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Abstract

Continuum-solvent models (CSMs) have successfully predicted many quantities, including the 

solvation-free energies (ΔG) of small molecules, but they have not consistently succeeded at 

reproducing experimental binding free energies (ΔΔG), especially for protein–protein complexes. 

Several CSMs break ΔG into the free energy (ΔGvdw) of inserting an uncharged molecule into 

solution and the free energy (ΔGel) gained from charging. Some further divide ΔGvdw into the free 

energy (ΔGrep) of inserting a nearly hard cavity into solution and the free energy (ΔGatt) gained 

from turning on dispersive interactions between the solute and solvent. We show that for 9 

protein–protein complexes neither ΔGrep nor ΔGvdw was linear in the solvent-accessible area A, as 

assumed in many CSMs, and the corresponding components of ΔΔG were not linear in changes in 

A. We show that linear response theory (LRT) yielded good estimates of ΔGatt and ΔΔGatt, but 

estimates of ΔΔGatt obtained from either the initial or final configurations of the solvent were not 

consistent with those from LRT. The LRT estimates of ΔGel differed by more than 100 kcal/mol 

from the explicit solvent model’s (ESM’s) predictions, and its estimates of the corresponding 

component (ΔΔGel) of ΔΔG differed by more than 10 kcal/mol. Finally, the Poisson–Boltzmann 

equation produced estimates of ΔGel that were correlated with those from the ESM, but its 

estimates of ΔΔGel were much less so. These findings may help explain why many CSMs have not 

been consistently successful at predicting ΔΔG for many complexes, including protein–protein 

complexes.
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1. INTRODUCTION

Implicit solvent models, such as the Poisson–Boltzmann equation1 (PBE), generalized Born 

(GB) models,2 proximal distribution approaches,3–5 and integral equation methods,6,7 

provide estimates of the solvation energies (ΔG) of biomolecules more quickly than explicit 

solvent models (ESMs). Implicit solvent models are faster than ESMs because they 

approximately integrate over the degrees of freedom of the aqueous solvent in the partition 

function. Once estimates of ΔG have been obtained, they can be used to obtain estimates of 

other free energies, such as binding (ΔΔG) and mutation free energies.8,9 Implicit solvent 

models may be divided into two classes, continuum solvent models (CSMs),1,2 such as the 

PBE and GB models that model water as a high-dielectric continuum, and those that 

approximate the distribution of the solvent,3–7 such as integral equations, density functional 

theories, and other structured approaches. CSMs have been fairly successful at predicting 

many quantities, such as ΔG, and the salt dependencies of various free energies,10–14 but 

they have not been uniformly successful at predicting some other quantities, such as 

ΔΔG.15–21

Typically, CSMs break ΔG into the free energy (ΔGvdw) required to insert an uncharged 

molecule into solution and the free energy (ΔGel) gained by turning on the partial atomic 

charges.22–24 Some researchers have then further divided ΔGvdw into the free energy (ΔGrep) 

required to insert a nearly hard cavity into solution and the free energy (ΔGatt) gained from 

turning on the dispersive interactions between the solute and solvent.25–33 The Methods 

contains formal definitions of these and related quantities.

In previous work, we demonstrated that the methods used to compute ΔGrep, ΔGatt, and 

ΔGvdw in some CSMs were unsatisfactory for alanine and glycine peptides.24,34 In this 

work, we extend this analysis to nine protein–protein complexes covering wide ranges of 

sizes, biological functions, and equilibrium binding constants. By doing so, we try to ensure 

that our results are generally applicable to protein–protein complexes and not artifacts of our 

choice of examples. The complexes with their PDB codes are bovine α-chymotrypsin with 

eglin c complex (1ACB),35 porcine pancreatic trypsin with soybean trypsin inhibitor 

complex (1AVX),36 bovine β-lactoglobulin, which is a homodimer (1BEB),37 barnase–

barstar complex (1BRS),38 colicin E9 dnase domain with IM9 (1EMV),39 Pseudomonas 
aeruginosa exos toxin with human rac (1HE1),40 bovine β-trypsin with CMTI-I (1PPE),41 

and uracil-dna glycosylase with uracil glycosylase inhibitor (1UDI).42 In the following 
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sections, we present the theoretical framework followed by the computational methods. We 

then present our results and discuss their implications for CSMs.

