
OPERATOR NORM INEQUALITIES BETWEEN TENSOR 
UNFOLDINGS ON THE PARTITION LATTICE

Miaoyan Wang1, Khanh Dao Duc1, Jonathan Fischer2, and Yun S. Song1,2,3

1Department of Mathematics, University of Pennsylvania

2Department of Statistics, University of California, Berkeley

3Computer Science Division, University of California, Berkeley

Abstract

Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of 

applications including image processing, blind source separation, community detection, and 

feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or 

flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite 

the popularity of such techniques, how the functional properties of a tensor changes upon 

unfolding is currently not well understood. In contrast to the body of existing work which has 

focused almost exclusively on matricizations, we here consider all possible unfoldings of an order-

k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k}. We derive 

general inequalities between the lp-norms of arbitrary unfoldings defined on the partition lattice. In 

particular, we demonstrate how the spectral norm (p = 2) of a tensor is bounded by that of its 

unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral 

norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of 

orthogonal decomposability, we prove that the spectral norm remains invariant under specific 

subsets of unfolding operations.
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1. Introduction

Tensors of order 3 or greater, known as higher-order tensors, have recently attracted 

increased attention in many fields across science and engineering. Methods built on tensors 

provide powerful tools to capture complex structures in data that lower-order methods may 

fail to exploit. Among numerous examples, tensors have been used to detect patterns in time-

course data [7, 17, 22, 29] and to model higher-order cumulants [1, 2, 14]. However, tensor-

based methods are fraught with challenges. Tensors are not simply matrices with more 
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indices; rather, they are mathematical objects possessing multilinear algebraic properties. 

Indeed, extending familiar matrix concepts such as norms to tensors is non-trivial [12, 18], 

and computing these quantities has proven to be NP-hard [4–6].

The spectral relations between a general tensor and its lower-order counterparts have yet to 

be studied. There are generally two types of approaches underlying many existing tensor-

based methods. The first approach flattens the tensor into a matrix and applies matrix-based 

techniques in downstream analyses, notably higher-order SVD [3, 10] and TensorFace [25]. 

Flattening is computationally convenient because of the ubiquity of well-established matrix-

based methods, as well as the connection between tensor contraction and block matrix 

multiplication [19]. However, matricization leads to a potential loss of the structure found in 

the original tensor. This motivates the key question of how much information a flattening 

retains from its parent tensor.

The second approach either handles the tensor directly or unfolds it into objects of order-3 or 

higher. Recent work on bounding the spectral norm of sub-Gaussian tensors reveals that 

solving for the convex relaxation of tensor rank by unfolding is suboptimal [24]. 

Interestingly, in the context of tensor completion, unfolding a higher-order tensor into a 

nearly cubic tensor requires smaller sample sizes than matricization [28]. These results are 

probabilistic in nature and merely focus on a particular class of tensors. Assessing the 

general impact of unfolding operations on an arbitrary tensor and the role of the tensor’s 

intrinsic structure remains challenging.

The primary goal of this paper is to study the effect of unfolding operations on functional 

properties of tensors, where an unfolding is any lower-order representation of a tensor. We 

study the operator norm of a tensor viewed as a multilinear functional because this quantity 

is commonly used in both theory and applications, especially in tensor completion [15,28] 

and low-rank approximation problems [23, 27]. Given an order-k tensor, we represent each 

possible unfolding operation using a partition π of [k] = {1, …, k}, where a block in π 
corresponds to the set of modes that should be combined into a single mode. Each unfolding 

is a rearrangement of the elements of the original tensor into a tensor of lower order. Here 

we study the lp operator norms of all possible tensor unfoldings, which together define what 

we coin a “norm landscape” on the partition lattice. A partial order relation between 

partitions enables us to find a path between an arbitrary pair of unfoldings and establish our 

main inequalities relating their operator norms. For specially-structured tensors satisfying a 

generalized definition of orthogonal decomposability, we show that the spectral norm (p = 2) 

remains invariant under unfolding operations corresponding to a specific subset of partitions. 

To our knowledge, our results represent the first attempt to provide a full picture of the norm 

landscape over all possible tensor unfoldings.

