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Purpose: Many brain development studies have been devoted to investigate dynamic structural and
functional changes in the first year of life. To quantitatively measure brain development in such a
dynamic period, accurate image registration for different infant subjects with possible large age gap
is of high demand. Although many state-of-the-art image registration methods have been proposed
for young and elderly brain images, very few registration methods work for infant brain images
acquired in the first year of life, because of (a) large anatomical changes due to fast brain develop-
ment and (b) dynamic appearance changes due to white-matter myelination.
Methods: To address these two difficulties, we propose a learning-based registration method to not
only align the anatomical structures but also alleviate the appearance differences between two arbi-
trary infant MR images (with large age gap) by leveraging the regression forest to predict both the ini-
tial displacement vector and appearance changes. Specifically, in the training stage, two regression
models are trained separately, with (a) one model learning the relationship between local image
appearance (of one development phase) and its displacement toward the template (of another devel-
opment phase) and (b) another model learning the local appearance changes between the two brain
development phases. Then, in the testing stage, to register a new infant image to the template, we first
predict both its voxel-wise displacement and appearance changes by the two learned regression mod-
els. Since such initializations can alleviate significant appearance and shape differences between new
infant image and the template, it is easy to just use a conventional registration method to refine the
remaining registration.
Results: We apply our proposed registration method to align 24 infant subjects at five different time
points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve
more accurate and robust registration results, compared to the state-of-the-art registration methods.
Conclusions: The proposed learning-based registration method addresses the challenging task of
registering infant brain images and achieves higher registration accuracy compared with other coun-
terpart registration methods. © 2016 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.12007]
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1. INTRODUCTION

During the first year of postnatal development, the human
brain grows rapidly in brain volume and also dramatically
changes in both cortex and white-matter structures.1,2 For
instance, the whole brain volume increases from ~36% at 2–
4 weeks to ~72% of adult volume at 12 months.1,3 Several
neuroscience studies aimed to understand the human brain
development in this dynamic period. Modern imaging, such
as MRI (magnetic resonance imaging), provides a non-

invasive measurement of the whole brain. Hence, MRI has
been increasingly used in many neuroimaging-based studies
of early brain development and developmental disorders.3–5

To quantify structural changes across infant subjects,
deformable image registration can provide an accurate special
normalization of subtle geometric difference. Although many
image registration methods6–12 have been proposed in the last
two decades, very few methods work for infant MR brain
images acquired during early development, due to the two fol-
lowing difficulties:
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• Fast brain development. As shown in Fig. 1, not only
the whole brain volume expands, but also the folding
patterns in the cortical regions develop rapidly from
birth to 1 year old. Hence, infant image registration is
required to have the capacity of dealing with this large
deformation.

• Dynamic and non-linear appearance changes across dif-
ferent brain development stages. In general, there are
three stages of brain development in the first year,13,14

that is, (a) infantile stage (≤ 5 months), (b) iso-intense
stage (6–8 months), and (c) early adult-like stage
(≥ 9 months). As reflected by different brain time the
intensity histograms in Fig. 1, image appearances in
WM (white matter) and GM (gray matter) change dra-
matically due to white-matter myelination. Since many
image registration methods are mainly based on image
intensity or local appearance,15–20 such dynamic appear-
ance changes over time can pose significant difficulty
for infant brain image registration.

To address the above two difficulties, we propose a novel
learning-based registration framework to accurately register
any infant image in the first year of life (even with possible sig-
nificant age gap) to a pre-defined template image. Since volu-
metric image is in high dimension, we leverage regression
forest21–23 to learn two complex mappings in a patchwise man-
ner: (a) Patchwise appearance-displacement model that char-
acterizes the mapping from the patchwise image appearance to
the voxelwise displacement vector, where the displacement at
the patch center points to the corresponding location in the
template image space; (b) patchwise appearance-appearance
model that encodes the evolution of patchwise appearance
from one particular brain development stage to the correspond-
ing image patch in the template domain (of another brain
development stage). In the application stage, before registering
the new infant image to the template, for each voxel in the new
infant image, we predict its initial displacement to the template
by the learned patchwise appearance-displacement model. In
this way, we obtain a dense deformation field to initialize the
registration of the new infant image to the template. Then, we
further apply the learned patchwise appearance-appearance
model to predict the template-like appearance for the new

infant image. With this initialized deformation field and also
the estimated appearance for the new infant image under regis-
tration, many conventional registration methods, for example,
diffeomorphic Demons,15,16,24–26 can be used to estimate the
small remaining deformations between the new infant brain
image and the template.

In our previous work, we have proposed a sparse represen-
tation-based image registration method27 for infant brains, by
leveraging the known temporal correspondences among the
training subjects to guide the image registration of two new
infant images at different time points. Specifically, to register
the two new infant images with possible large age gap, we
first identify the corresponding image patches between each
new infant image and its respective training images with simi-
lar age by sparse representation technique. Then, the registra-
tion between the two new infant images can be assisted by
the learned growth trajectories from one time point to another
time point. However, this method is very time consuming to
solve the sparse representation problem at each time point,
thus making it less attractive in clinical applications.