2. THEORY

In principle, ΔGrep, ΔGatt, ΔGvdw, and ΔGel could be computed with thermodynamic 

integration by integrating over λ the derivatives (〈∂Urep(λ)/∂λ〉λ, 〈∂Uatt(λ)/∂λ 〉λ, 

〈∂Uvdw(λ)/∂λ〉λ, and 〈∂Uel(λ)/∂λ〉λ) of λ-dependent potentials.43,44 Plots of 〈∂Uatt(λ)/

∂λ〉λ and 〈∂Uel(λ)/∂λ〉λ for one of the complexes in the present study (1BRS) are shown in 

the Supporting Information. If these curves represented purely linear functions of λ, then 

ΔGatt and ΔGel could be computed from linear response theory (LRT)

(1)

(2)

where Uatt and Uel are attractive and electrostatic potential energies between the solute and 

solvent, respectively, as defined in the Methods, and 〈…〉0 and 〈…〉1 indicate that 

expectation values were computed in ensembles where λ = 0 and λ = 1. Some work has then 

gone farther by assuming that ΔGatt can be computed by averaging Uatt over an approximate 

solvent distribution.29,30,33 Natural choices for such a solvent distribution would be either 

the initial or final solvent configurations leading to single-step perturbation (SSP) estimates

(3)

(4)

of ΔGatt. Similarly, most CSMs assume that 〈Uel〉0 = 0,5,45 yielding a SSP approximation

(5)

In contrast, the LRT cannot be used to compute either ΔGrep or ΔGvdw because 〈∂Urep/∂λ〉λ 
and 〈∂Uvdw/∂λ〉λ typically contain large peaks or even poles.24,46 Instead, CSMs typically 

use formulas taken from macroscopic liquid theory, such as

(6)
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(7)

where A is the solvent-accessible surface area of the molecule, and γvdw and γrep are 

positive constants analogous to the surface tension of macroscopic liquid interfaces.9,47–51

Alternatively, some studies have claimed that ΔGrep should increase linearly with the 

solvent-accessible volume (V) rather than A for sufficiently small cavities and that for larger 

cavities it should approach eq 7.52–55 In the present study, all of our proteins are large 

enough that this model would predict that ΔGrep should approximately obey eq 7. The 

interested reader is referred to ref 24 and its supporting information for the volume 

correlations.

For an equilibrium binding process between proteins A and B, given that estimates of ΔG of 

the components and the complex have been obtained, the desolvation energy (ΔΔGdesol = 

ΔGc − ΔGa − ΔGb, where ΔGa, ΔGb, and ΔGc are the ΔG’s of the first component of the 

complex, the second component, and the complex, respectively) can be defined. In turn, 

ΔΔGdesol can be broken into repulsive , attractive , total van der Waals 

cavity insertion , and electrostatic  components, as described in the 

Methods.

Combining the definitions of  and  with eqs 6 and 7, we can write

(8)

(9)

where ΔA = Ac − Ab − Aa, where Ac, Aa, and Ab are the areas of the complex and its two 

components.

Given ΔΔGdesol, estimates of ΔΔG can be obtained by adding the binding free energy 

(ΔGvac) of the complex in vacuum. In turn, ΔΔG can be broken into repulsive (ΔΔGrep), 

attractive (ΔΔGatt), total van der Waals cavity insertion (ΔΔGvdw), and electrostatic (ΔΔGel) 

components, as described in the Methods.

Many of these assumptions underlying CSMs can be called into question for biomolecules 

with rough surfaces and charge distributions varying over lengths comparable to the size of a 

water molecule. We recently found that none of ΔGrep, ΔGatt, or ΔGvdw are simple functions 

of A for alkanes and short peptides, indicating that eqs 6 and 7 are not strictly valid, and that 

eqs 3 and 4 were not consistent with ESMs.24,34,46,56,57 Some other studies have examined 

the validity of eqs 2 and 5.5,45 Also,  and  are typically positive because 

they account for the loss of favorable solute–solvent interactions upon binding. In contrast, 
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 and  are typically negative because  and because binding partners 

usually have complementary charges at the binding interface. Therefore, ΔΔGatt and ΔΔGel 

can be much smaller than the ΔGatt and ΔGel of the complex and its components. Because of 

this cancellation of free energies, theories that generate estimates of ΔG that are correlated 

with experimental data are not guaranteed to produce similarly accurate estimates of ΔΔG.58

In the present study, we test the validity of eqs 1–9 for 9 protein–protein complexes35–42,59 

and also whether the PBE1 produces estimates of ΔGel, , and ΔΔGel consistent 

with those obtained from ESMs for these complexes.

3. METHODS

All MD simulations were run with a modified version of NAMD 2.9.60 SHAKE was used to 

constrain the hydrogens. All simulations used the TIP3P water model61 modified for use 

with the CHARMM force field,62 a constant temperature of 300 K, a constant pressure of 1 

atm, periodic boundary conditions, particle mesh Ewald for the electrostatics, and a 2 fs time 

step. In all simulations, all protein atoms were fixed. All A, V, and their derivatives with 

respect to the atomic coordinates were computed with the DAlphaBall program.63 The 

solvent-accessible surface was used64 with the van der Waals radii taken from the 

CHARMM36 force field.62,65,66 A probe radius of 1.7682 Å was used rather than the 

normal choice of 1.4 Å because it corresponds to the vdW radius of the oxygen atom in the 

water model, which for a chargeless protein is the only interaction with solvent via the 