The remainder of this paper is organized as follows. In Section 2, we introduce some 

notation, and relate the spectral norm and the general lp-norm of a tensor. We then describe 

in Section 3 general tensor unfoldings defined on the partition lattice. In Section 4, we 

present our main results on the inequalities between the operator norms of any two tensor 

unfoldings and describe how the norm landscape changes over the partition lattice. In 

Section 5, we generalize the notion of orthogonal decomposable tensors and prove that the 
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spectral norm is invariant within a specific set of tensor unfoldings. We conclude in Section 

6 with discussions about our findings and avenues of future work.

2. Higher-order tensors and their operator norms

An order-k tensor  = 〚ai1 … ik〛 ∈ d1×⋯×dk over a field  is a hypermatrix with 

dimensions (d1, …, dk) and entries ai1…ik ∈ , for 1 ≤ in ≤ dn, n = 1, …, k. In this paper, we 

focus on real tensors,  = ℝ. The total dimension of  is denoted by .

The vectorization of , denoted Vec( ), is defined as the operation rearranging all 

elements of  into a column vector. For ease of notation, we use the shorthand [n] to denote 

the n-set {1, …, n} for n ∈ ℕ+, and sometimes write  when space is 

limited. We use Sd−1 = {x ∈ ℝd : ‖x‖2 = 1} to denote the (d − 1)-dimensional unit sphere, 

and Id to denote the d × d identity matrix.

For any two tensors  = 〚ai1 … ik〛, ℬ = 〚bi1 … ik〛 ∈ ℝd1×⋯×dk of identical order and 

dimensions, their inner product is defined as

while the tensor Frobenius norm of  is defined as

both of which are analogues of standard definitions for vectors and matrices.

Following [12], we define the covariant multilinear matrix multiplication of a tensor  ∈ 

ℝd1×⋯×dk by matrices  as

which results in an order-k tensor in ℝs1×⋯×sk. This operation multiplies the nth mode of 

by the matrix Mn for all n ∈ [k]. Just as a matrix may be multiplied in up to two modes by 

matrices of consistent dimensions, an order-k tensor can be multiplied by up to k matrices in 

k modes. In the case of k = 2,  is a matrix and . Sometimes we 

are interested in multiplying by vectors rather than matrices, in which case we obtain the k-

multilinear functional : ℝd1×⋯× ℝdk → ℝ given by
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(1)

where , n ∈ [k]. Note that multiplying by a vector in r modes in 

the manner defined in (1) reduces the order of the output tensor to k − r, whereas 

multiplying by matrices leaves the order unchanged. Although the coordinate representation 

of a tensor as a hypermatrix provides a concrete description, viewing it instead as a 

multilinear functional provides a coordinate-free, basis-independent perspective which 

allows us to better characterize the spectral relations among different tensor unfoldings.

We define the operator norm, or induced norm, of a tensor  using the associated k-

multilinear functional (1).

Definition 2.1 (Lim [12])

Let  ∈ ℝd1×⋯×dk be an order-k tensor. For any 1 ≤ p ≤ ∞, the lp-norm of the multilinear 

functional associated with  is defined as

(2)

where ‖xn‖p denotes the vector lp-norm of xn.

Remark 2.2

The special case of p = 2 is called the spectral norm, frequently denoted ‖ ‖σ. By (2), ‖ ‖σ 
is the maximum value obtained as the inner product of the tensor  with a rank-1 tensor, x1 

⊗ ⋯ ⊗ xn, of Frobenius norm 1 and of the same dimensions. This point of view provides an 

equivalent definition of ‖ ‖σ as determining the best rank-1 tensor approximation to , and 

we note that the rank-1 constraint becomes weaker as more unfolding is applied. See Section 

4 for further details.

Because we restrict all entries of  and  to be real, we need not take the absolute 

value of (x1, …, xk) as in [12]. It is worth mentioning that the notion of tensor lp-norms 

defined by (2) are not extensions of the classical matrix lp-norms when p ≠ 2. To see this, 

recall that for an m × n matrix A, one usually defines the lp operator norm as

(3)

Wang et al. Page 4

Linear Algebra Appl. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In general (2) and (3) are not equal even for matrices, illustrated by the following example:

Example 2.3

Let A = 〚aij〛 be the 2 × 2 matrix  and consider p = 1. Solving (3), we have

However, instead using (2) gives

which is neither the classical matrix l1-norm (equal to 5), nor the entry-wise l1-norm (equal 

to ∑i,j |aij | = 6).

