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Abstract

Purpose of review—Notch signaling is an evolutionary conserved pathway critical for 

cardiovascular development and angiogenesis. More recently, the contribution of Notch signaling 

to the homeostasis of the adult vasculature has emerged as an important novel paradigm, but much 

remains to be understood.

Recent findings—Recent findings shed light on the impact of Notch in vascular and immune 

responses to microenvironmental signals as well as on the onset of atherosclerosis. In the past 

year, studies in human and mice explored the role of Notch in the maintenance of a nonactivated 

endothelium. Novel pieces of evidence suggest that this pathway is sensitive to environmental 

factors, including inflammatory mediators and diet-derived by-products.

Summary—An emerging theme is the ability of Notch to respond to changes in the 

microenvironment, including glucose and lipid metabolites. In turn, alterations in Notch enable an 

important link between metabolism and transcriptional changes, thus this receptor appears to 

function as a metabolic sensor with direct implications to gene expression.
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INTRODUCTION

Endothelial cells provide a selective and highly responsive barrier that offers, under 

physiological conditions, an optimal ratio between vessel integrity and permeability. The 

endothelium also prevents thrombosis and regulates the trafficking of cells from the blood to 

adjacent tissues. Coordination of leukocyte trafficking in particular is of critical importance 

to inflammation and, in fact, the endothelium is the first line of regulatory control during the 

inflammatory response. In the absence of disease, endothelial cells maintain a closed, anti-

inflammatory status, by preventing binding and extravasation of leukocytes from the 
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circulation. In contrast, during the response to inflammatory stimuli, endothelial cells 

become ‘activated’ by expressing a subset of leukocyte-adhesion molecules and facilitating 

the exit of leukocytes from the circulation into tissues. During this process, endothelial 

junctions become weakened promoting leakage of plasma proteins and solutes. Thus, the 

endothelium provides a critical barrier that regulates the inflammatory response and 

breakage of its homeostasis is a major determinant of vascular disorders, including 

hypertension, atherosclerosis, and thrombosis [1].

As a primary barrier between blood and tissue, the endothelium also differentially responds 

to hemodynamic patterns that define atherosusceptible versus atheroprotected sites of the 

arterial tree. In fact, laminar shear stress has been found to protect against the disease 

through the induction in endothelial cells of anti-inflammatory, antioxidant, and 

antithrombotic genes. In contrast endothelium exposed to disturbed blood flow exhibits 

biological changes such as increased permeability and chronic low-inflammation, which in 

the presence of additional risk factors favors the emergence of atherosclerosis lesions [2,3]. 

The activation of endothelial cells toward a prolonged proinflammatory and atherogenic 

phenotype could be driven by cell surface receptors in response to chemokines, like tumor 

necrosis factor (TNF) and IL-1β [4,5], and downstream signaling cascades that are fairly 

well understood. Importantly, endothelial activation can also be promoted and strengthened 

by a cohort of lipid mediators, a process that holds special significance to the onset and 

progression of atherosclerosis. In fact, it is fair to state that atherosclerosis is a lipid-driven, 

chronic inflammatory disease that develops as a result of lipid accumulation, followed by 

lipid modifications and subsequent growth of the intra-arterial atherosclerotic plaque. 

Oxidative modification of lipid products such as LDLs and derived phospholipids have been 

designated as a critical step in the initiation of atherosclerosis [6,7]. These oxidized lipid by-

products trapped in the subendothelial space impact numerous cell types, including immune, 

smooth muscle, and endothelial cells. It has become clear that a large number of signaling 

pathways are altered in endothelial cells as the result of exposure to oxidized lipids, leading 

to endothelial activation, inflammation, and atherosclerosis [6,8]. Less known, however, are 

the intrinsic pathways essential for the maintenance of arterial endothelium integrity, 

involved in sensing lipid products, interpreting microenvironment cues, and transducing 

these readouts into transcriptional changes that counteract the effect of lipid by-products. 

Here, we are reviewing the recent literature that links deregulation of the Notch pathway to 

inflammatory processes and atherosclerosis, with a focus on its response to lipid by-products 

and subsequent pathophysiological impact.