Lennard-Jones force. This choice has been used in previous works.24,34

All PBE calculations were run with the Adaptive Poisson– Boltzmann Solver (APBS)67 with 

a temperature of 300 K, an interior dielectric constant of 1 (because the CHARMM36 force 

field is not polarizable), an exterior dielectric constant of 96.7 (to match the dielectric 

constant of TIP3P water68), the solvent-excluded surface defined with a probe radius of 1.4 

Å, no salt, autofocusing with a fine grid 20 Å larger than the molecule in each dimension, a 

coarse grid 1.7 times the size of the molecule in each dimension, and a fine-grid spacing of 

either 0.5 or 0.55 Å (to check convergence with respect to grid spacing).

3.1. Structure Preparation

The coordinates of the 9 protein–protein complexes35–42,59 were taken from the RCSB 

protein databank69 with no minimization or equilibration of these initial structures. These 

atomic coordinates remained fixed through all of the remaining calculations. All crystal 

waters and nonprotein atoms were removed. The chains from these structure files used in 

each calculation are shown in Table 1.

3.2. Potential and Free Energy Components

We defined ΔGvdw to be the free energy required to move from an ensemble where the 

solute and solvent did not interact to one where the interaction potential between an atom i 
in the solute and an atom j in the solvent was given by the Lennard-Jones potential
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(10)

where εij is the well depth, and  is the location of the minimum of . Our definitions 

of ΔGrep and ΔGatt followed the Weeks–Chandler–Andersen breakdown,25,26 where ΔGrep 

was the free energy required to move from an ensemble where the solute and solvent did not 

interact to one where the interaction potential between an atom i in the solute and an atom j 
in the solvent was given by

(11)

Next, we defined ΔGatt to be the free energy gained by moving from an ensemble where the 

solute–solvent potential was given by  to one where it was given by . This process 

could also be described as turning on the attractive part of 

(12)

Finally, we defined ΔGel to be the free energy gained by moving from an ensemble where 

the solute–solvent potential was given by  to one where it was given by

(13)

where qi and qj are the charges on atoms i and j, respectively, and ε0 is the permittivity of 

free space.

We then defined , and , where 

the summations were taken over all solute–solvent atom pairs.

Similarly to the definition of ΔΔGdesol in the Introduction, , and 

 can be defined by
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(14)

(15)

(16)

(17)

where , and  are the ΔGrep of the complex and its first and second 

components, , and  are the ΔGatt of the complex and its first and second 

components, , and  are the ΔGvdw of the complex and its first and 

second components, and , and  are the ΔGel of the complex and its first and 

second components, respectively.

ΔΔG and its components were defined as follows

(18)

(19)

(20)

(21)

(22)
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where  and 

, where these summations were taken over atom pairs with one atom in each 

component of the complex.

3.3. Free Energy Calculations

For the 1BRS complex, we computed ΔGatt and ΔGel by backward and forward free energy 

perturbation (FEP) and thermodynamic integration (TI).43,44 To do so, we defined the λ-

dependent potentials

(23)

(24)

To compute ΔGatt for each component and the complex, 11 1 ns simulations were run at λ 
values ranging from 0 to 1 in intervals of 0.1. To compute ΔGel for the components of the 

complex, 21 1 ns simulations were run at λ values ranging from 0 to 1 in intervals of 0.05. 

To compute ΔGel for the complex 1 ns simulations were run at the following λ values: 0, 

0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 

0.4, 0.425, 0.45, 0.475, 0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 

0.775, 0.8, 0.825, 0.85, 0.8625, 0.875, 0.8875, 0.9, 0.9125, 0.925, 0.9375, 0.95, 0.9625, 

0.975, 0.9875, and 1.

For the other 8 complexes,  and  were computed using eqs 1 and 2 for both the 

components and the complexes by running 1 ns simulations where the interaction potential 

between the solute and solvent was , and Uij. Estimates of , and 

 were extracted from these same simulations.

Initial structures for all of these simulations were obtained by immersing the structure in a 

water box that was 20 Å longer in each dimension than the molecule and adding either Na+ 

or Cl− ions to neutralize the system. The structures were then minimized for 500 steps with 

the solute–solvent potential set as Uij. Copies of these minimized structure then underwent 

equilibration at each value of λ. The temperature of each of these systems was increased 

from 0 to 300 K in units of 25 K with 1000 steps of simulation time at each temperature.

3.4. Free Energy Derivatives

Computing ΔGrep and ΔGvdw for systems as large as these protein–protein complexes would 

require a great deal of computational time due to the drying of the molecular interior, so we 

instead adopted a procedure used in our previous publications,24,34 computing the 

derivatives of ΔGrep and ΔGvdw with respect to the coordinates (xi) of the centers of the 

fixed protein atoms
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(25)

where this average was taken in the ensemble defined by Urep, and

(26)

where these derivatives were computed from the same simulations used to compute the LRT 

and SSP estimates of ΔGatt. These derivatives were computed for each Cartesian coordinate 

of each protein atom with the rest of the coordinates held fixed.