In this paper, we have comprehensively evaluated the reg-
istration performance of our proposed method for infant
images at 2-week-old, 3-month-old, 6-month-old, 9-month-
old, and 12-month-old with comparison to the state-of-the-art
deformable image registration methods, including diffeomor-
phic Demons registration method15,16 (http://www.insight-
journal.org/browse/publication/154), the SyN registration
method in ANTs package (http://sourceforge.net/projects/
advants/) using mutual information17,18 and cross correla-
tion19,20 as similarity measures, and 3D-HAMMER28 using
the segmentation images obtained with iBEAT software
(http://www.nitrc.org/projects/ibeat/).29 Based on both quan-
titative measurements and visual inspection, our proposed
learning-based registration method outperforms all other
deformable image registration methods under comparison for
the case of registering infant brain MR image with large
anatomical and appearance changes.

The remaining parts of this paper are organized as follows.
In Section 2, we present technical details of the proposed
regression-forest-based infant brain registration method. In
Section 3, we give experimental results. Finally, in Section 4,
the conclusion is provided.

intensity 

%  GM 
 WM 

intensity intensity intensity intensity 

% % % % GM 
 WM 

 GM 
 WM 

 GM 
 WM 

 GM 
 WM 

2-week-old 12-month-old 3-month-old  6-month-old  9-month-old  

FIG. 1. Dynamic infant brain development from 2-week-old to 12-month-old. The first row shows the histograms of WM and GM intensities for the T1-weighted MR
images shown in the second row, acquired at 2-week-old, 3-, 6-, 9-, and 12-month-old, respectively. These histograms and images show large anatomical and dynamic
appearance changes for the infant MR brain images acquired in the first year of postnatal development. [Color figure can be viewed at wileyonlinelibrary.com]
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2. METHOD

The goal of our infant brain registration method is to regis-
ter any infant brain image in the first year of life with possible
large age gap to the template image T. Our learning-based
infant registration method consists of training and application
stages, as detailed in the next subsections.

Each subject in the training dataset has both MRI struc-
tural and DTI scans at 2 weeks old, 3 months old, 6 months
old, 9 months old, and 12 months old. It is worth indicating
that no ground-truth deformation fields between the subject
and the template brain images are available, thus difficult to
train and validate our learning models. To deal with this criti-
cal issue, we use a multimodal longitudinal infant brain seg-
mentation algorithm14 to segment each time point image into
WM, GM, and cerebrospinal fluid (CSF) by leveraging both
multimodal image information and the longitudinal heuristics
in temporal domain. And then, these segmentation results are
manually edited. Since the segmented images are free from
appearance difference, we can use these segmented images to
estimate the deformation field between each training image
and the template image by 4D-HAMMER registration
method.30 Next, the estimated deformation fields (based on
the segmented images) can be considered as ground truth (or
target deformation fields) for both training and validating our
appearance-displacement model. Although these obtained
deformation fields are not the gold standard for training, they
can approximately reproduce actual anatomical correspon-
dences, thus giving a way to provide the initial deformation
field by our proposed appearance-displacement model.

2.A. Training stage— learn to predict the
deformation and appearance changes by respective
regression-forest models

In the training stage, N MR image sequences
fItnjn ¼ 1; . . .;N; t ¼ 1; . . .;Mg, each with M = 5 time points
(scanned at 2-week-old, 3-month-old, 6-month-old, 9-month-
old, and 12-month-old), are used as the training dataset. All
data are transformed from each subject’s native space to a
randomly selected template space via affine registration by
FSL’s linear registration tool (FLIRT) in FSL package.31 Note
that, although in the application stage, only the T1- or T2-
weighted MR images (depending on the scanning time point)
will be used for registration, in the training images, we use
multimodal images, such as T1-weighted, T2-weighted MR
images, and DTI (diffusion tensor imaging), to obtain tissue
segmentation images for helping training. Thanks to the com-
plete longitudinal image information and also the comple-
mentary multimodal imaging information, we first deploy the
state-of-the-art longitudinal multimodal image segmentation
method29,32 to accurately segment each infant brain image to
WM, GM, and CSF. Since there are no any appearance
changes in these segmented images, we use a longitudinal
image registration method30 to simultaneously calculate the
temporal deformation fields from every time point to a pre-

defined template image T, with the temporal consistency
enforced by the estimated spatial deformation fields along
time. Thus, we obtain the deformation fields
Ut

n ¼ fut
nðvÞjv 2 XTg. It is worth noting that our goal of

training patchwise appearance-displacement model is to pre-
dict the displacement vector at the center of subject image
patch (prior to image refinement registration) in the applica-
tion stage. Therefore, we need to reverse each deformation
field Ut

n to make its native space correspond with each train-
ing image space, that is, Wt

n ¼ fwt
nðuÞju 2 XItng. We follow

the diffeomorphism principle in33 to reverse Ut
n by (a) estimat-

ing the velocity field from the obtained deformation field and
(b) integrating the velocity in the reversed order to obtain the
reversed deformation field. Thus, for each voxel u in the train-
ing image Itn, its corresponding location in the template image
space is uþ wt

nðuÞ.
Since the human brain develops dramatically in the first

year, we train both the patchwise appearance-displacement
and patchwise appearance-appearance regression models
from 2-week-old, 3-month-old, 6-month-old, and 9-month-
old to 12-month-old domain (used as template time point)
separately. In the following, we take the 3-month-old phase
(i.e., t = 2) as an example to explain the appearance-displa-
cement learning procedure.