NOTCH SIGNALING PATHWAY

Notch signaling together with the WNT, sonic hedgehog, and bone morphogenetic protein/

transforming growth factor β pathways are evolutionary conserved mechanisms involved in 

the development and homeostasis of most tissues. In mammals, expression of four Notch 

receptors (Notch1–4) and five canonical ligands [Delta-like ligand (Dll) 1, 3, 4 and Jagged 

(Jag)1, 2] coordinate activation of this signaling pathway. Canonical transactivation of the 

pathway occurs after binding of a receptor (signal-receiving cell) with a ligand presented on 

an adjacent cell (signal-sending cell). Endocytosis of the ligand exerts mechanical forces on 

the receptor that become accessible to proteases [9,10] enabling successive cleavage of 
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Notch extracellular domain and intramembrane domain by a-disintegrin and metalloprotease 

(ADAM) family members [11] and the γ-secretase complex, respectively [12,13]. These 

events ultimately release Notch intracellular domain (NICD) that is translocated to the 

nucleus where it interacts with a transcriptional complex, RBP-jκ (recombination signal-

binding protein for immunoglobulin κ J region)/CSL (CBF1, suppressor of hairless, Lag-1), 

and MAML (mastermind-like), to induce target genes. In addition, Notch contributes to the 

regulation of cellular mechanisms through noncanonical pathways [14] (Fig. 1A).

The outcome of Notch activation is cell type and context dependent with multiple 

combinations of receptors and ligands that transduce different biological effects [15,16]. In 

addition, progress made in characterizing structural features of ligands and receptors has 

allowed us to understand the critical impact of post-translational modifications of the Notch 

receptors in ligand binding and activation [17,18■■,19■].

The biological relevance of Notch signaling to developmental processes is highlighted by the 

broad number of anomalies and disorders arising when the pathway is deregulated. This 

includes immune [20–22], skeletal [23–25], hepatic [26,27], vascular [28] defects and 

cardiac malformations [26,27,29]. More recently large studies examining genome-wide 

association study for coronary artery disease identified genetic signals enriched in Notch-

related pathways [30,31■■] and polymorphisms near the HEY2 gene (canonical target of 

Notch signaling) associated with Brugada syndrome [32].

Although the role of Notch has been extensively studied in the context of development and 

cancer [14,33,34], recent experiments using in vitro assays and mouse models also showed 

that changes in Notch activity can impact organ homeostasis in adults. Blocking Notch 

signaling is known to initiate sprouting angiogenesis [35–37], but this postulate should now 

be refined to include tissue-specific differences [38]. In endothelial cells, Notch signaling 

protects against apoptosis in a rat allograft model [39,40] and in response to laminar blood 

flow [41,42]. This review will focus on findings describing the impact of Notch deregulation 

in the initiation and progression of atherosclerosis.

NOTCH SIGNALING PATHWAY AND INFLAMMATION

Inflammation constitutes a major player in multiple steps of atherosclerosis. Intriguingly, 

Notch signaling has been shown to contribute to and be modulated by inflammatory signals. 

Importantly both pro and anti-inflammatory roles have been attributed to the pathway 

depending on the specific cell types.

In immune cells, including T lymphocytes and macrophages, blockade of Notch signaling 

often results in the repression of the inflammatory response [43] although differences are 

noted depending on the heterodimer engaged and the cell type studied [44,45]. Thus, during 

atherosclerosis, activated macrophages recruited to the vascular wall express the Notch 

ligand Dll4, which is increased in response to inflammatory stimuli. In particular, Dll4 

participates to homotypic activation of Notch signaling and promotes expression of M1-type 

molecules [46]. Reduction of Notch signaling in macrophages with a broad spectrum 

inhibitor (γ-secretase inhibitor) or with antibodies against Dll4 attenuates atherosclerosis in 
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mice [47,48]. Blocking Dll4 also reduces the development of vein graft lesion in LDL 

receptor-null animals. Interestingly when using cell-type specific nanoparticles to deliver 

short hairpin RNA (siRNA) targeting Dll4 in vivo, the authors observed that the protective 

effect was exclusive to macrophages but was absent when endothelial cells were targeted 

[49■]. Although Dll4 is highly expressed in capillaries during development, mature arterial 

endothelium express Dll4 at low levels [50–52].