If ΔGrep and ΔGvdw were linear functions of either A or V, as expected from eqs 6 and 7, 

then the slopes of plots of these quantities versus A would be γrep and γvdw, respectively. 

Similarly, if  and  were linear in ΔA, then plots of

(27)

(28)

versus ΔA would have slopes of γrep and γvdw, respectively. Estimates of γrep and γvdw 

obtained from such plots are shown in Table 1.

4. RESULTS

Table 1 gives estimates of γrep and γvdw obtained by fitting least-squares lines to plots of 

∂ΔGrep/∂xi and ∂ΔGvdw/∂xi versus ∂A/∂xi and  and  versus 

∂ΔA/∂xi. The Supporting Information contains these plots and analyses of the precision of 

the underlying quantities. If eqs 6–9 were valid, then the squares of the Pearson’s correlation 

coefficients (R2) would be close to 1, and the estimates of γrep and γvdw would be consistent 

from molecule to molecule as well as between estimates obtained from solvation free 

energies and those obtained from binding free energies. Instead, plots of ∂ΔGrep/∂xi and 

∂ΔΔGrep/∂xi versus ∂A/∂xi and ∂ΔA/∂xi revealed very weak correlations between these 

quantities. Figure 1 shows a typical example of a plot of ∂ΔGrep/∂xi versus ∂A/∂xi for one 

protein molecule. These findings are in agreement with our previous findings that the 

geometry and chemical environment of an atom’s surroundings affects how changes in that 

atom’s position change ΔGrep.24,34

The estimates of γrep obtained from plots of ∂ΔGrep/∂xi versus ∂A/∂xi not only differed 

between molecules but decreased with increasing A (Table 1 and Figure 2). These estimates 

of γrep ranged from 0.012 to 0.032 kcal mol−1 Å−2, and these values were generally smaller 

than those we found previously for decaalanine, decaglycine, and alkanes, which generally 
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had smaller A than the proteins examined here.24,34 This observation appears to contradict 

the notion that a critical A exists for which molecules with larger A have ΔGrep that are 

linear in A and below which ΔGrep is linear in V. This finding may indicate that the vicinity 

of the biomolecule becomes progressively “dryer” as the size of the cavity increases. Eq 7 is 

not consistent with these findings.

Table 2 shows estimates of ΔGatt and ΔGel for one of the complexes (1BRS) and its 

components and , and ΔΔGel for this complex given by FEP, 

TI, LRT, and SSP. These data show that the LRT gives good estimates of , 

and ΔΔGatt for this complex, confirming the validity of eq 1 for this complex. However, SSP 

gave estimates of , and ΔΔGatt that differed significantly from those given 

by FEP, indicating that eqs 3 and 4 were not valid for this system.

The data in Table 2 show that the LRT yielded estimates of ΔGel that were more than 100 

kcal/mol different from those obtained with FEP, indicating that eq 2 is poor for this system. 

FEP estimates of  and ΔΔGel also differed significantly from those given by LRT.

Table 3 shows the R2, slopes, and y-intercepts of least-squares lines comparing various 

computed quantities for the 9 protein–protein complexes. All of these plots and analyses of 

the precisions of the resulting quantities are in the Supporting Information. These data show 

that the estimates of ΔGatt obtained from the LRT were highly correlated with A, but its 

estimates of  and ΔΔGatt were not strongly correlated with ΔA, demonstrating that 

two theories can yield similar results for ΔG and very different results for ΔΔG.

Additionally, the data in Table 3 show that both eqs 3 and 4 produced estimates of ΔGatt that 

were highly correlated with those obtained from the LRT (R2 > 0.97), but eq 3 

systematically underestimated ΔGatt whereas eq 4 overestimated it. Table 3 also shows that 

the estimates of  obtained from eq 3 were not highly correlated with those 

obtained from LRT. Conversely, the predictions of  and ΔΔGatt obtained from eq 4 

were reasonably well-correlated with those obtained from LRT, but these estimates were 

significantly larger than those obtained from LRT, indicating that combining these energy 

terms with the other components of ΔΔG could lead to unexpected results.

The data in Table 3 also show that the computations of , and ΔΔGel given by 

SSP are very highly correlated (R2 > 0.999) with those obtained from LRT. Therefore, if the 

LRT is sufficient to predict these quantities, then the SSP would be sufficient as well. 

Unfortunately, the results in Table 2 indicate that the LRT may not be sufficient for 

computing these quantities.