2.A.1. Learn patchwise appearance-displacement
model

Training samples for patchwise appearance-displacement
model consist of pairs of the local image patch Pt

nðuÞ
extracted at the uniformly randomly sampled voxel u of train-
ing image Itn and its displacement vector wt

nðuÞ. Regression
forest21–23 is used to learn the relationship between local
image patch Pt

nðuÞ and displacement vector wt
nðuÞ. Specifi-

cally, we calculate several patchwise image features from
Pt
nðuÞ, such as intensity, 3-D Haar-like features, and coordi-

nates. The 3-D Haar-like features of a patch are computed as
the local mean intensity of any randomly displaced cubical
region, or the mean intensity difference over any two ran-
domly displaced, asymmetric cubical regions,14 where the
center of the randomly selected region is located in the patch.
To train a tree in the regression forest, the parameters of each
node are learned recursively, starting at the root node. Then,
the training samples are recursively split into left and right
nodes by selecting the optimal feature and threshold. Suppose
Θ denotes a node in the regression forest, and then its optimal
feature and threshold are determined by maximizing the fol-
lowing objective function,

E ¼ rðHÞ �
X

i2fL;Rg
Wi

W
rðHiÞ (1)

where Θi (i 2 {L, R}) denotes the left/right children node of
the node Θ. Wi denotes the number of training samples at the
node Θi. W is the number of training samples at the node Θ.
Z(Θ) is the set of training samples entering the node Θ. r(Θ)
denotes a function that measures the variance of training
samples Z(Θ) as below,
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rðHÞ ¼ 1
W

X
ðu;nÞ2ZðHÞjjw

t
nðuÞ � �dðHÞjj22 (2)

�dðHÞ ¼ 1
W

X
ðu;nÞ2ZðHÞ w

t
nðuÞ (3)

where �dðHÞ is the mean displacement vector of all training
samples at the node Θ. After determining the optimal feature
and threshold for the node Θ by maximizing Eq. (1), the
training samples are split into left and right child nodes by
comparing the selected features with the learned threshold.
The same splitting process is recursively applied on the left
and right child nodes until the maximal tree depth is reached
or the number of training samples at one node is less than a
certain amount. When the splitting stops, we consider the
current node as a leaf node and store the mean displacement
there for future prediction.

2.A.2. Learn patchwise appearance-appearance
model

Training samples for patchwise appearance-appearance
model consist of the local image patch Pt

nðuÞ centered at a
uniformly randomly sampled point u of the training image
Itn and the corresponding image patch PT uþ wt

n uð Þ� �

extracted at the location uþ wt
nðuÞ of the template T. We

use the same regression-forest learning procedure (as
described above) to train the patchwise appearance-appear-
ance model, except that the mean displacement vector in
the above is replaced with the mean of the template image
patches from all samples stored at the leaf node. Specifi-
cally, to estimate the template-like patch appearance for the
patch PsðuÞðu 2 XsÞ of the new subject image S, we con-
sider the mean image patch stored at the destination leaf
node as the prediction/estimation.

2.B. Application stage — register new infant brain
images from the first year of life

We register the new infant subject S to the same template
T that is used in the training stage in three steps: 1) predict
initial deformation field, 2) predict appearance change, and
3) estimate the remaining deformations. The registration pro-
gress is illustrated in Fig. 2.

2.B.1. Apply patchwise appearance-displacement
model — predict an initial deformation field

We first visit each voxel u of the new infant subject
Sðu 2 XsÞ and use the learned patchwise appearance-displa-
cement model to predict its displacement h(u), pointing to the
template image, based on the image patch Ps(u) extracted at
u. In this way, we obtain the dense deformation field
H ¼ fhðuÞju 2 Xsg and further calculate the initial deforma-
tion field F by reversing the dense deformation field H, since
the deformation field (deforming the subject image S to the
template space XT ) should be defined in the template image
space, that is, F ¼ ff ðvÞjv 2 XTg.