Modulation of Notch signaling by inflammatory signals also occurs in endothelial cells from 

various vascular beds. In human umbilical vein endothelial cells (HUVEC), a pulse of TNFα 
was shown to increase JAG1 through activation of NF-κB but a concurrent decrease of 

Notch4 and target genes Hairy and Enhancer of Split 1 (HES1) and Hairy and Enhancer of 

Split-Related 1 (HESR1) were also observed [53] resulting from a possible negative 

regulatory loop [54,55]. In human aortic endothelial cells (HAEC), JAG1 expression was 

upregulated by a short treatment with inflammatory cytokines, including IL-1β and TNFα, 

whereas NOTCH1 and targets HES1, Hairy/Enhancer-of-Split Related with YRPW motif-

Like (HEYL) were strongly repressed through a mechanism involving Signal Transducer 

and Activator of Transcription 3 (STAT3) activation [56■■]. Therefore, despite the increase 

in ligand, the overall signaling pathway was also suppressed upon exposure to inflammatory 

mediators. Others also reported that in endothelial cells in vitro and from small coronary 

vessels in a model of heart transplant in rat, inflammatory stimuli differentially impact 

Notch2 and Notch4, with the first being upregulated, whereas the latest was repressed 

[40,57].

In addition to a direct impact of inflammatory cytokines on Notch signaling, repression of 

the Notch pathway promotes endothelial cell activation. For example, repression of 

endothelial Notch4 triggered an increase in Vascular Cell Adhesion Molecule 1 at the cell 

surface [40]. In endothelial cells from the bone marrow, the canonical effector of Notch 

signaling RBP-jκ inhibits MicroRNA-155, NF-κB activation and subsequent production of 

proinflammatory cytokines [58].

Inflammatory activation of the endothelium is also linked to disturbed hemodynamic shear 

stress in the arterial tree. Although relevant mechanosensors have been investigated, the 

Notch signaling pathway has emerged as both sensitive to and a mediator of shear stress. In 

fact, data collected in vitro and in vivo have shown that the pathway could be activated by 

shear stress [54,59–63] while it is required for downstream biological processes such as 

endothelial cells alignment [64], arterial specification [59–61], repair of the endothelium 

[65] and repression of inflammatory and osteogenic genes [63,66■■]. In particular in aortic 

valve leaflet, Notch activity levels are lower in the aortic side compared with the ventricular 

side, the first being more prone to the emergence of calcific and inflammatory events [67].

Consistent with a molecular impact of differential Notch activity in endothelial cells, work 

by Theodoris and colleagues have recently uncovered that mutations in NOTCH1, that have 

been known to cause aortic valve disease [29], were also responsible for profound changes 

in epigenetic landscape. The authors showed that NOTCH1 haploinsufficiency in aortic 

valve endothelial cells disrupts antiosteogenic and anti-inflammatory networks normally 

induced by protective hemodynamic shear stress [66■■]. Although mechanical dysfunction 
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was proposed to be a strong determinant of the disease, their findings shed light on a more 

direct role for Notch1 in the maintenance of endothelial cell fate and its critical contribution 

in repressing intrinsic expression of inflammatory mediators. In agreement with these 

findings knockdown of NOTCH1 in HAEC led to the upregulation of pro-inflammatory and 

proatherogenic molecules that promote binding of monocytes in vitro. These results using 

human cells were corroborated in mice carrying heterozygous deletion of endothelial 

Notch1. Inactivation of a single allele in the endothelium resulted in the accumulation of C-

X-C Motif Chemokine Ligand 1 (CXCL1) in the luminal side of the aorta and significant 

recruitment of CD45 Positive (immune) cells. Furthermore, inducible endothelial deletion of 

Notch1, even in adult uninjured arteries, supported a critical role for Notch1 in the 

maintenance of a nonactivated endothelium [56■■]. Finally, Notch3 expressed by vascular 

smooth muscle cells is essential to protect against their inflammatory activation and 

transdifferentiation induced by inflammatory stimuli, such as IL-1β [68,69].

To note, because Notch is involved in close range cell–cell communication heterotypic 

activation in addition to homotypic activation must be considered. For example, in the liver, 

Dlls expressed by synovial endothelial cells activate Notch signaling in Th1 lymphocytes, 

inducing the expression of IL-10 to blunt the inflammatory response [70■]. Interactions 

between macrophage Notch and Dll4 expressed on tip-cells are important for retinal 

sprouting angiogenesis [71] and recently an in vitro model of angiogenesis integrated Notch/

ligand interactions in macrophages, mural cells, and endothelial cells [72■]. Finally, Notch 

activation in smooth muscle cells, essential for their fate decision and maintenance, is driven 

in part by ligands expressed by endothelial cells [73] (Fig. 1B).