Throughout this paper, we adopt Definition 2.1 and always use ‖·‖p to denote the lp-norm 

defined therein, even for matrices. In fact, (3) defines an operator norm by viewing the 

matrix as a linear operator from ℝd2 to ℝd1, whereas (2) defines an operator norm in which 

the matrix defines a bilinear functional from ℝd1 × ℝd2 to ℝ. These two definitions are 

equivalent when p = 2, but otherwise represent two different operators and result in two 

distinct operator norms. To be consistent with our treatment of tensors as k-multilinear 

functionals, we formulate matrices as bilinear functionals.

For a given tensor, its lp-norm and lq-norm mutually control each other, and the comparison 

bound is polynomial in the total dimension of the tensor, .

Proposition 2.4 (lp-norm vs. lq-norm)

Let  ∈ ℝd1× ⋯ ×dk be an order-k tensor. Suppose ‖·‖p and ‖·‖q are two norms defined in (2) 

with q ≥ p ≥ 1. Then,

Proof—Starting from Definition 2.1, we have

(4)
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For any q ≥ p ≥ 1, the equivalence of vector norms tells us

(5)

Applying (5) to xn, for n ∈ [k], gives

(6)

Inserting (6) into (4) and noting , we find

which completes the proof.

3. Partitions and general tensor unfoldings

Any higher-order tensor can be transformed into different lower-order tensors by modifying 

its indices in various ways. The most common transformations are n-mode flattenings, or 

matricizations, which rearrange the elements of an order-k tensor into a dn × ∏i≠n di matrix. 

For example, the n-mode matricization of a tensor  ∈ ℝd1×⋯×dk is obtained by mapping 

the fixed tensor index (i1, …, ik) to the matrix index (in, m), where

(7)

Recently there has been much interest in studying the relationship between tensors and their 

matrix flattenings [9]. We present here a more general analysis by considering all possible 

lower-order tensor unfoldings rather than just matricizations. Using the blocks of a partition 

of [k] to specify which modes are combined into a single mode of the new tensor, we 

establish a one-to-one correspondence between the set of all partitions of [k] and the set of 

lower-order tensor unfoldings. The partition lattice then describes the underlying 

relationship between possible tensor unfoldings of a tensor .

For any k ∈ ℕ+, a partition π of [k] is a collection  of disjoint, nonempty 

subsets (or blocks)  satisfying . The set of all partitions of [k] is denoted [k]. 

We use |π| to denote the number of blocks in π, and  to denote the number of elements 

in . We say that a partition π is a level-ℓ partition if |π| = ℓ. The set of all level-ℓ partitions 

of [k] is denoted by , which is a set of S(k, ℓ) elements, where S(k, ℓ) is the Stirling 

number of the second kind.
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The following partial order naturally relates partitions satisfying a basic compatibility 

constraint and the resulting structure plays a key role in our work.

Definition 3.1 (Partition Lattice)

A partition π1 ∈ [k] is called a refinement of π2 ∈ [k] if each block of π1 is a subset of 

some block of π2; conversely, π2 is said to be a coarsening of π1. This relationship defines a 

partial order, expressed as π1 ≤ π2, and we say that π1 is finer than π2 while π2 is coarser 
than π1. If either π1 ≤ π2 or π2 ≤ π1, then π1 and π2 are comparable. According to this 

partial order, the least element of [k] is 0[k] ≔ {{1}, …, {k}}, while the greatest element is 

1[k] ≔ {{1, …, k}}. Equipped with this notion, [k] generates a partition lattice by 

connecting any two comparable partitions that differ by exactly one level. An example is 

illustrated in Figure 1. Henceforth, [k] may represent either the set of all partitions of [k] or 

the partition lattice it generates depending on context.

It is clear that many partitions are not comparable, including every pair of distinct partitions 

at the same level. To consider arbitrary partitions in tandem, we require an extension of this 

partial order. In general, for any two partitions π1, π2 ∈ [k], we define their greatest lower 
bound π1 ∧ π2 as

More concretely, π1 ∧ π2 consists of the collection of all nonempty intersections of blocks 

in π1 and π2 and is unique for a given pair (π1, π2).