Given a new image patch Ps(u) (u 2 Xs) from a testing
subject S, we first extract the same patchwise image features
from Ps(u). Then, based on the learned feature and threshold
at each node, the testing image patch Ps(u) is guided toward
leaf nodes of different tree. When it reaches the leaf node of
each tree, the mean displacement vector stored in the leaf
node is used as the predicted displacement vector. For robust-
ness, we train multiple regression trees independently using
the idea of bagging. Thus, the final prediction is the average
of the predicted displacement vectors from all different deci-
sion trees. The thin-plate spline (TPS)34 is used to interpolate
and smooth the dense deformation field after obtaining the
initial deformation on each voxel. Specifically, we first check
the histogram of Jacobian determinant values, and then select
the points with Jacobian determinant values larger than 0 to
calculate the target point set using the learned deformation
field. The deformation field can be updated by the TPS
smoothness measurement with a fixed regularization term,35

which is used to ensure the topology preservation of the
deformation field. Note that the topology preservation is nec-
essary for the invertibility of the deformation field. Several
strategies are also used to prevent the potential issues in
reversing deformation field: (a) We increase the strength of
smoothness regularization term in TPS interpolation. (b) We
check the Jacobian determinant of interpolated dense defor-
mation field. If the Jacobian determinant is greater or smaller
than a fixed threshold, we will drop the control points in that
region and re-interpolate. We repeat this procedure until all
Jacobian determinants in the image domain are within a cer-
tain threshold. We believe more advanced interpolation
method (e.g., geodesic interpolation36,37) can better preserve
the topology of the deformation field. Figure 3 shows the
accuracy of predicted displacement vector at each voxel for
intra-subject registration (from 3-month-old to 12-month-old)
in terms of voxel-wise residual error w.r.t. the ground-truth
deformation that is obtained by registering the seg-
mented images. According to the accumulative histogram in
Fig. 3(b), it is apparent that almost 96.7% residual errors are
within 1 mm. Figure 3(c) and (d) show the examples of a
ground-truth deformation field and the learned deformation
field during the leave-one-out validation procedure.

2.B.2. Apply patchwise appearance-appearance
model — predict appearance changes

After deforming the subject image S from its native space
XS to the template space XT , we further use the learned
patchwise appearance-appearance model to convert local
image appearance Ps(u) from the time point where the subject
image S is scanned to Q(u) at the time point where the tem-
plate image T is scanned. Thus, we finally obtain the roughly
aligned subject image with its template-like appearance also
estimated, which can be denoted as Ŝ.

Figure 4 demonstrates the performance of predicting
appearance changes from 2-week-old, 3-month-old, 6-month-
old, and 9-month-old to 12-month-old, respectively. Specifi-
cally, Fig. 4(a) shows the 12-month-old template image. It is
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clear that both shape and image appearance of this 12-month-
old template image are quite different from those of 2-week-
old, 3-month-old, 6-month-old, and 9-month-old images (as
shown in the top row of Fig. 4). After applying the patchwise
appearance-displacement model to generate the initial defor-
mation field, we largely remove the shape discrepancies, as
shown in the middle row of Fig. 4, but the appearance differ-
ences remain. Next, for each (subject) image at 2-week-old,
3-month-old, 6-month-old, and 9-month-old, we apply their
respective learned patchwise appearance-appearance models
on each image voxel and replace the original local image
appearance by the predicted template-like (12-month-old)
appearance. As shown in the bottom row of Fig. 4, not only
the shape but also the image appearance become similar to
the template after sequentially applying the patchwise
appearance-displacement and patchwise appearance-appear-
ance models at each time point.

Figure 5 shows an example in each stage of estimating the
deformation field during the intra-subject registration (from
3-month-old to 12-month-old). Fig. 5(a) shows the target

ground-truth deformation field, Fig. 5(b) shows the learned
deformation field by our appearance-displacement model,
Fig. 5(c) shows the remaining deformation field between the
template-like image and the template image, and Fig. 5(d)
gives the final deformation field by composing our learned
deformation field and our estimated remaining deformation
field. The similarity between deformation fields in (a) and (d)
indicates the accuracy of our proposed registration method.

2.B.3. Estimate the remaining deformation — finish
the registration

Since the anatomical shape and appearance of learned Ŝ
are almost similar to the template image T, we employ the
classic diffeomorphic Demons15,16 to complete the estimation
of the remaining deformation G. Finally, the whole displace-
ment vector U from subject image S to the template image T
can be achieved by U ¼ F � G, where “�” stands for the
deformation composition.33 The schematic registration pro-
cess is shown in Fig. 2.

FIG. 2. The schematic illustration of the proposed registration process. [Color figure can be viewed at wileyonlinelibrary.com]

(b) Cumulative histogram of
 displacement residual  (c) The ground truth  (d) The learned deformation field(a) The map of residual error  

FIG. 3. (a) The map of residual error between predicted displacement field at each voxel and its ground-truth displacement field. (b) The accumulative histogram of resid-
ual errors in the whole brain region. (c) A ground-truth deformation field. (d) Our learned deformation field. [Color figure can be viewed at wileyonlinelibrary.com]
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2.C. Evaluation criterion

We use Dice ratio of combined WM and GM (as well as
Dice ratio of hippocampus) as a measurement to quantita-
tively evaluate the accuracy of registration. The Dice ratio
can be obtained as follows:

Dice ratio ¼ 2jjA \ Bjj
jjAjj þ jjBjj (4)

where A is the combined WM and GM voxel set of template
and B is the combined WM and GM voxel set of registered
subject when calculating Dice ratio for the combined WM
and GM. We also measure the accuracy of the registration by
calculating Dice ratio between the hippocampus voxel set of
the template and the hippocampus voxel set of each registered
subject. Note that hippocampi in longitudinal images of ten
subjects were manually segmented and used as ground truth,
with one example shown in Fig. 6. The top row in Fig. 6
shows the original slices (in axial, sagittal, coronal views),
and the bottom row shows manually segmented left and right

hippocampi in red and green. After registering these images,
we can warp their respective manually segmented hip-
pocampi to the template for computing the overlap of hip-
pocampi with Dice ratio.

