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ABSTRACT Cells use biochemical networks to translate environmental information into intracellular responses. These re-
sponses can be highly dynamic, but how the information is encoded in these dynamics remains poorly understood. Here, we
investigate the dynamic encoding of information in the ATP-induced calcium responses of fibroblast cells, using a vectorial,
or multi-time-point, measure from information theory. We find that the amount of extracted information depends on physiological
constraints such as the sampling rate and memory capacity of the downstream network, and it is affected differentially by
intrinsic versus extrinsic noise. By comparing to a minimal physical model, we find, surprisingly, that the information is often
insensitive to the detailed structure of the underlying dynamics, and instead the decoding mechanism acts as a simple low-
pass filter. These results demonstrate the mechanisms and limitations of dynamic information storage in cells.
INTRODUCTION
Cells utilize cascades of biochemical pathways to translate
environmental cues into intracellular responses (1,2). Due
to extensive feedback and cross-talk among these signaling
pathways (3–6), messenger molecules exhibit rich dynamic
modes, such as waves, oscillations, and pulses. Recent
work in cell biology has suggested a new perspective in cell
signaling: the dynamics, or temporal profiles, of messenger
molecules allow cells to encode and decode even more rich
and complex information than do static profiles (7,8). For
instance, during inflammation response, exposure to tumor
necrosis factor a causes the transcription factor NF-kB to
oscillate between the nucleus and cytoplasm of a cell (9),
whereas bacterial lipopolysaccharide triggers a single wave
of NF-kB within the cell (10). Therefore, the dynamics of
NF-kB encode the identity of external stimuli. In another
example, stimulation of pheochromocytoma cells cells by
epidermal growth factor leads to transient mitogen-activated
protein kinase activation and cell proliferation, whereas stim-
ulation by nerve growth factor leads to sustained mitogen-
activated protein kinase activation and cell differentiation
(11). These and other examples raise the question of how
one quantifies the information carried by signaling dynamics.
Submitted August 10, 2016, and accepted for publication December 28,

2016.

*Correspondence: sunb@onid.orst.edu

Editor: Jennifer Curtis.

http://dx.doi.org/10.1016/j.bpj.2016.12.045

� 2017 Biophysical Society.
Information theory provides a useful framework for ad-
dressing such questions (12–14). In the simplest case, one
calculates the scalar mutual information between states of
extracellular stimuli (typically well-controlled discretized
values) and states of the cell (typically protein concentra-
tions measured at a certain time). Mutual information char-
acterizes the correlation between environmental cues and
cell responses, and conveniently expresses such correlations
in units of bits. For example, if the mutual information be-
tween an environmental stimulus and a cell response is
measured to be log22 ¼ 1 bit, it means that effectively
only two stimulus levels can be resolved by the response
variable; any further resolution is not possible given the
shape of the stimulus-response curve and the noise in the
system (14). Similarly, if the mutual information is
log23 ¼ 1:6 bit, then three stimulus levels can be resolved,
and so on. This framework has been successfully employed
to quantitatively understand the amount of information that
can be transmitted through a biochemical pathway (channel
capacity) (15), mechanisms of mitigating errors (16), and
design principles of signaling network architectures (17).

Recently, inspired by the fact that cells utilize dynamic
signaling to encode and decode information, a multivariate,
or vectorial, mutual information has been proposed (18). In
this framework, cellular responses are described by vectors
of dimension n, which consist of cellular states sampled at
multiple time points. The vectorial mutual information is
generally higher than the scalar mutual information. Indeed,
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the scalar mutual information can be thought of as the limit
of the vectorial mutual information when the length of the
vector is one, and therefore, the vectorial information cannot
be lower than the scalar information. This suggests that
signaling dynamics allow richer content to be transmitted
than does static information processing alone. It has also
been shown that sampling cellular states at multiple time
points eliminates extrinsic noise—noise that degrades infor-
mation due to cell-to-cell variability (18).

In light of these results, we ask, what is the optimal strat-
egy for cells to utilize the power of vectorial mutual informa-
tion? How should a cell sample its own temporal profiles?
Can cells use vectorial mutual information to distinguish
different dynamic states of the underlying signaling path-
ways? To address these questions, we combine experimental
measurements of ATP-induced Ca2þ responses with theoret-
ical analysis to systematically study scalar and vectorial
mutual information in a dynamic signaling system. We
find that given different physiological constraints, the
optimal sampling depends on the starting time, sampling
rate, and memory capacity. We characterize how vectorial
information is affected by intrinsic and extrinsic noise, in
both the experimental system and a simple physical model.
Surprisingly, we find that vectorial mutual information is
often insensitive to the detailed structure of the underlying
dynamics, failing to distinguish between, for example, oscil-
latory and relaxation dynamics. We explain this observation
by deriving the connections between vectorial and scalar in-
formation, which reveals that in a particular regime, vecto-
rial encoding acts as a simple low-pass filter.
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MATERIALS AND METHODS

Cell culture and sample preparation

The samples were prepared according to previously reported protocol (19).