Example 3.2

Figure 1 illustrates [4] in lattice form. Recall that an edge connects two partitions if and 

only if they are comparable and their levels differ by exactly one. Partitions are comparable 

if and only if there exists a non-reversing path between them. To clarify the components of 

Definition 3.1, take π1 = {{1, 4}, {2, 3}} and π2 = {{1, 3, 4}, {2}}. Then π1 ∧ π2 = {{1, 

4}, {2}, {3}}, 0[4] = {{1}, {2}, {3}, {4}}, and 1[4] = {{1, 2, 3, 4}}.

The following definition generalizes the concept of n-mode flattenings defined in (7) to 

general unfoldings induced by arbitrary partitions π ∈ [k].

Definition 3.3 (General Tensor Unfolding)

Let  ∈ ℝd1×⋯×dk be an order-k tensor and . The partition π 

defines a mapping  such that

(8)

where
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Clearly, ϕπ is a one-to-one mapping, so its inverse  is well defined. Thus ϕπ induces an 

unfolding action  ↦ Unfoldπ( ) such that

for all  or, equivalently,

for all (i1, …, ik) ∈ [d1]×⋯× [dk]. Thus Unfoldπ( ) is an order-ℓ tensor of dimensions 

, and we call it the tensor unfolding of  induced by π.

Remark 3.4

By the definition of ϕπ in (8), Unfold0[k]( ) =  and Unfold1[k]( ) = Vec( ).

Example 3.5

Consider an order-4 tensor  = 〚aijkl〛 ∈ ℝ2×2×2×2. We provide a subset of the possible 

tensor unfoldings to elucidate both the manner in which the operation works and the natural 

association with partitions.

• For π = {{1, 2}, {3}, {4}}, Unfoldπ( ) is an order-3 tensor of dimensions (4, 2, 

2) with entries given by

for all (k, l) ∈ [2] × [2].

• For π = {{1, 2}, {3, 4}}, Unfoldπ( ) is a 4 × 4 matrix

• For π = {{1, 2, 3}, {4}}, Unfoldπ( ) is a 8 × 2 matrix
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Remark 3.6

There are different conventions to order the elements within each transformed mode. In 

principle, the ordering of elements within each transformed mode is irrelevant, so we do not 

explicitly spell out their orderings hereafter.

Remark 3.7

The unfolding operation leaves the Frobenius norm unchanged; that is, ‖ ‖F = ‖Unfoldπ( )

‖F for all π ∈ [k]. More generally, the inner product remains invariant under all unfoldings: 

〈 , ℬ〉 = 〈Unfoldπ( ), Unfoldπ(ℬ)〉 for all π ∈ [k], where , ℬ ∈ ℝd1×⋯×dk are two 

order-k tensors of the same dimensions.

4. Operator norm inequalities on the partition lattice

In this section, we compare the operator norms of different unfoldings of a tensor, in 

particular relative to that of the original tensor. We first focus on the spectral norm (p = 2) 

and then discuss extensions to general lp-norms.

Recall that for an order-k tensor  ∈ ℝd1×⋯×dk, its spectral norm is defined as

(9)

The maximization of the polynomial form (x1, …, xk) on the unit sphere is closely related 

to the best, in the least-square sense, rank-1 tensor approximation. Specifically, for an order-

k tensor  ∈ ℝd1×⋯×dk, the problem of determining the spectral norm is equivalent to 

finding a scalar λ and a rank-1 norm-1 tensor x1 ⊗⋯⊗ xk that minimize the function

The corresponding value of λ is equal to ‖ ‖σ. Since x1 ⊗⋯⊗ xk must have the same order 

and dimensions as , the rank-1 condition becomes less strict the more unfolded the tensor. 

In particular, for the vectorized unfolding, Vec( ), the best rank-1 tensor approximation is 

simply Vec( ) itself. For unfoldings into a matrix, Mat( ), the best rank-1 approximation 

is the outer product of the leading left and the right singular vectors of Mat( ). For higher-

order unfoldings, the closed form of the best rank-1 approximation is not known in general. 
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Nevertheless, the set of the rank-1 tensors over which the supremum is taken in (9) becomes 

more restricted. This observation implies that the spectral norm of a tensor unfolding 

decreases as the order of the unfolded tensor increases; that is, the spectral norm preserves 

the partial order on partitions.