3. EXPERIMENT

Totally 24 infant subjects are included in the following
experiments, where each subject has T1- and T2-weighted
MR images at 2-week-old, 3-, 6-, 9-, and 12-month-old. The
T1-weighted images were acquired with a Siemens head-only
3T MR scanner and had 144 sagittal slices at resolution
1 9 1 9 1 mm3. The T2-weighted images were obtained
with 64 axial slices at resolution 1.25 9 1.25 9 1.95 mm3.
For each subject, the T2-weighted image was linearly aligned
to its T1-weighted image at the same time point using
FLIRT31,38 and then further isotropically up-sampled to
1 9 1 9 1 mm3 resolution. In our experiments, the follow-
ing parameters are used: (a) Input patch size: 7 9 7 9 7, and
extracted from the training subjects; (b) output patch size:

(a) 12-month-old   (b) 2-week-old   (c) 3-month-old   (d) 6-month-old   (e) 9-month-old

FIG. 4. Estimation of estimating both shape and appearance changes from 2-week-old, 3-month-old, 6-month-old, and 9-month-old to the 12-month-old template
image (a). From top to bottom row, we respectively show the original subject images, the deformed subject images after applying the learned patchwise appear-
ance-displacement model, and the deformed subject images after applying both the learned patchwise appearance-displacement and appearance-appearance mod-
els at 2-week-old (b), 3-month-old (c), 6-month-old (d), and 9-month-old (e). It can be observed that both anatomical and appearance discrepancies have been
largely decreased after applying these two learned models. [Color figure can be viewed at wileyonlinelibrary.com]

(a) The ground truth   (b) The learned deformation field (d) The final deformation field  (c) The remaining deformation field 

FIG. 5. Estimation of the deformation fields. (a) The target ground-truth deformation field, (b) the learned deformation field by our appearance-displacement
model, and (c) the remaining deformation field estimated by registering the template-like image and the template image, and (d) the final deformation field by
composing our learned deformation field and our estimated remaining deformation field
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1 9 1 9 1, and extracted from the training template; (c) the
length of Haar-like features: 300; (d) random forest: the num-
ber of regression trees is 100, and the maximum tree depth is
50; and (e) the number of sampled patches is 50,000.

The image preprocessing includes three steps: skull-strip-
ping,32,39 bias correction,40 and image segmentation.41 We
compare the registration accuracy of our proposed learning-
based infant brain registration method with several state-of-
the-art deformable registration methods under the following
three categories:

• Intensity-based image registration methods. We employ
three deformable image registration methods that use dif-
ferent image similarity metrics, that is, (a) diffeomorphic
Demons,15,16 (b) mutual-information-based deformable
registration method (MI-based),17,18 and (c) cross-corre-
lation-based deformable image registration method (CC-
based).19,20

• Feature-based image registration method. HAMMER28

is one of typical feature-based registration methods,
which computes geometric moments for all tissue types
as morphological signature at each voxel. The deforma-
tion of image registration is driven by robust feature
matching, instead of simple image intensity compari-
son. Apparently, the registration performance of this

method is highly dependent on the segmentation qual-
ity. In the following experiment, we assume that the
new to-be-registered infant image has been well seg-
mented, which is, however, not practical in real applica-
tion since segmentation of infant image at single time
point is very difficult without complementary longitudi-
nal and multimodal information.

• Other learning-based registration method. In our previ-
ous work, we proposed a sparse representation-based
registration method (SR-based),27 which leveraged the
known temporal correspondence in the training subjects
to tackle the appearance gap between the two different
time point images under registration.

3.A. Registering images of same infant subject at
different time points

In order to investigate subject-specific brain development,
the images of the same infant subject at different time points
need to be registered in many longitudinal studies. Thus, for
each subject, we register 2-week, 3-, 6-, and 9-month-old
images to its corresponding 12-month-old image. Specifi-
cally, we carry out this experiment in a leave-one-out manner,
where the longitudinal scans of 23 infant subjects are used to

FIG. 6. Demonstration of manually segmented hippocampi in a 12-month-old infant brain MR image. The top row shows the original slices (in axial, sagittal, coronal
views), and the bottom row shows manually segmented left and right hippocampi in red and green. [Color figure can be viewed at wileyonlinelibrary.com]
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train both the patchwise appearance-displacement and ap-
pearance-appearance models at 2-week, 3-, 6-, and 9-month-
old separately, by using the corresponding 12-month-old
image as the template. In the testing stage, we separately reg-
ister the 2-week, 3-, 6-, and 9-month-old images of the
remaining infant subject to its corresponding 12-month-old
image.