Briefly, NIH 3T3 cells were cultured in standard growth media (Dulbecco’s

modified Eagle’s medium supplemented with 10% bovine calf serum and

1% penicillin). To prepare samples, cells were detached from culture dishes

using TrypLE Select (Life Technologies, Carlsbad, CA) and suspended in

growth media before being pipetted into the microfluidics devices and al-

lowed to form monolayers. After overnight incubation of the flow-chamber

devices containing cell monolayers, fluorescent calcium indicator (Fluo4,

Life Technologies) was applied to make the samples ready for imaging.
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FIGURE 1 Schematics of experimental setup. (A) Top and cross views of
Fluorescence imaging and data analysis

Fluorescence was detected using an inverted microscope (DMI 6000B,

Leica Microsystems, Wetzlar, Germany) coupled with a Flash 2.8 camera

(Hamamatsu Photonics, Hamamatsu City, Japan). Movies were taken at a

frame rate of 1 fps with a 20� oil immersion objective. Image analysis

and data processing were performed in MATLAB.
the microfluidics device for delivering ATP solution to cultured fibroblast

(NIH 3T3) cells. Inset: Fluorescent calcium imaging of a typical experi-

ment. (B) Relative fluorescent intensities indicating the calcium dynamics,

RiðtÞ, of individual cells (dashed lines) when stimulated by external ATP at

four different concentrations, and the average trajectories (solid lines) at

each concentration. To see this figure in color, go online.
RESULTS

To investigate properties of dynamic encoding, we focus on
the calcium dynamics of fibroblast cells in response to extra-
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cellular ATP, a common signaling molecule involved in a
range of physiological processes such as platelet aggrega-
tion (20) and vascular tone (21). ATP is detected by P2 re-
ceptors on the cell membrane and triggers the release of
second messenger inositol trisphosphate (IP3). IP3 activates
the ion channels on the endoplasmic reticulum (ER), which
allows free calcium ions to flux into the cytosol. The
nonlinear interactions of Ca2þ, IP3, ion channels, and ion
pumps generate various types of calcium dynamics which
may lead to distinct cellular functions (8,22).
Quantifying information in experimental
dynamics

To measure the calcium dynamics of fibroblast cells in
response to external ATP stimuli, we employ microfluidic
devices for cell culture and solution delivery as described
previously (19,23). In brief, NIH 3T3 cells (ATCC, Mana-
ssas, VA) are cultured in polydimethylsiloxane (PDMS)-
bounded flow channels, as shown in Fig. 1 A. After attaching
the glass bottom for 24 h, the cells are loaded with fluores-
cent calcium indicators (FLUO-4, Life Technologies) ac-
cording to the manufacture’s protocol. ATP solutions
diluted by Dulbecco’s modified Eagle’s medium to 10, 20,
50, and 100 mM are sucked into the flow channel with a
two-way syringe pump (New Era Pump Systems, Farming-
dale, NY) at a rate of 90 mL/min. At the same time, we
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record fluorescent images of the cell monolayer at 1 Hz for a
total of 10 min (Flash 2.8, Hamamatsu Photonics).

In all the experimental recordings, ATP arrives at approx-
imately t ¼ 10 s and stays at a constant concentration. Since
most responses happen within 2 min, we use the first 160 s
of recording for subsequent analysis. The time-lapse images
are postprocessed to obtain the fluorescent intensity, IiðtÞ, of
each cell, i, at a given time, t. We define the calcium
response as RiðtÞ ¼ ½IiðtÞ � Iri �=Iri , where Iri is a reference
obtained by averaging the fluorescence intensity of cell i
before ATP arrives (Fig. 1 B).

To quantify the information encoded in the calcium dy-
namics of fibroblast cells in response to ATP, we have
analyzed a total of >10,000 cells over four different ATP
concentrations (10, 20, 50, and 100 mM) as inputs. With
the underlying assumption that each input appears at a prob-
ability of 1/4, the same number of cells is selected for each
ATP concentration. Since the mutual information is
bounded from above by the minimum of the entropies of
the two variables, the maximal possible mutual information
between the input and output is the entropy of the input, or
log24 ¼ 2 bit.

The mutual information can be written in terms of the
joint probability distribution between input and output
variables, or equivalently as a difference between entropies
(24). In our case, we will find the latter more convenient.
Denoting the dynamic calcium response as Ra

i ðtÞ,
where a ¼ 1; 2; 3; 4 for each ATP concentration, and
i ¼ 1; 2;.;N for each cell ðN � 2500Þ, the scalar mutual
information is defined as

MIsðtÞ ¼ H½fRðtÞg� � 1

4

X
a

H½fRaðtÞg�; (1)

where H represents the differential entropy. The first term is
the unconditioned entropy calculated from cellular re-
sponses at time t for all four ATP concentrations. The sec-
ond term is the average of the differential entropies
conditioned at each ATP concentration. Intuitively, the sca-
lar mutual information, MIsðtÞ; measures how much the en-
tropy (uncertainty) in the output (cellular responses) is
reduced by knowledge of the input (ATP concentration)
and, therefore, how much information one variable contains
about the other. It is a function of the time, t, at which we
take a snapshot of the system and evaluate the differential
entropy across the ensemble of cells.