Proposition 4.1 (Monotonicity)

For all partitions π1, π2 ∈ [k] satisfying π1 ≤ π2,

In particular, we have the global extrema

Proof—Suppose π1, π2 ∈ [k], and π1 is a one-step refinement of π2. Without loss of 

generality, assume π2 is obtained by merging two blocks B1, B2 ∈ π1 into a single block B 
∈ π2. Let Unfoldπ1( ) ∈ ℝd1×⋯×dℓ denote the tensor unfolding induced by π1 = {B1, …, 

Bℓ}. Then, Unfoldπ2( ) is a (d1 · d2, d3, …, dℓ)-dimensional tensor. By definition of the 

spectral norm,

where the third line comes from the fact that the set {Vec(x1 ⊗ x1) : (x1, x2) ∈ Sd1−1 × 

Sd2−1} is contained in the set {y : y ∈ Sd1·d2−1}.

In general, if π1 ≤ π2, we can obtain Unfoldπ2( ) from Unfoldπ1( ) by a series of single 

unfoldings. Hence, applying the above arguments to these successive unfoldings gives the 

desired result.

The following lemma will play a key role in proving our main results:

Lemma 4.2 (One-Step Inequality)

For 1 < ℓ ≤ k, let ℬ ∈ ℝd1×⋯×dℓ be an order-ℓ tensor unfolding of an order-k tensor 
induced by the partition {B1, …, Bℓ} ∈ [k], and let  be an order-(ℓ − 1) tensor unfolding of 
ℬ induced by merging blocks Bi and Bj for some i, j ∈ [ℓ]. Then,
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(10)

Proof—The upper bound follows readily from Proposition 4.1. To prove the lower bound, 

without loss of generality, assume  corresponds to the merging of blocks Bℓ−1 and Bℓ so that 

 is a (d1, …, dℓ−2, dℓ−1·dℓ)-dimensional tensor. Note that Sd1−1 ×⋯× Sdℓ−2−1 × Sdℓ−1dℓ−1 is a 

compact set, so the supremum (9) is attained in that set for . Then, there exists 

 such that

(11)

Define . By the self duality of the Frobenius norm in 

ℝdℓ−1dℓ, we can rewrite (11) as

(12)

On the other hand, if we define , then * 

is simply the vectorization of Mat( *). Hence, by Remark 3.7, we obtain

(13)

Using the definition of Mat( *), we can write

(14)

Recall that Mat( *) is a matrix of size dℓ−1 × dℓ, meaning [8]

(15)

Using (14) in conjunction with (15), (13), and (12), we then obtain
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which proves the lower bound.

Remark 4.3

Both bounds in the one-step inequality (10) are sharp. The sharpness of the upper bound will 

be discussed in Section 5. For the lower bound, consider an order-ℓ tensor unfolding 

, where {e1,i : i ∈ [d1]} is the standard 

orthonormal basis of ℝd1, {e2,i : i ∈ [d1]} is a set of d1 standard basis vectors in ℝd2, and 

is an arbitrary (d3, …, dℓ)-dimensional tensor. Assume d1 ≤ d2 and consider the two blocks 

B1 = {1}, B2 = {2}. By the unfolding operation specified in Lemma 4.2 with B1 and B2, 

, which is an order-(ℓ − 1) tensor 

unfolding by merging the first two modes of ℬ into a single mode. It follows that ‖ℬ‖σ = ‖

‖σ and , and therefore the left-hand-side inequality in (10) is saturated.

More generally, we can establish inequalities relating the spectral norms of two tensor 

unfoldings corresponding to two arbitrary partitions π1, π2 ∈ [k] that are not necessarily 

comparable. To do so, we must first introduce the following definition.

Definition 4.4

Given an order-k tensor  ∈ ℝd1×⋯×dk, we define the map dim  : [k] × [k] → ℕ+ as

where π1, π2 ∈ [k].

We label this quantity as dim (·, ·) because it involves a product of a subset of the 

dimensions of , and dim (π1, π2) ≤ dim( ) with equality only when π1 = π1 ∧ π2. 

Intuitively, dim (π1, π2) reflects the overlap between the unfoldings induced by π1 and π1 

∧ π2. Example 4.6 presents a concrete illustration.