REGULATION OF NOTCH SIGNALING PATHWAY BY LIPID PRODUCTS

Lipid by-products are major contributors to atherosclerosis as they promote inflammatory-

related events as well as endothelial dysfunction. For example, in endothelial cells, Notch 

signaling is blocked by oxidized lipids. A follow-up consequence of Notch suppression is 

the emergence of a pro-inflammatory transcriptional signature that includes upregulation of 

CXCL1, IL-8 and E-Selectin [56■■]. In vivo, exposure of wild-type mice to high-fat diet led 

to a decrease in endothelial Notch1 expression and activity, which was rescued when 

circulating cholesterol levels were reduced. The findings demonstrate that by-products of 

high-fat diet, currently used to induce atherosclerosis in mice, rapidly impact endothelial 

Notch pathway and promote inflammation. Consistent with this observation, NOTCH1 

expression and activity were also repressed by high dose of oxidized 1-palmitoyl-2-

arachidonyl-sn-glycero-3-phosphorylc holine (Ox-PAPC) in HAEC, through a mechanism 

involving the activation of STAT3 [56■■]. Ox-PAPC also triggers a strong and rapid 

downregulation of JAG1 and target genes HES1 and HEYL. Repression of NOTCH1 by Ox-

PAPC participated in endothelial cell activation downstream of oxidized phospholipids. 

Importantly, the degree of NOTCH1 suppression by Ox-PAPC was variable across 147 

donors and associated with specific polymorphisms [56■■] previously linked to HDL levels 

in approximately 100 000 individuals [74,75]. Therefore, endothelial Notch signaling 

appears to be a sensor of oxidized-PAPC.
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Data from different systems support such a sensor function of Notch and provide potential 

mechanisms, including modulation of plasma membrane lipid composition and protein post-

translational modification. Oxidized phospholipids, in particular Ox-PAPC bind to and 

activate ADAM10 [76]. ADAM10 contributes to the cleavage of Notch receptor; this 

protease is also able to shave the ligand JAG1 from the membrane [77] an event that is 

expected to affect close range ligand-dependent activation of the pathway that requires 

transcytosis of Notch extracellular domain by the ligand expressing cells [10]. However, the 

net effect of excessive ADAM10 activity on Notch signaling remains to be explored, as the 

biological impact of soluble Notch ligand is unclear [78] and this enzyme also participates in 

the cleavage of the receptor itself. Another critical enzyme in Notch activation is γ-

secretase, a complex of transmembrane proteins, which cleaves the intramembrane domain 

of Notch receptor (among other substrates) to release its transcriptionally active form. 

Interestingly, the activity of γ-secretase is highly sensitive to local membrane lipid 

composition. In fact, cholesterol raft-like membrane structures were proposed to be optimal 

to sustain high activity [79–82]. Although the precise mechanisms are not yet elucidated, 

changes in membrane lipid composition and fluidity occur in response to oxidized 

phospholipids such as oxidized LDL [83], an event that may affect γ-secretase function and 

Notch activity. In tumor cell lines, exosomal lipids were shown to affect Notch1 signaling 

likely through changes in membrane lipid microenvironment [84]. In addition, a recent study 

in HUVEC suggested that the protective effect of epigallocatechin gallate, a natural 

polyphenol that can inhibit metalloproteases, toward ox-LDL was mediated by Jag1/Notch 

signaling [85]. Thus lipid by-products might also affect endothelial Notch signaling through 

changes in membrane composition and regulation of protease activity, but more direct 

validation is needed to support these conclusions.

Another mechanism by which lipids may interfere with Notch signaling relate to potential 

lipid–ligand interactions. In fact, a C2 phospholipid recognition domain in N-terminal region 

of Jag1 was recently uncovered. This domain also present in Dll1 does not impact 

dimerization with the receptor but it regulates levels of Notch activation [86]. More recently, 

ligand-independent induction of Notch was observed in response to shingosine-1-phosphate 

(S1P) and S1P receptor 3 engagement in cancer stem cells [87]. A protective role for S1P 

bound to HDL has been previously shown in the onset of atherosclerosis [88] with a recent 

study uncovering molecular mechanisms involved in their anti-inflammatory and 

antiatherogenic function in endothelial cells [89■■]. Although the molecular events are 

likely to differ from cancer stem cells, it would be interesting to determine whether 

regulation of Notch pathway by S1P may also occur in adult aortic endothelial cells.

