0.62 1.00 0.01 4.59e − 05 6.21e − 08
Time 0.071 0.075 0.062 0.055 1.290

Table 9: Performance comparison with statistical test on Glass.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Glass (100, 2)

Mean 98.11 98.47 99.41 92.83 75.76
Std. ±0.31 ±0.42 ±0.35 ±1.79 ±3.63𝑝 value 0.02 0.06 1.00 3.50e − 05 9.93e − 07
Time 0.072 0.074 0.065 0.057 1.074

Table 10: Performance comparison with statistical test on Image.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Image (100, 7)

Mean 93.87 85.12 87.58 35.56 16.13
Std. ±1.54 ±0.78 ±0.46 ±1.94 ±3.25𝑝 value 1.00 6.64e − 06 1.78e − 06 8.91e − 09 2.45e − 11
Time 0.075 0.072 0.061 0.056 1.193

Table 11: Performance comparison with statistical test on Yeast.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Yeast (1000, 4)

Mean 66.78 66.87 67.39 37.23 33.95
Std. ±0.72 ±0.94 ±0.36 ±3.71 ±2.11𝑝 value 0.06 0.11 1.00 1.57e − 07 7.84e − 08
Time 0.193 0.201 0.235 0.457 3.005
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Table 12: Performance comparison with statistical test on Zoo.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Zoo (50, 7)

Mean 99.27 99.12 99.15 92.30 35.56
Std. ±0.14 ±0.12 ±0.13 ±0.53 ±1.21𝑝 value 1.00 0.74 0.81 1.50e − 03 1.58e − 04
Time 0.075 0.076 0.057 0.056 1.135

Table 13: Performance comparison with statistical test on Letter.

Data set (training number, category) MHW-KELM Gauss-KELM Poly-KELM Original ELM SCG-BP

Letter (2000, 26)

Mean 72.62 86.80 68.79 15.51 <10
Std. ±13.26 ±4.32 ±3.88 ±5.48𝑝 value 0.11 1.00 0.01 2.43e − 03 0
Time 1.668 1.833 2.132 4.559 7.270

Besides, when the category number is less than 4, such as
Abalone, Bank, Wine, Iris, Yeast, and Letter, MHW-KELM
still has a similar performance to Gauss-KELM or Poly-
KELM. Therefore, MHW-KELM is an excellent classifier
in multiclass classification problems, which is better than
traditional kernel ELM.That means the Mexican Hat wavelet
function is a better ELM kernel than the Gaussian function.

5. Conclusion

In this paper, we propose a classifier, the Mexican Hat
wavelet kernel ELM classifier, which can be applied to the
multiclass classification problem. Besides, its validity as an
admissible ELMkernel is also proved.This classifier solves the
inevitable problems in original ELM by replacing the linear
weighted mapping method with Mexican Hat wavelet. The
experimental results show that the training time of MHW-
KELMclassifier ismuch less than that of original ELM,which
solves the problem of the dimension explosion in original
ELM. Meanwhile, the training accuracy of this classifier is
superior to the traditional Gauss-KELM and original ELM in
dealing with the multiclass classification problems.

In future work, in order to reduce the impact of inequality
of the training data on the performance, we plan to utilize the
boosting weighted ELMproposed by Li et al. [20] to optimize
the proposed classifier. In addition, from the experimental
results of this paper, it can be seen that a single kernel function
cannot meet the requirements of all data sets. So, we are
prepared to combine multiple kernel functions to construct
mixed kernel ELM, in order to suit different situations.
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