Recall that all the longitudinal images of total 24 infant
subjects have been well segmented by manually editing seg-
mentation images from automatic tissue segmentation results,
and thus can be used as ground truth. To quantitatively evalu-
ate the registration accuracy, we calculate the Dice ratio of
WM and GM between the 12-month-old segmentation image
(used as template) and the registered segmentation image
from each of other time points. Table I shows the mean and
standard deviation of Dice ratios of the combined WM and
GM under 24 leave-one-out cases by CC-based, MI-based,
HAMMER, SR-based, our method after applying the learned
patchwise appearance-displacement model (our method 1),
and our full method (our method 2), respectively. It is appar-
ent that (a) our proposed method achieves better Dice ratio.
(b) Combining the appearance-displacement model and ap-
pearance-appearance model is a feasible way to register the
images with large anatomical and appearance changes. (c)
The improvements are significant to register subject infant
brain MR images of 2-week-old and 3-month-old to the 12-
month-old template. In order to evaluate the performances of
registration methods, Table II also shows Dice ratios of hip-
pocampus voxel set between the registered image and the
template image. As mentioned, we have ten subjects with
their left and right hippocampi manually segmented. Thus,
we warp the segmented hippocampus regions by CC-based,
MI-based, HAMMER, SR-based, and our method, for

calculating the Dice ratios between the hippocampus voxel
set of template and the hippocampus voxel set of each regis-
tered subject by Eq. (4). As shown in Table II, our proposed
method obtains similar results as the SR-based method, but
much higher hippocampal Dice ratio than other methods.
From both (Tables I and II), we can see that (a) the learning-
based method (our method and SR-based method) can obtain
better registration accuracy, and (b) the proposed method is
effective in registering infant brain MR images by using both
appearance-displacement model and appearance-appear-
ance model.

As shown in Fig. 2, our method first uses the learned
patchwise appearance-displacement and appearance-appear-
ance models to predict initial deformation field and correct
the appearance differences, and then uses a conventional reg-
istration method to estimate the remaining deformations.
Here, we take diffeomorphic Demons15,16 as a refinement
registration method to demonstrate the advantages of our pro-
posed learning-based registration method. The template
image is shown in the first row of (Fig. 7). From left to right
columns, we show the registration results for 2-week-old, 3-,
6-, and 9-month-old images by linear registration (2nd row),
direct use of diffeomorphic Demons (3rd row), CC (4th row),
MI (5th row), HAMMER (6th row), diffeomorphic Demons
after applying our learned patchwise appearance-displace-
ment model (7th row), and our full method (last row), respec-
tively. It is apparent that our learning-based registration
method is effective for infant brain registration and outper-
forms both linear registration and the direct use of diffeomor-
phic Demons for registering 2-week-old and 3-month-old
images to the 12-month-old image, and (2) using both patch-
wise appearance-displacement model and appearance-
appearance model can improve registration performance for

TABLE II. The mean and standard deviation of Dice ratios of the hippocampus on ten intra-subjects, when registering the 2-week-old, 3-, 6-, and 9-month-old
images to the 12-month-old image via different methods. The best Dice ratio for each column is shown in bold.

Method 2-Week to 12-month 3-Month to 12-month 6-Month to 12-month 9-Month to 12-month

CC-based 0.579 � 0.066 0.585 � 0.065 0.681 � 0.064 0.748 � 0.045

MI-based 0.581 � 0.072 0.593 � 0.070 0.676 � 0.061 0.751 � 0.053

3D-HAMMER 0.601 � 0.061 0.613 � 0.062 0.683 � 0.065 0.736 � 0.051

SR-based 0.614 � 0.063 0.635 � 0.055 0.702 � 0.059 0.762 � 0.049

Our proposed method 0.615 � 0.024 0.638 � 0.047 0.702 � 0.071 0.766 � 0.052

TABLE I. The mean and standard deviation of Dice ratios of the combined WM and GM for intra-subject registration, by aligning the 2-week-old, 3-, 6-, and 9-
month-old images to the 12-month-old image via different methods. The best Dice ratio for each column is shown in bold.

Method 2-Week to 12-month 3-Month to 12-month 6-Month to 12-month 9-Month to 12-month

CC-based 0.714 � 0.025 0.687 � 0.031 0.797 � 0.028 0.851 � 0.019

MI-based 0.709 � 0.028 0.694 � 0.030 0.799 � 0.029 0.850 � 0.018

3D-HAMMER 0.764 � 0.027 0.756 � 0.028 0.806 � 0.024 0.848 � 0.021

SR-based 0.774 � 0.015 0.778 � 0.018 0.818 � 0.016 0.858 � 0.015

Our proposed method 1 0.810 � 0.044 0.783 � 0.054 0.823 � 0.056 0.892 � 0.009

Our proposed method 2 0.833 � 0.029 0.826 � 0.026 0.847 � 0.041 0.892 � 0.006
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infant brain images with large anatomical and appearance
changes.