Table 3 also shows that the PBE yielded predictions (  and ) of ΔGel 

and  that were highly correlated with those obtained from the LRT, but its 

estimates  of ΔΔGel were not correlated with those obtained from LRT (R2 = 

0.43). Once again, this finding shows that strong correlations between the predictions of ΔG 
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given by two theories do not guarantee that the theories will produce highly correlated 

estimates of ΔΔG.

5. CONCLUSIONS

The calculations on protein–protein complexes presented in this paper allow us to draw 

some conclusions about the assumptions underlying CSMs. As in our previous work, eqs 6 

and 7 were not consistent with the results. Neither ΔGrep nor ΔGvdw was proportional to A. 

Eqs 8 and 9 were inconsistent with our calculations. Neither  nor  was 

proportional to ΔA. Apparently, the idea that either ΔGvdw or ΔGrep is linear in A and that 

the resulting ΔGvdw can be combined with the ΔGel obtained from CSMs to obtain good 

estimates of ΔG is not valid for protein–protein complexes.

Additionally, although these results show that none of ΔGrep, ΔGvdw, 

 are truly linear in A or ΔA, if we extract estimates of apparent γrep 

from the derivative plots described above, we find our estimates of γrep decrease with A. 

This finding contradicts the hypothesis that there is a well-defined A above which ΔGrep is 

linear in A and below which ΔGrep is linear in V for realistic biomolecular solutes.

We found that LRT was sufficient for estimating , and ΔΔGatt. However, although 

the SSP using either eq 3 or 4 yielded estimates of ΔGatt that were correlated with those 

given by the LRT, and the predictions of  and ΔΔGatt given by eq 4 were also 

correlated to those given by LRT, the magnitudes of these quantities were significantly 

different from those given by LRT. Whether such estimates would be sufficient for in turn 

estimating ΔΔG is therefore much less clear. Additionally, whereas ΔGatt was correlated 

with A, neither  nor ΔΔGatt was correlated with ΔA, highlighting the observation 

that two theories could produce correlated estimates of solvation free energies while 

producing uncorrelated estimates of binding free energies.

For the one protein in the data set where ΔGel was obtained with FEP, this estimate differed 

by more than 100 kcal/mol from those given by SSP and LRT, and the corresponding 

estimate of ΔΔGel obtained from FEP differed by more than 10 kcal/mol from those 

obtained from the LRT and SSP, implying that the LRT and SSP approximations may be 

problematic in some situations. However, for all of the complexes in the data set, the SSP 

gave estimates of , and ΔΔGel that were highly correlated with those given 

by the LRT. Therefore, if the LRT is a reasonable approximation for a system, the SSP is 

probably reasonable as well. These calculations will have to be repeated for other systems to 

determine how general are these conclusions.

In summary, many of the assumptions underlying common CSMs are brought into question 

by this work. The predictions yielded by often-used hydrophobic models disagreed with the 

results from FEP. LRT did not yield estimates of electrostatic energies that were consistent 

with those obtained with FEP. Furthermore, although the PBE yielded estimates of ΔGel that 

were highly correlated with those obtained from FEP, its estimates of ΔΔGel were not in 

good agreement with those obtained by FEP. In combination with our observation that ΔGatt 
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was correlated with A but that ΔΔGatt was not, we can see that we cannot conclude that a 

theory will give good estimates of ΔΔG simply because its estimates of ΔG have some 

agreement with experimental data. Attempting to improve the estimates of ΔΔG given by 

CSMs by comparing their predictions of ΔG to experimental measurements may therefore 

not be productive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The Robert A. Welch Foundation (H-0037), the National Science Foundation (CHE-1152876), and the National 
Institutes of Health (GM-037657) are thanked for partial support of this work. This research was performed in part 
using Xsede resources provided by the National Science Foundation.

REFERENCES

1. Grochowski P, Trylska J. Continuum molecular electrostatics, salt effects, and counterion binding-A 
review of the Poisson-Boltzmann theory and its modifications. Biopolymers. 2008; 89:93–113. 
[PubMed: 17969016] 

2. Bashford D, Case DA. Generalized Born models of macromolecular solvation effects. Annu. Rev. 
Phys. Chem. 2000; 51:129–152. [PubMed: 11031278] 

3. Lounnas V, Pettitt BM, Phillips GN Jr. A global model of the protein-solvent interface. Biophys. J. 
1994; 66:601–614. [PubMed: 8011893] 

4. Makarov V, Pettitt BM, Feig M. Solvation and hydration of proteins and nucleic acids: a theoretical 
view of simulation and experiment. Acc. Chem. Res. 2002; 35:376–384. [PubMed: 12069622] 

5. Lin B, Pettitt BM. Electrostatic solvation free energy of amino acid side chain analogs: Implications 
for the validity of electrostatic linear response in water. J. Comput. Chem. 2011; 32:878–85. 
[PubMed: 20941733] 

6. Hirata, F., editor. Understanding chemical reactivity: Molecular theory of solvation. Norwell, MA, 
USA: Kluwer Academic Publishers; 2003. 