The vectorial mutual information is defined as

MIvðtsÞ ¼ H½fRð~tÞg� � 1
4

P
a

H½fRað~tÞg�; (2)

where~t ¼ ðts; ts þ r�1; ts þ 2r�1;.; ts þ TdÞ. When gener-
alizing to the vectorial mutual information, MIv, one has
to specify not only the sampling start time, ts (equivalent
to the time t in the case of MIs), but also the sampling dura-
tion, Td, and the sampling rate, r, which opens the possibility
of complex sampling strategies. In the time between ts and
ts þ Td, a fibroblast cell sampling its calcium concentration
at a rate r accumulates a vectorial representation of its cal-
cium dynamics with vector dimension n ¼ 1þ rTd. Since
the cell has to store the vector for further processing, n
also represents its memory capacity.

To calculate the scalar and vectorial mutual information,
we employ the k-nearest neighbor (kNN) method to esti-
mate the differential entropies (18,25,26), as we have done
in our previous work (27). This method does not require
binning of data, and it has been shown to converge quickly
even with a small number of data points (26). The kNN
method makes the approximation that the probability den-
sity, rðxÞ, around a data point x is uniform within the
n-dimensional sphere that encloses exactly k other data
points. As a result, the performance of the kNN method de-
grades, particularly for distributions that have long tails or
large spatial gradients. Despite these limitations, the kNN
method is widely employed in quantitative biology for its
ease of implementation and superior performance. That be-
ing said, some of the errors will cancel when calculating the
mutual information (18,26), and we have taken k ¼ 50

(square root of the sample size) based on the suggestions
of (25).
Dynamic encoding increases information

We first consider the situation where the sampling duration,
Td, is fixed. Fig. 2 shows the mutual information of both sca-
lar ðMIsÞ and vectorial encoding ðMIvÞ from fibroblast cal-
cium dynamics for Td ¼ 30 s (Fig. 2, A, C, and E) and
Td ¼ 60 s (Fig. 2, B, D, and F). As seen in Fig. 2, A and
B, MIs first rises, then falls, as a function of time. This is
due to the separation, then convergence, of the four ATP-
conditioned responses as a function of time, as seen in
Fig. 1 B: better-separated responses contain more informa-
tion about the ATP level. This shape is also reflected in
MIv, with additional smoothing due to the repeated
sampling.

Fig. 2, A and B, also shows that MIv increases with sam-
pling rate r. This is intuitive, since a larger sampling rate
produces a larger number of samples, n ¼ 1þ rTd, which
increases the amount of information extracted from the dy-
namics. Although the results in Fig. 2, A and B, are intui-
tively expected, it is also important to know the efficiency
for dynamic encoding. To this end, we have calculated
the mutual information per sample, defined as MIv=n, as
shown in Fig. 2, C and D. It is evident that higher coding
efficiency is achieved at a smaller sampling rate. This is
because when the sampling rate is large, samples are spaced
closely in time and therefore contain increasingly redundant
information, which lowers the coding efficiency. The results
shown in Fig. 2, C and D, suggest that although dynamic
Biophysical Journal 112, 795–804, February 28, 2017 797
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FIGURE 2 Information carried by calcium dy-

namics of fibroblast cells in response to ATP, for

fixed sampling duration, Td. (A and B) Vectorial

mutual information,MIv, as a function of sampling

start time, ts, at different sampling rates, r (color

bar), for (A) Td ¼ 30 s and (B) Td ¼ 60 s. The

black curve gives the scalar mutual information,

MIs, at each time point. (C andD) Mutual informa-

tion per sample for the same conditions as in (A)

and (B). (E and F) Maximal MIv over all ts values
as a function of the memory capacity, n, for (E)

Td ¼ 30 s and (F) Td ¼ 60 s. Maximal MIs is

plotted at n ¼ 1. Error bars in (A)–(F) represent

the mean 5 SD of 100 bootstraps. To see this

figure in color, go online.
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encoding mitigates intrinsic noise, it is not enough to allow
MIv to grow faster than linearly with n. Indeed, scalar en-
coding generally offers better efficiency than vectorial en-
coding: as shown in Fig. 2, C and D, MIsðtsÞ>MIvðtsÞ=n,
except at very early times when the cellular response has
just started.

The results of Fig. 2, A–D, are summarized in Fig. 2, E
and F, which plot MImax, the maximal mutual information
over all possible sampling start times, ts. As seen in
Fig. 2, E and F, MImax monotonically increases with n,
which shows that dynamic encoding improves the informa-
tion capture. However, the increase is sublinear, i.e., below
the dashed line defined by the scalar mutual information,
which shows that the efficiency of dynamic encoding de-
creases with vector length n. Considering scalar encoding
as the limiting case of r/0, we conclude that as the sam-
pling rate increases, mutual information increases but the
coding efficiency per measurement decreases.
798 Biophysical Journal 112, 795–804, February 28, 2017
Dynamics determine optimal sampling rate