In Fig. 8, we further show cortical surface distances
between the template surface and the aligned subject sur-
faces, by registering the segmented images of template and

subject images (used as the target ground-truth deformation
fields in this study; 1st row), and registering the original MR
images by linear registration (2nd row), diffeomorphic
Demons (3rd row), and our learning-based method (bottom).
As shown in Fig. 8, it is clear that our proposed registration
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FIG. 7. Intra-subject registration results on infant brain images at different time points. The first row represents the 12-month-old image, which is used as the tem-
plate. From left to right columns, we show registration results for 2-week-old, 3-, 6-, and 9-month-old images by linear registration (2nd row), direct use of diffeo-
morphic Demons (3rd row), CC (4th row), MI (5th row), HAMMER (6th row), diffeomorphic Demons after applying our learned patchwise appearance-
displacement model (7th row), and our full method (last row), respectively. The 7th row shows that, after applying our learned appearance-displacement model,
the anatomical structures of different time point images become similar to the template image shown in the first row. Moreover, the last row shows that, after
applying both of our proposed learning models (our full method), not only the anatomical structures but also the appearances of different time point images
become similar to the template image. [Color figure can be viewed at wileyonlinelibrary.com]
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method achieves more accurate registration results than com-
parison registration methods, especially in the regions inside
the red circles.

3.B. Registering images of different infant subjects
with age gap

It is more challenging to register infant brain images of
different subjects with possible large age gap. Here, we use a

leave-two-subjects-out strategy to evaluate the registration
performance. Specifically, longitudinal scans of 22 infant
subjects are used as the training dataset to train both the ap-
pearance-displacement and appearance-appearance models
at each time point. The 12-month-old image of one remaining
infant subject is treated as the template. Then, we register the
2-week, 3-, 6-, and 9-month-old images of another remaining
infant subject to the template. We repeat such procedure for
C2
24 ¼ 276 times and report the averaged Dice ratio of

Residual errors

0mm 

4mm 

2mm 

6mm 

8mm 

2-week-old 3-month-old  6-month-old  9-month-old  

FIG. 8. Cortical surface distances between the template surface and the aligned subject surfaces, by registering the segmented images of template and subject
images (used as the target ground-truth deformation fields in this study (1st row), and registering the original MR images by linear registration (2nd row), diffeo-
morphic Demons (3rd row), and our learning-based method (bottom). The color-coding bar shows the template-to-aligned surface distance range. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE III. The mean and standard deviation of Dice ratios of the combined WM and GM for inter-subject registration, by aligning 2-week-old, 3-, 6-, and 9-
month-old images to the 12-month-old image via different methods. The best Dice ratio for each column is shown in bold.

Method 2-Week to 12-month 3-Month to 12-month 6-Month to 12-month 9-Month to 12-month

CC-based 0.643 � 0.030 0.618 � 0.025 0.684 � 0.024 0.722 � 0.020

MI-based 0.614 � 0.025 0.602 � 0.022 0.675 � 0.030 0.717 � 0.022

3D-HAMMER 0.662 � 0.023 0.642 � 0.026 0.688 � 0.025 0.715 � 0.023

SR-based 0.673 � 0.016 0.665 � 0.017 0.695 � 0.015 0.718 � 0.018

Our proposed method 1 0.623 � 0.029 0.633 � 0.026 0.661 � 0.050 0.676 � 0.039

Our proposed method 2 0.692 � 0.035 0.684 � 0.037 0.726 � 0.069 0.766 � 0.033
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TABLE IV. The mean and standard deviation of Dice ratios of the hippocampus on ten INTER-subjects, when registering the 2-week-old, 3-, 6-, and 9-month-old
images to the 12-month-old image via different methods. The best Dice ratio for each column is shown in bold.

Method 2-Week to 12-month 3-Month to 12-month 6-Month to 12-month 9-Month to 12-month