Together, the findings converge on the idea that this evolutionary conserved pathway may be 

considered as a signaling hub between circulating factors and cell homeostasis. A role for 

Notch in ‘sensing’ the systemic metabolic status is further supported by elegant studies in 

different systems. In the developing mouse heart, hyperglycemia abolishes left–right axis 

formation and affects heart morphogenesis. The resulting condition that resembles 

congenital heart defects associated with pregestational diabetes was shown to be secondary 

to a reduction in Notch pathway activity [90■■]. In the nematodes Notch [abnormal Germ 

Line Proliferation (GLP-1] signaling is modulated by nucleotide levels and proposed to be 

part of a sensing mechanism to adapt their reproductive program to environmental and 
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nutritional clues [91■]. Finally, recent advances in the characterization of structural features 

of the oligomerization of Notch and its ligands through O-fucose and O-glucose provided 

additional clues supporting that the activity of the pathway may reflect the metabolic state of 

the cell [18■■] (Fig. 1C).

CONCLUSION

Progress have been made in understanding the role of Notch signaling in the adult 

vasculature and current studies converge toward a protective role of the pathway in 

endothelial cells from large vessels. In addition, evidence from different models support that 

the Notch activity may be considered as a component of the cell ‘sensing’ machinery, 

transducing microenvironment and metabolic clues to transcriptional changes. This includes 

shear stress, inflammatory signals, and dietary by-products but also close range activation 

through homo and heterotypic contact with cells residing in blood vessels. Although the 

current studies show a rapid impact of these stimuli on endothelial Notch, the long-term 

effect of chronic exposure to inflammatory mediators and lipid byproducts together with 

heterotypic communication within the plaque deserves additional investigations. Despite the 

complexity of the plaque microenvironment this will contribute to improve our 

understanding of the role and regulation of endothelial Notch in the disease progression and 

stabilization.

As several therapeutic strategies aim at inhibiting Notch signaling, for example, to reduce 

tumor angiogenesis, a better characterization of this pathway in adult vessels is important. 

Although most studies on endothelial Notch are focused on cancer setting and 

cardiovascular diseases, it is also critical to consider its potential role in the microvasculature 

of highly metabolic organs that are constantly challenged by inflammatory molecules and 

metabolic by-products.
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KEY POINTS

• Notch signaling is critical for the maintenance of vascular homeostasis.

• Notch contributes to and is modulated by inflammation in various cell types.

• Notch activity is impaired by dietary by-products, including oxidized lipids.

• Repression of Notch signaling in arterial endothelial cells unlocks 

proinflammatory and proatherogenic signals that contribute to the initiation of 

atherosclerosis.
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FIGURE 1. Endothelial Notch signaling pathway and interactions with the microenvironment
(A) After dimerization of a NOTCH receptor with a DLL/JAG ligand (a), proteolytic 

cleavage of NOTCH by ADAM family proteases and the γ-secretase complex occurs (b), 

releasing NOTCH intracellular domain (NICD) that translocates to the nucleus, interacts 

with the MAML/CSL complex to induce the transcription of target genes (c; HES, HEY 

family). Non-canonical effects of NOTCH have also been described (d). (B) Inflammatory 

stimuli suppress NOTCH expression and activity in endothelial cells (a); this results in the 

expression of inflammatory and atherogenic mediators (b) favoring the recruitment of 

immune cells (c). Notch signaling can involve bi-directional heterotypic communication 

between endothelial cells and immune or smooth muscle cells (d). (C) Changes in protease 

activity secondary to oxidized lipids exposure that can (a) bind to and increase activity of 

ADAM proteases and (b) change the lipid microenvironment altering γ-secretase activity. 

Oxidized phospholipids repress NOTCH expression and activity, a mechanism that promotes 

endothelial activation (c). NOTCH signaling is regulated by post-translational changes that 

may reflect biosynthetic activity of the cell (d). Nutrients impact NOTCH expression and 

activity (e). ADAM, a-disintegrin and metalloprotease; CSL, CBF1, Suppressor of Hairless, 

Lag-1; Dll, Delta-like ligand; MAML, mastermind-like; NICD, Notch intracellular domain.
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