Cells have limited ability to process dynamically encoded
information. It is conceivable that a biochemical signaling
network processing a vectorial code of high dimension will
be complex and expensive, because it requires a high mem-
ory capacity, n, for storage and transfer. Therefore, a rele-
vant question is, what sampling strategy can a cell apply
when the memory capacity is fixed? Fig. 3, A and B,
show the mutual information as a function of sampling
start time, ts, when the memory capacity, n, is fixed while
the sampling rate, r, and therefore the duration,
Td ¼ ðn� 1Þ=r, are allowed to vary. Comparing Fig. 3 A
to Fig. 3 B, we see that larger memory capacity n generally
allows more information to be transmitted, as was the case
in Fig. 2. This trend is quantified in Fig. 3 C, which plots
the mutual information as a function of n for a fixed sam-
pling rate and at two particular starting times, ts. We see
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FIGURE 3 Information carried by calcium dy-

namics of fibroblast cells in response to ATP, for a

given memory capacity, n. (A and B) Vectorial

mutual information, MIv, as a function of sampling

start time, ts, at different sampling rates, r (color

bar) for (A) n ¼ 2 and (B) n ¼ 4. The black curve

is the scalar mutual information, MIs, at each time

point. (C) MIv as a function of n at fixed sampling

rate r ¼ 1=30 Hz and sampling start time (black

curve, ts ¼ 0; red curve, ts ¼ 40 s). n ¼ 1 corre-

sponds to MIs. (D) Maximal MIv over all ts values

as a function of r for fixed memory capacity (red,

n ¼ 2; blue, n ¼ 4). Error bars in (A)–(D) represent

the mean5 SD of 100 bootstraps. To see this figure

in color, go online.
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that the amount of information significantly depends on ts
for small n, whereas the difference diminishes at larger
n. Therefore, we see that larger memory capacity not
only encodes higher information, but also helps cells to
obtain more uniform readouts. We suspect that the conver-
gence is due to the fact that information is upper-bounded
(at 2 bit in our case), which requires that all curves, regard-
less of ts, ultimately saturate with increasing n. Although
our current sample size is not large enough to calculate
MIv at larger n, the saturation of MIv has been shown in
(18) to occur at around n ¼ 12 for ATP-induced calcium
dynamics.

We also see in Fig. 3, A and B, that for a given n, there is
an optimal sampling rate, r, that maximizes the informa-
tion. This is made more evident by considering, as before,
the maximal mutual information, MImax, over all possible
start times, ts, which is plotted as a function of r in
Fig. 3 D. Particularly, for n ¼ 4 (blue curve), we see that
MImax is maximal at a particular sampling rate. This is
because, for a fixed number of samples n, sampling too
frequently results in redundant information, as discussed
above, whereas sampling too infrequently places samples
at late times, when the dynamic responses have already
relaxed (see Fig. 1 B). Therefore, it is generally beneficial
to sample at a lower rate except when the sampled points
are too far apart, which places samples outside the ‘‘high
yield’’ temporal region. The tradeoff between these two ef-
fects leads to the optimal sampling rate, where the informa-
tion gathered is the largest.
Vectorial information is insensitive to detailed
dynamic structure

Is vectorial encoding sensitive to the underlying details of
the dynamic response? To answer this question, and to pro-
vide a mechanistic understanding of dynamic information
transmission in biochemical networks, we construct a min-
imal stochastic model with the aim of recapitulating the key
features of the fibroblast response. As a minimal model we
consider a damped harmonic oscillator in a thermal bath,
driven out of equilibrium by a time-dependent forcing,
FðtÞ. The magnitude of the external forcing is proportional
to a scalar input, which is analogous to the ATP concentra-
tion. The displacement of the particle xðtÞ, like the calcium
dynamics, can then be analyzed to infer the information that
the oscillator encodes about the input.

The equation of motion for the oscillator is given by the
Langevin equation (28)

m
d2x

dt2
þ g

dx

dt
þ kx ¼ gaFðtÞ þ jðtÞ;
hjðtÞjðt0Þi ¼ 2kBTgdðt � t0Þ;
8< 0 t < t

FðtÞ ¼ :

1

1 t1%t%t2
e�bðt�t2Þ t > t2:

(3)
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Here, m is the mass, g is the drag coefficient, and k is the
spring constant. jðtÞ is the random forcing arising from
thermal fluctuations with energy kBT; it is Gaussian and
white, and represents intrinsic noise. The form of the
external forcing, FðtÞ, illustrated in Fig. 4 A for four magni-
tudes, g1;2;3;4, is chosen to reflect the fact that after initial
elevation, cells relax to their resting level of cytosolic cal-
cium concentration at the end of experimental recording
(see Fig. 1 B). To account for the extrinsic noise observed
in our cellular system (27), we have allowed the spring con-
stant for each oscillator trajectory to vary uniformly around
hki with a standard deviation of dk. Fig. 4 B shows sample
trajectories, xðtÞ, for two cases: when the oscillations are
overdamped ðm<mcÞ and when they are underdamped
ðm>mcÞ, where mchg2=ð4kÞ is the mass at critical
damping.