CC-based 0.442 � 0.081 0.471 � 0.078 0.573 � 0.053 0.627 � 0.053

MI-based 0.437 � 0.073 0.465 � 0.072 0.569 � 0.058 0.631 � 0.061

3D-HAMMER 0.461 � 0.071 0.512 � 0.069 0.568 � 0.062 0.621 � 0.050

SR-based 0.478 � 0.063 0.535 � 0.0.67 0.585 � 0.062 0.625 � 0.055

Our proposed method 0.480 � 0.078 0.537 � 0.059 0.590 � 0.050 0.628 � 0.079

2-week-old 3-month-old  6-month-old  9-month-old

FIG. 9. Inter-subject registration results on infant brain images at different time points. The first row shows the 12-month-old template, with T2-weighted image
(left) and T1-weighted image (middle). In the whole figure, the blue boxes denote the T2-weighted images, and the red boxes denote the T1-weighted images.
From left to right columns, we show the registration results for the 2-week-old, 3-, 6-, and 9-month-old images by linear registration (2nd row), direct use of dif-
feomorphic Demons (3rd row), CC (4th row), MI (5th row), HAMMER (6th row), diffeomorphic Demons after applying our learned patchwise appearance-dis-
placement model (7th row), and our full method (last row), respectively. Similar to Fig. 7, the 7th row in this figure shows that the anatomical discrepancies are
decreased, and the 8th row shows that both anatomical and appearance discrepancies are decreased. Even for inter-subject registration case, as shown in the last
row, our proposed method can still obtain good registration results. [Color figure can be viewed at wileyonlinelibrary.com]
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combined WM and GM in Table III by the CC-based, MI-
based, HAMMER, SP-based, our method after applying just
the learned patchwise appearance-displacement model (our
method 1), and our full method (our method 2), respectively.
Table IV further shows the Dice ratios of hippocampus
between registered images, on the ten subjects with manually
segmented hippocampi. These hippocampal results show
that: (a) our proposed method also achieves much better hip-
pocampal Dice ratios for inter-subject infant brain registra-
tion. (b) The best Dice ratios are 0.480 � 0.078,
0.537 � 0.059, 0.590 � 0.050, and 0.631 � 0.061 for regis-
tration of the 2-week-old, 3-, 6-, and 9-month-old images to
the 12-month-old image. (3) The Dice ratio on hippocampus
is still low, indicating the necessity of further improving
inter-subject registration.

Similarly, for visual inspection, the registration results
of different infant images are shown in Fig. 9. The tem-
plate T2-weighted (left) and T1-weighted (middle) images
are shown in the first row. Also, the blue boxes are used
to denote the T2-weighted images in their original and
zoomed-up scales, and the red boxes are used to denote
the T1-weighted MR images similarly. From left to right
columns, we show the registration results for the 2-week-
old, 3-, 6-, and 9-month-old images by linear registration
(2nd row), direct use of diffeomorphic Demons (3rd row),
CC (4th row), MI (5th row), HAMMER (6th row), diffeo-
morphic Demons after applying our learned patchwise ap-
pearance-displacement model (7th row), and our full
method (last row), respectively. Even under these inter-sub-
ject registration cases, it is also apparent that: (a) our learn-
ing-based registration method outperforms both linear
registration and the direct use of diffeomorphic Demons
for registering the 2-week-old and 3-month-old images to
the 12-month-old image, and (b) using both the patchwise
appearance-displacement model and appearance-appear-
ance model can further improve the registration perfor-
mance for infant subjects with large anatomical and
appearance changes.

Our experiments were done on a computer cluster with
3.1 GHz Intel processors, 12 M L3 cache, and 128 GB mem-
ory nodes. The average run times of Demons, MI-based, CC-
based, 3D-HAMMER, SR-based and our proposed method
without considering the training time were 3.6, 12.5, 14.6,
28.7, 26.3, and 6.1 minutes, respectively.

4. CONCLUSION AND DISCUSSION

In this paper, we have presented a novel learning-based
registration method to tackle the challenging problems of
infant brain image registration in the first year of life. To
address the rapid brain development and dynamic appearance
changes, we employ regression forest to learn the complex
anatomical development and appearance changes between
different time points. Specifically, to register a new infant
image with possible large age gap, we first apply the learned
appearance-displacement and appearance-appearance

models to initialize image registration and also adjust image
appearance (becoming similar to the template image). Then,
we use the conventional image registration method to esti-
mate the remaining deformation field, which is often small
and thus much easier to be estimated, compared to the case
of direct estimation from the original images. We have exten-
sively evaluated registration accuracy of our proposed method
on 24 infant subjects with longitudinal scans, and achieved
higher registration accuracy compared with other counterpart
registration methods.

It is worth indicating the potential bias in our current eval-
uation framework. Although 3D-HAMMER in iBEAT and
4D-HAMMER (used to generate ground truth) are both per-
formed on the segmented images, instead of the original
intensity images, the mechanisms used to constrain the defor-
mation field are the same when using HAMMER to register
either segmented images or original images. Thus, the final
results shown in all tables may be biased to those obtained by
3D-HAMMER (on registering original images). The better
way is to use other independent methods for generating the
ground truth.

For our future work, we also need to address several chal-
lenge. (a) How to obtain more accurate target deformation
fields to evaluate the performance of our method. The defor-
mation fields used as ground truth are not the gold standard,
which limits the evaluation of our proposed method, specifi-
cally for inter-subject registration. Besides, although the tar-
get deformation fields can be used to evaluate the accuracy of
our appearance-displacement model, the final accuracy of
our method is difficult to evaluate. Therefore, better valida-
tion strategy for infant brain registration is of high demand.
(b) How to improve the accuracy of our learning models for
further refinement of accuracy registration. Currently, we use
simple image features from local subject patch to estimate the
displacement or the template image intensities. Other
advanced features, that is, estimated with deep learning,
should be considered. Besides, we will need to incorporate
other registration algorithms into our learning-based registra-
tion framework, and further evaluate our methods with more
infant images.
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