7. Truchon J-F, Pettitt BM, Labute P. A cavity corrected 3D-RISM functional for accurate solvation 
free energies. J. Chem. Theory Comput. 2014; 10:934–941. [PubMed: 24634616] 

8. Babu CS, Tembe BL. The role of solvent models in stabilizing nonclassical ions. Proc. - Indian 
Acad. Sci., Chem. Sci. 1987; 98:235–240.

9. Baldwin R. Energetics of Protein Folding. J. Mol. Biol. 2007; 371:283–301. [PubMed: 17582437] 

10. Mohan V, Davis ME, McCammon JA, Pettitt BM. Continuum model calculations of solvation free 
energies: Accurate evaluation of electrostatic contributions. J. Phys. Chem. 1992; 96:6428–6431.

11. Simonson T, Brünger AT. Solvation free energies estimated from macroscopic continuum theory: 
An accuracy assessment. J. Phys. Chem. 1994; 98:4683–4694.

12. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS. Predicting 
small-molecule solvation free energies: An informal blind test for computational chemistry. J. 
Med. Chem. 2008; 51:769–779. [PubMed: 18215013] 

13. Guthrie JP. A blind challenge for computational solvation free energies: Introduction and overview. 
J. Phys. Chem. B. 2009; 113:4501–4507. [PubMed: 19338360] 

14. Mobley DL, Wymer KL, Lim NM, Guthrie JP. Blind prediction of solvation free energies from the 
SAMPL4 challenge. J. Comput.-Aided Mol. Des. 2014; 28:135–150. [PubMed: 24615156] 

15. Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free 
energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of 
efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001; 123:5221–5230. [PubMed: 
11457384] 

Harris and Pettitt Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA 
methods. 1. The accuracy of binding free energy calculations based on molecular dynamics 
simulations. J. Chem. Inf. Model. 2011; 51:69–82. [PubMed: 21117705] 

17. Adler M, Beroza P. Improved ligand binding energies derived from molecular dynamics: Replicate 
sampling enhances the search of conformational space. J. Chem. Inf. Model. 2013; 53:2065–2072. 
[PubMed: 23845109] 

18. Harris RC, Mackoy T, Fenley MO. A stochastic solver of the generalized Born model. Mol. Based 
Math. Biol. 2013; 1:63–74.

19. Li M, Petukh M, Alexov E, Panchenko AR. Predicting the impact of missense mutations on 
protein-protein binding affinity. J. Chem. Theory Comput. 2014; 10:1770–1780. [PubMed: 
24803870] 

20. Muddana HS, Fenley AT, Mobley DL, Gilson MK. The SAMPL4 host-guest blind prediction 
challenge: An overview. J. Comput.-Aided Mol. Des. 2014; 28:305–317. [PubMed: 24599514] 

21. Zhu Y-L, Beroza P, Artis DR. Including explicit water molecules as part of the protein structure in 
MM/PBSA calculations. J. Chem. Inf. Model. 2014; 54:462–469. [PubMed: 24432790] 

22. Sharp KA, Honig B. Electrostatic interactions in macromolecules: Theory and applications. Annu. 
Rev. Biophys. Biophys. Chem. 1990; 19:301–332. [PubMed: 2194479] 

23. Cramer CJ, Truhlar DG. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. 
Chem. Rev. 1999; 99:2161–2200. [PubMed: 11849023] 

24. Harris RC, Pettitt BM. Effects of geometry and chemistry on hydrophobic solvation. Proc. Natl. 
Acad. Sci. U. S. A. 2014; 111:14681–14686. [PubMed: 25258413] 

25. Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium 
structure of simple liquids. J. Chem. Phys. 1971; 54:5237–5247.

26. Chandler D, Weeks JD, Andersen HC. Van der Waals picture of liquids, solids, and phase 
transformations. Science. 1983; 220:787–794. [PubMed: 17834156] 

27. Ashbaugh HS, Kaler EW, Paulaitis ME. A “universal” surface area correlation for molecular 
hydrophobic phenomena. J. Am. Chem. Soc. 1999; 121:9243–9244.

28. Gallicchio E, Kubo MM, Levy RM. Enthalpy-entropy and cavity decomposition of alkane 
hydration free energies: Numerical results and implications for theories of hydrophobic solvation. 
J. Phys. Chem. B. 2000; 104:6271–6285.

29. Gallicchio E, Zhang LY, Levy RM. The SGB/NP hydration free energy model based on the surface 
generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J. 
Comput. Chem. 2002; 23:517–529. [PubMed: 11948578] 

30. Zacharias M. Continuum solvent modeling of nonpolar solvation: Improvement by separating 
surface area dependent cavity and dispersion contributions. J. Phys. Chem. A. 2003; 107:3000–
3004.