Fig. 4, C and D, shows, for the overdamped and under-
damped cases, the scalar and vectorial mutual information
between input, ga, and output xðtÞ, as a function of sampling
start time, ts, for various sampling rates r and fixed memory
capacity n ¼ 2. Additionally, Fig. 4 E shows the mutual in-
formation as a function of n at fixed r for the overdamped
case, and Fig. 4 F shows the maximal mutual information
as a function of r at fixed n for both cases. Comparing
Fig. 4 to Fig. 3, we see that our minimal model is sufficient
to capture the key features of the experiments. Specifically,
comparing Fig. 4, C and D, to Fig. 3 A, we see that the
model captures the non-monotonic shape of the mutual in-
formation as a function of start time, ts, as well as the
improvement of vectorial encoding (colors) over scalar en-
coding (black). Comparing Fig. 4 E to Fig. 3 C, we see that
the model captures the increase of mutual information with
memory capacity n, as well as the large-n convergence of
curves with different ts (although it is evident that the model
appears to saturate at an n value lower than the experimental
results). Finally, comparing Fig. 4 F to Fig. 3 D, we see that
the model captures the presence of an optimal sampling
rate, r, that negotiates the tradeoff between samples that
are well-separated, yet confined to the high-yield region
(t1%t%t2 in the model). These correspondences validate
the model, and allow us to use the model to ask how vecto-
rial encoding depends on the structure of the underlying dy-
namic responses.

The noisy oscillator model allows us to explore two
qualitatively different regimes of dynamic structure. In
the overdamped regime, the thermal noise overpowers
the oscillations, and the dynamics are dominated by fluc-
tuations (Fig. 4 B, upper). In contrast, in the underdamped
regime, the oscillations overpower the thermal noise, and
the dynamics are dominated by the underlying oscillatory
structure (Fig. 4 B, lower). Since vectorial mutual infor-
mation corresponds to sampling the dynamics at regular
intervals, it is natural to hypothesize that the amount of in-
formation extracted from underdamped dynamics will be
higher than that extracted from overdamped dynamics,
800 Biophysical Journal 112, 795–804, February 28, 2017
because underdamped dynamics have a more ordered
structure. Fig. 4, C and D, compares the mutual informa-
tion in the overdamped and underdamped cases. Surpris-
ingly, we see that the amounts of information are
roughly equivalent in the two cases. It is evident from
Fig. 4, C and D, that the equivalence holds at varying sam-
pling rates, r, and start times, ts (including the start time at
which the information is maximal (Fig. 4 F)). In partic-
ular, the equivalence holds when the sampling rate, r,
equals the oscillation frequency of the underdamped oscil-
lator, n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk=mÞð1� mc=mÞ

p
=ð2pÞz1=10 Hz in Fig. 4.

This is true despite the fact that rzn or nearby frequencies
is the regime where one might have expected the vectorial
information to benefit most from sampling the periodic
dynamics instead of noisy dynamics. We have also
checked that the equivalence holds for a large range of
intrinsic and extrinsic noise levels. The previously demon-
strated correspondence between the model and the exper-
iments suggests that in the fibroblasts as well, ordered
dynamics would not provide more information than noisy
dynamics, at least as quantified by the vectorial mutual
information. We expand upon this conclusion in the
Discussion.
Differential effects of intrinsic and extrinsic noise

Vectorial mutual information, MIv, is larger than scalar
mutual information, MIs, in part because repeated sampling
helps to mitigate intrinsic noise (18). Yet, in the case of the
fibroblast cells, the gain of MIv over MIs is often small. For
example, as seen in Fig. 3 A, at n ¼ 2 and r ¼ 1=10 Hz,
whereas MIs can be as large as ~0.4 bit, the further increase
of MIv over MIs is <~0.1 bit. We make this observation
quantitative by defining the information gain,
MIv;max �MIs;max, where each is maximized over the start
time, ts. Fig. 5 shows the information gain versus MIs;max

for the fibroblasts at n ¼ 2 and r ¼ 1=10 Hz (pink circle).
The fact that the gain is small (0.1 bit) suggests that addi-
tional factors, apart from intrinsic noise alone, reduce the ef-
ficacy of vectorial encoding.

To explore this hypothesis in a systematic way, we again
turn to our minimal oscillator model. For both the over-
damped and underdamped oscillator, we compute MIs;max

and the information gain. In the model, the intrinsic noise
is governed by the thermal energy kBT. The model also pro-
vides an opportunity to investigate the effects of extrinsic
noise, which is governed by dk=hki, the relative width of
the distribution of spring constants. As shown in Fig. 5,
when the intrinsic noise increases while the extrinsic noise
is fixed, both the scalar information and the information
gain decrease, as expected (dashed lines). The decrease in
scalar information is more pronounced than the decrease
in the gain, which is consistent with the fact that vector in-
formation is beneficial for mitigating intrinsic noise. On the
other hand, when the extrinsic noise increases while the
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FIGURE 4 Information encoding in the noisy

harmonic oscillator model. (A) Oscillator at

position xðtÞ is subjected to random thermal

forcing as well as deterministic forcing, FðtÞ (Eq.
3). Four force magnitudes, g1;2;3;4 ¼ f0:6 ;