31. Choudhury N, Pettitt BM. On the mechanism of hydrophobic association of nanoscopic solutes. J. 
Am. Chem. Soc. 2005; 127:3556–3567. [PubMed: 15755177] 

32. Choudhury N, Montgomery Pettitt B. Local density profiles are coupled to solute size and 
attractive potential for nanoscopic hydrophobic solutes. Mol. Simul. 2005; 31:457–463.

33. Wagoner JA, Baker NA. Assessing implicit models for nonpolar mean solvation forces: The 
importance of dispersion and volume terms. Proc. Natl. Acad. Sci. U. S. A. 2006; 103:8331–8336. 
[PubMed: 16709675] 

34. Harris RC, Drake JA, Pettitt BM. Multibody correlations in the hydrophobic solvation of glycine 
peptides. J. Chem. Phys. 2014; 141:22D525.

35. Frigerio F, Coda A, Pugliese L, Lionetti C, Menegatti E, Amiconi G, Schnebli HP, Ascenzi P, 
Bolognesi M. Crystal and molecular structure of the bovine α-chymotrypsin-eglin c complex at 
2.0 Å resolution. J. Mol. Biol. 1992; 225:107–123. [PubMed: 1583684] 

36. Song HK, Suh SW. Kunitz-type soybean trypsin inhibitor revisited: Refined structure of its 
complex with porcine trypsin reveals an insight into the interaction between a homologous 
inhibitor from Erythrina caffra and tissue-type plasminogen activator. J. Mol. Biol. 1998; 275:347–
363. [PubMed: 9466914] 

Harris and Pettitt Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Brownlow S, Cabral JHM, Cooper R, Flower DR, Yewdall SJ, Polikarpov I, North ACT, Sawyer L. 
Bovine β-lactoglobulin at 1.8 Å resolution-Still an enigmatic lipocalin. Structure. 1997; 5:481–
495. [PubMed: 9115437] 

38. Buckle AM, Schreiber G, Fersht AR. Protein-protein recognition: Crystal structural analysis of a 
barnase-barstar complex at 2.0-Å resolution. Biochemistry. 1994; 33:8878–8889. [PubMed: 
8043575] 

39. Kühlmann UC, Pommer AJ, Moore GR, James R, Kleanthous C. Specificity in protein-protein 
interactions: The structural basis for dual recognition in endonuclease colicin-immunity protein 
complexes. J. Mol. Biol. 2000; 301:1163–1178. [PubMed: 10966813] 

40. Würtele M, Wolf E, Pederson KJ, Buchwald G, Ahmadian MR, Barbieri JT, Wittinghofer A. How 
the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat. Struct. Biol. 2001; 8:23–26. 
[PubMed: 11135665] 

41. Bode W, Greyling HJ, Huber R, Otlewski J, Wilusz T. The refined 2.0 Å X-ray crystal structure of 
the complex formed between bovine β-trypsin and CMTI-I, a trypsin inhibitor from squash seeds 
(Cucurbita maxima) Topological similarity of the squash seed inhibitors with the carboxypeptidase 
A inhibitor from potatoes. FEBS Lett. 1989; 242:285–292. [PubMed: 2914611] 

42. Savva R, Pearl LH. Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase-
uracil glycosylase inhibitor protein complex. Nat. Struct. Biol. 1995; 2:752–757. [PubMed: 
7552746] 

43. Beveridge DL, DiCapua FM. Free energy via molecular simulation: Applications to chemical and 
biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 1989; 18:431–492. [PubMed: 
2660832] 

44. Straatsma TP, McCammon JA. Computational alchemy. Annu. Rev. Phys. Chem. 1992; 43:407–
435.

45. Åqvist J, Hansson A. On the validity of electrostatic linear response in polar solvents. J. Phys. 
Chem. 1996; 100:9512–9521.

46. Kokubo H, Harris RC, Asthagiri D, Pettitt BM. Solvation free energies of alanine peptides: The 
effect of flexibility. J. Phys. Chem. B. 2013; 117:16428–16435. [PubMed: 24328358] 

47. Young T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. 1805; 95:65–87.

48. Stillinger FH. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-
particle theory. J. Solution Chem. 1973; 2:141–158.

49. Pierotti RA. A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 1976; 
76:717–726.

50. Sharp KA, Nicholls A, Fine RF, Honig B. Reconciling the magnitude of the microscopic and 
macroscopic hydrophobic effects. Science. 1991; 252:106–109. [PubMed: 2011744] 

51. Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic 
solvent models. J. Phys. Chem. 1994; 98:1978–1988.

52. Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J. Phys. Chem. B. 
1999; 103:4570–4577.