1:2; 1:8 ; and 2:4 pNg, serve as input, and xðtÞ
is output. Other parameters are t1 ¼ 10 s, t2 ¼ 60

s, and b ¼ 0:01 s�1. (B) Two sample trajectories

(red and green curves) and the average of 5000 tra-

jectories (black curves) corresponding to g4 ¼ 2:4

pN. Upper: Overdamped oscillators with

m ¼ 0:4mc, where mc ¼ g2=ð4kÞ ¼ 0:25 mg is

the mass at critical damping, g ¼ 1 pN s/mm,

and k ¼ 1 pN/mm. Lower: Underdamped oscilla-

tors with m ¼ 9mc. Other parameters are

kBT ¼ 0.5 pN mm and dk ¼ 0:2 pN/mm. (C and

D) Vectorial mutual information, MIv, as a func-

tion of sampling start time, ts, at different sampling

rates, r (color bar), and memory capacity n ¼ 2

for (C) overdamped and (D) underdamped oscilla-

tors. The black curve represents the scalar mutual

information, MIs, at each time point. (E) MIv as a

function of n at fixed sampling rate r ¼ 1=30 Hz

and sampling start time (black curve, ts ¼ 0; red

curve, ts ¼ 40 s). n ¼ 1 corresponds to MIs. (F)

Maximal MIv over all ts values as a function of r

for fixed memory capacity n ¼ 2. Error bars in

(C)–(F) represent the mean 5 SD of 20 indepen-

dent trials for each condition. To see this figure in

color, go online.
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intrinsic noise is fixed, the gain decreases more rapidly,
whereas the scalar information decreases less rapidly
(colored symbols). This implies that the gain is more sensi-
tive to extrinsic noise than to intrinsic noise.

In the context of the fibroblast population, these results
suggest that extrinsic noise (cell-to-cell variability), not
intrinsic noise, is primarily responsible for degrading the
performance of vectorial encoding and producing small in-
formation gains.
Redundant information and low-pass filtering

The vectorial mutual information, MIv, can never be larger
than the sum of the scalar mutual information values,
MIsðtiÞ, taken individually at each time point, ti. The reason
is that there will always be some nonnegative amount of
redundant information between the output at one time and
the output at another time (29). Denoting the redundant in-
formation as MIred, we formalize this statement as
Biophysical Journal 112, 795–804, February 28, 2017 801



FIGURE 5 Gain of vectorial over scalar mutual information, where each

is maximized over start times, ts. For vectorial information, the memory ca-

pacity is n ¼ 2 and the sampling rate is r ¼ 1=10 Hz. Fibroblast data are

compared against the over- and underdamped oscillator model. In the oscil-

lator model, parameters are as in Fig. 4, and the intrinsic noise is governed

by kBT, which varies from 0.2 to 1 pN mm, whereas extrinsic noise is gov-

erned by dk=hki, which varies from 0 to 0.4. Error bars represent the mean

5 SD of 100 bootstraps (fibroblast data) for 20 independent trials of 5000

trajectories each (oscillator model). To see this figure in color, go online.

FIGURE 6 Redundant information of dynamic encoding for fibroblast

cells. Redundant information, MIred (Eq. 4, ts ¼ 70 s), is plotted as a func-

tion of memory capacity, n, for varying sampling rates, r, and compared

with the theoretical bound (Eq. 6). To see this figure in color, go online.

Potter et al.
MIred ¼
"Xn

i¼ 1

MIsðtiÞ
#
�MIv ¼ nhMIsi �MIvR0; (4)

where, as before, ti ¼ ts þ ir�1, and in the second step, we
rewrite the sum in terms of the temporal average,
hMIsi ¼ n�1

Pn
i¼1MIsðtiÞ. In the limit that the dynamics

are approximately stationary, such as in the high-yield re-
gions of Figs. 1 B and 4 B,MIs is approximately independent
of time, and hMIsi ¼ MIs. For n ¼ 2, as in Fig. 5, Eq. 4 then
becomes

MIv �MIs%MIs: (5)

Equation 5 expresses the intuitive fact that the gain upon
making an additional measurement can never be more
than the information from the original measurement, for a
stationary process. Equation 5 is plotted in Fig. 5 (dashed
line), and we see that it indeed bounds all data from above,
as predicted.

The redundant information in Eq. 4 can be directly
measured in the experiments. Fig. 6 shows the redundant in-
formation in the fibroblast calcium dynamics as a function
of the memory capacity, n, computed from the scalar and
vectorial mutual information according to Eq. 4. Here,
ts ¼ 70 s, and for each curve, the sampling rate, r, is fixed,
such that the duration, Td, increases with n. We see that the
redundant information depends on r and appears to be
802 Biophysical Journal 112, 795–804, February 28, 2017
bounded from above by a roughly linear function of n.
Can we understand this dependence theoretically? To
address this question, we return to Eq. 4. We rearrange
Eq. 4 as MIred ¼ ðn� 1ÞhMIsi � D, where we define
D ¼ MIv � hMIsi. Since the vectorial information is not
smaller than the scalar information corresponding to any
of its time points, it is also not smaller than the average sca-
lar information. Therefore, DR0, and we have

MIred%ðn� 1ÞhMIsi: (6)

Equation 6 is a linear function of n, weakly modified by the
fact that hMIsi itself depends on n, since it is computed for
varying numbers of time points. Equation 6 is compared
with the data in Fig. 6, and we see that it indeed predicts
the bound well. Equation 6 makes another prediction,
namely, that the bound is reached for a stationary process
when D ¼ MIv � hMIsi/0, i.e., when the vector informa-
tion provides vanishing improvement over the average sca-
lar information. We expect this situation to occur in the limit
of large sampling frequency, r, when samples occur in close
succession and offer little additional information beyond a
single scalar measurement. Indeed, we see from the data
in Fig. 6 that, consistent with this prediction, the bound is
approached in the limit of increasing r.

Clearly, the benefit of vectorial encoding is largest when
the redundant information is small (the lowest data points in
Fig. 6). In the ideal case, there is no redundant information
at all, and Eq. 4 becomes

MIv ¼
Xn

i¼ 1

MIsðtiÞ: (7)

Here, we see that the vectorial information is simply the sum
of the scalar information at each time point. In this sense,
Eq. 7 describes a low-pass filter: vectorial encoding captures
the temporal accumulation of scalar information, as long as
the sampling is sufficiently slow to remove the redundancy.
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Therefore, in this limit the vectorial information records
only the slow (low-frequency) variations in the dynamics.
This feature may help explain the previous counterintuitive
result that the vectorial information is insensitive to the
detailed dynamic structure, as we expand upon in the
Discussion.
DISCUSSION

The dynamic waveforms of signaling molecules offer a use-
ful perspective from which to understand cellular informa-
tion encoding. Indeed, dynamic encoding, as quantified by
the vectorial mutual information,MIv, has larger channel ca-
pacity than the static encoding, as quantified by the scalar
mutual information, MIs (18). From both experimental
data and a minimal model we presented here, we find that
dynamic encoding has several key advantages over static en-
coding. First, the maximal vectorial information is larger
than the maximal scalar information, suggesting that dy-
namic encoding provides a more reliable readout of environ-
mental inputs than static encoding does. Second, although
the scalar information can vary significantly with sampling
time, the vectorial information is more uniform across
sampling start times, even with small vector dimensions
(Figs. 3 C and 4 E).

However, the benefit of dynamic encoding comes with
the cost of increasing the memory capacity, n, of cells.
For a fixed memory capacity, we have shown that the
best strategy for cells to adopt is to sample as slowly as
possible while keeping their samples within a ‘‘high-yield’’
region, where the mean dynamics depend significantly on
the input. Nonetheless, we find that within this region,
the benefit of dynamic encoding can depend very little on
the detailed structure of the dynamics (persistent oscilla-
tion versus monotonic relaxation). Moreover, the gain of
dynamic encoding over static encoding can be small,
largely due to the presence of extrinsic, as opposed to
intrinsic, noise.

The finding that vectorial information is largely insensi-
tive to the detailed dynamics is surprising, and is likely a
reflection of the type of dynamics we investigate here, as
well as the vectorial measure itself. To accurately model
the experimental dynamics, we have considered noisy dy-
namics arising from a driven oscillator. Although this has al-
lowed us to probe both noise-dominated and oscillation-
dominated regimes, these dynamics remain mean reverting
and confined to a stationary or cyclo-stationary state. It is
likely that other classes of dynamics, such as temporal
ramps, would emerge as having uniquely higher vectorial
information than stationary dynamics. Furthermore, the
vectorial information itself, as defined here, reports correla-
tions between a categorical input variable and a regularly
sampled output trajectory. It is likely that more sophisticated
information-theoretic measures would be more sensitive to
dynamic details, such as the mutual information between
input and output trajectories that has been argued to play a
biological role in cell motility (30,31).

Our results suggest that dynamic and static encoding
mechanisms are deeply connected. By invoking the redun-
dant information, MIred (29), we have made this connection
rigorous. Specifically, combining Eqs. 4 and 6 yields
hMIsi%MIv%nhMIsi, which shows explicitly that the vecto-
rial information is bounded from both above and below by
quantities determined by the window-averaged scalar infor-
mation, hMIsi. Taking a window average of the scalar infor-
mation is equivalent to the downstream network acting as a
low-pass filter, accumulating temporal measurements at suf-
ficiently low frequencies. We find that such low-pass
filtering effects are evident in both the experimental and
modeling results.

In this study, we have taken the approach that an under-
standing of both the static and dynamic encoding behaviors
of the fibroblast cells can be obtained from a model based
on noisy harmonic oscillators. Despite the simplicity of the
model, we find that it reproduces the experimental results
very well. The agreement between the experiment and
this simple model highlights our central conclusion that
the vectorial mutual information is intrinsically connected
with the scalar mutual information and therefore has
limited capability to distinguish underlying dynamics.
Because the model is minimal, we anticipate that it can
be extended to answer more general questions about infor-
mation encoding on a large, multicellular scale. This is
particularly desirable, as understanding collective informa-
tion processing is a new frontier in systems biophysics
(19,23,27,32–34). On the other hand, many interesting
questions, such as the precise functional form of MIvðnÞ
and the dependence of mutual information on nonlinear ef-
fects such as feedback, bifurcations, and coupling of multi-
ple timescales, may require more realistic models beyond
noisy harmonic oscillators.
AUTHOR CONTRIBUTIONS

B.S. conceived the research. A.M. and B.S. designed the research. G.D.P.,

T.A.B., A.M., and B.S. performed the research, analyzed data, and wrote

the article.
ACKNOWLEDGMENTS

This project is supported by National Science Foundation grant PHY-

1400968 to B.S. This work is also supported by a grant from the Simons

Foundation (376198) to A.M.
REFERENCES

1. Pires-daSilva, A., and R. J. Sommer. 2003. The evolution of signalling
pathways in animal development. Nat. Rev. Genet. 4:39–49.