53. Huang DM, Chandler D. Temperature and length scale dependence of hydrophobic effects and 
their possible implications for protein folding. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:8324–8327. 
[PubMed: 10890881] 

54. Hummer G, Garde S, García AE, Pratt LR. New perspectives on hydrophobic effects. Chem. Phys. 
2000; 258:349–370.

55. Rajamani S, Truskett TM, Garde S. Hydrophobic hydration from small to large lengthscales: 
Understanding and manipulating the crossover. Proc. Natl. Acad. Sci. U. S. A. 2005; 102:9475–
9480. [PubMed: 15972804] 

56. Hu CY, Kokubo H, Lynch GC, Bolen DW, Pettitt BM. Backbone additivity in the transfer model of 
protein solvation. Protein Sci. 2010; 19:1011–1022. [PubMed: 20306490] 

57. Kokubo H, Hu CY, Pettitt BM. Peptide conformational preferences in osmolyte solutions: Transfer 
free energies of decaalanine. J. Am. Chem. Soc. 2011; 133:1849–1858. [PubMed: 21250690] 

58. Harris RC, Mackoy T, Fenley MO. Problems of robustness in Poisson-Boltzmann binding energies. 
J. Chem. Theory Comput. 2015; 11:705–712. [PubMed: 26528091] 

Harris and Pettitt Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



59. Friedrich R, Fuentes-Prior P, Ong E, Coombs G, Hunter M, Oehler R, Pierson D, Gonzalez R, 
Huber R, Bode W, Madison EL. Catalytic domain structures of MT-SP1/matriptase, a matrix-
degrading transmembrane serine proteinase. J. Biol. Chem. 2002; 277:2160–2168. [PubMed: 
11696548] 

60. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, 
Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005; 26:1781–1802. 
[PubMed: 16222654] 

61. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple 
potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:926–935.

62. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, 
Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo 
T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, 
Watanabe M, Wiókiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for 
molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998; 102:3586–3616. 
[PubMed: 24889800] 

63. Edelsbrunner H, Koehl P. The weighted-volume derivative of a space-filling diagram. Proc. Natl. 
Acad. Sci. U.S.A. 2003; 100:2203–2208. [PubMed: 12601153] 

64. Lee B, Richards FM. The interpretation of protein structures: Estimation of static accessibility. J. 
Mol. Biol. 1971; 55:379–400. [PubMed: 5551392] 

65. MacKerell AD Jr, Feig M, Brooks CL III. Improved treatment of the protein backbone in empirical 
force fields. J. Am. Chem. Soc. 2004; 126:698–699. [PubMed: 14733527] 

66. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD Jr. Optimization of the 
additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ 
and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012; 8:3257–3273. 
[PubMed: 23341755] 

67. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: 
Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 2001; 98:10037–
10041. [PubMed: 11517324] 

68. Höchtl P, Boresch S, Bitomsky W, Steinhauser O. Rationalization of the dielectric properties of 
common three-site water models in terms of their force field parameters. J. Chem. Phys. 1998; 
109:4927–4937.

69. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 
The protein data bank. Nucleic Acids Res. 2000; 28:235–242. [PubMed: 10592235] 

Harris and Pettitt Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2017 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A plot of the probability density (F) of a given combination of the derivative (∂ΔGrep/∂xi) of 

the repulsive component (ΔGrep) of the free energy required to insert an uncharged molecule 

into solution with respect to the atomic coordinates (xi) and the derivative (∂A/∂xi) of the 

solvent-accessible surface area (A) with respect to xi for the second chain of the 1UDI 

complex. The red line is a least-squares line drawn through all of the points. Its slope 

provides an estimate of γrep for this protein, and it is equal to 0.022 kcal mol−1 Å−2. Those 

atoms for which both ∂ΔGrep/∂xi and ∂A/∂xi were equal to 0 were not included when 

computing F. If they had been included, the peak in F would have been significantly larger.
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Figure 2. 
Slopes (γrep) of the least-squares fit of the derivatives (∂Grep/∂xi) of the repulsive (ΔGrep) 

component of the cavity-insertion energy (ΔGvdw) with respect to the coordinates (xi) of the 

atomic centers versus derivatives (∂A/∂xi) of the solvent-accessible surface areas (A) with 

respect to xi versus A for all complexes and components in this study.
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Table 3

Slopes (m), y-Intercepts (b), and the Squares of Pearson’s Correlation Factors (R2) of Least-Squares Lines of 

the Quantities Listed in the y-Column versus Those in the x-Columna

x y R2 m b

A 0.992 −0.050 −19

ΔA 0.64 −0.077 −33

ΔA 0.25 −0.040 −77

0.97 3.4 203

0.64 1.60 −37

0.38 0.89 19

0.9991 0.58 −38

0.97 0.60 35

0.89 0.57 −10.5

0.9997 1.01 16

0.99997 1.0007 2.0

0.9999 1 1.6

0.96 1.03 −138

0.92 0.40 125

0.42 −7.57 510

a
The corresponding plots are in Supporting Information. All energies are in kcal/mol. All areas and changes in area are in units of Å2. All m and b 

are in the corresponding units.
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