2. Bhattacharyya, R. P., A. Rem�enyi,., W. A. Lim. 2006. Domains, mo-
tifs, and scaffolds: the role of modular interactions in the evolution and
wiring of cell signaling circuits. Annu. Rev. Biochem. 75:655–680.
Biophysical Journal 112, 795–804, February 28, 2017 803

http://refhub.elsevier.com/S0006-3495(17)30039-5/sref1
http://refhub.elsevier.com/S0006-3495(17)30039-5/sref1
http://refhub.elsevier.com/S0006-3495(17)30039-5/sref2
http://refhub.elsevier.com/S0006-3495(17)30039-5/sref2
http://refhub.elsevier.com/S0006-3495(17)30039-5/sref2
http://refhub.elsevier.com/S0006-3495(17)30039-5/sref2


Potter et al.
3. Papin, J. A., T. Hunter, ., S. Subramaniam. 2005. Reconstruction of
cellular signalling networks and analysis of their properties. Nat.
Rev. Mol. Cell Biol. 6:99–111.

4. Lim, W., B. Mayer, and T. Pawson. 2014. Cell Signaling. Garland Sci-
ence, New York, NY.

5. Mestre, J. R., P. J. Mackrell, ., J. M. Daly. 2001. Redundancy in the
signaling pathways and promoter elements regulating cyclooxygenase-
2 gene expression in endotoxin-treated macrophage/monocytic cells.
J. Biol. Chem. 276:3977–3982.

6. Logue, J. S., and D. K. Morrison. 2012. Complexity in the signaling
network: insights from the use of targeted inhibitors in cancer therapy.
Genes Dev. 26:641–650.

7. Kholodenko, B. N. 2006. Cell-signalling dynamics in time and space.
Nat. Rev. Mol. Cell Biol. 7:165–176.

8. Purvis, J. E., and G. Lahav. 2013. Encoding and decoding cellular in-
formation through signaling dynamics. Cell. 152:945–956.

9. Hoffmann, A., A. Levchenko,., D. Baltimore. 2002. The IkB-NF-kB
signaling module: temporal control and selective gene activation. Sci-
ence. 298:1241–1245.

10. Covert, M. W., T. H. Leung, ., D. Baltimore. 2005. Achieving stabil-
ity of lipopolysaccharide-induced NF-kB activation. Science.
309:1854–1857.

11. Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling:
transient versus sustained extracellular signal-regulated kinase activa-
tion. Cell. 80:179–185.

12. Adami, C. 2004. Information theory in molecular biology. Phys. Life
Rev. 1:3–22.

13. Bialek, W. 2012. Biophysics: Searching for Principles. Princeton Uni-
versity Press, Princeton, NJ.

14. Levchenko, A., and I. Nemenman. 2014. Cellular noise and informa-
tion transmission. Curr. Opin. Biotechnol. 28:156–164.

15. Cheong, R., A. Rhee, ., A. Levchenko. 2011. Information transduc-
tion capacity of noisy biochemical signaling networks. Science.
334:354–358.

16. Uda, S., T. H. Saito, ., S. Kuroda. 2013. Robustness and compensa-
tion of information transmission of signaling pathways. Science.
341:558–561.

17. Voliotis, M., R. M. Perrett,., C. G. Bowsher. 2014. Information trans-
fer by leaky, heterogeneous, protein kinase signaling systems. Proc.
Natl. Acad. Sci. USA. 111:E326–E333.

18. Selimkhanov, J., B. Taylor, ., R. Wollman. 2014. Systems biology.
Accurate information transmission through dynamic biochemical
signaling networks. Science. 346:1370–1373.
804 Biophysical Journal 112, 795–804, February 28, 2017
19. Sun, B., J. Lembong,., H. A. Stone. 2012. Spatial-temporal dynamics
of collective chemosensing. Proc. Natl. Acad. Sci. USA. 109:7753–
7758.

20. L�eon, C., B. Hechler, ., C. Gachet. 1999. Defective platelet aggrega-
tion and increased resistance to thrombosis in purinergic P2Y(1) recep-
tor-null mice. J. Clin. Invest. 104:1731–1737.

21. Yitzhaki, S., A. Shainberg, ., E. Hochhauser. 2006. Uridine-50-
triphosphate (UTP) reduces infarct size and improves rat heart function
after myocardial infarct. Biochem. Pharmacol. 72:949–955.

22. Falcke, M. 2004. Reading the patterns in living cells—the physics of
Ca2þ signaling. Adv. Phys. 53:255–440.

23. Sun, B., G. Duclos, and H. A. Stone. 2013. Network characteristics of
collective chemosensing. Phys. Rev. Lett. 110:158103.

24. Shannon, C. E. 2001. A mathematical theory of communication. Mob.
Comput. Commun. Rev. 5:3–55.

25. Loftsgaarden, D. O., and C. P. Quesenberry. 1965. A nonparametric es-
timate of a multivariate density function. Ann. Math. Stat. 36:1049–
1051.
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