Remark 4.5

We set D (B, B′) = 0 when B ∩ B′ = ∅. This does not affect the multiplication in 

Definition 4.4 because a block of π1 cannot be disjoint from every block of π2. Note that 

D (B, B′) = D (B′, B), but in general dim (π1, π2) ≠ dim (π2, π1).

Example 4.6

To illustrate the above map, let  ∈ ℝd1×d2×d3×d4 and consider the partitions π1 = {{1, 2}, 

{3, 4}} and π2 = {{1, 2, 3}, {4}}, for which π1∧π2 = {{1, 2}, {3}, {4}}. From Definition 

4.4,
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Then,

Exchanging arguments, we find

Remark 4.7

As in Lemma 4.2, if π2 is a one-step coarsening of π1 obtained by merging two blocks 

and  of dimensions di and dj into a single block , then

Hence, Lemma 4.2 can be written as

Having introduced Definition 4.4, we can now state our main result on how the spectral 

norms of two arbitrary unfoldings of a tensor are related:

Theorem 4.8 (Spectral norm inequalities)

Let  ∈ ℝd1×⋯×dk be an arbitrary order-k tensor, and π1, π2 any two partitions in [k]. 
Then,
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Remark 4.9

a. Note that π1 and π2 need not be comparable.

b. If dn = d for all n ∈ [k], then the result reduces to

where c1 = (k − ∑B∈π1 maxB′∈π2 |B ∩ B′|) and c2 = (k − ∑B∈π2 maxB′∈π1 |B ∩ 
B′|).

c. For k = 4, the above inequalities in (b) are sharp. For example, consider the 

tensor  = Id ⊗ Id, and partitions π = {{1, 2}, {3, 4}} and π′ = {{1}, {2}, {3}, 

{4}}, for which we have ‖Unfoldπ( )‖σ = d and ‖Unfoldπ′( )‖σ = 1. If π1 = π 
and π2 = π′, then c1 = 2 and d−c1/2 ‖Unfoldπ1( )‖σ = ‖Unfoldπ2( )‖σ. On the 

other hand, if π1 = π′ and π2 = π, then we have c2 = 2 and ‖Unfoldπ2( )‖σ = 

dc2/2 ‖Unfoldπ1( )‖σ. This particular tensor is further discussed later in 

Example 4.15.

Proof of Theorem 4.8—The main idea is to apply Lemma 4.2 to some appropriate 

sequence of partitions connecting π1 and π2 in the partition lattice. To do so, we consider 

Unfoldπ1∧π2( ) and compare its spectral norm to that of Unfoldπ1( ). Since π1 ∧ π2 ≤ 

π1, from Proposition 4.1 we have

(16)

Let  and , and note that 

. Now, order the blocks in π2 such that

(17)

and define . Consider a sequence ( 1, 2, …, ℓ2−1) of unfoldings of 

where j, for 1 ≤ j ≤ ℓ2 − 1, is obtained from the tensor Unfoldπ1∧π2( ) by an unfolding 

operation corresponding to merging the blocks B1,1, …, B1,j+1 into a single block. Using 

Lemma 4.2 and (17), we obtain

Similarly for all i ∈ [ℓ2 − 2],

Wang et al. Page 14

Linear Algebra Appl. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Combining these inequalities gives

We can iterate the same line of argument with  for i = 2, …, ℓ1 to 

obtain

Together with (16), this last inequality means

(18)

By symmetry,

(19)

Finally, combining (18) and (19) completes the proof.

We may immediately establish several corollaries of Theorem 4.8.
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Corollary 4.10

All order-k tensors  ∈ ℝd1×⋯×dk satisfy

Proof—Taking π1 = 0[k] and π2 = 1[k] in Theorem 4.8 yields the result.

Corollary 4.10 gives the worst-case ratio of the Frobenius norm to the spectral norm for an 

arbitrary tensor. This ratio is sharper than the bound recently found by Friedland and Lim [5, 

Lemma 5.1], namely ‖ ‖F ≤ dim( )1/2 ‖ ‖σ.

We now give a set of inequalities comparing the spectral norms of unfoldings at level ℓ to 

that at either level k or level 1. For ease of exposition, we assume dn = d for all n ∈ [k].

Corollary 4.11 (Bottom-Up Inequality)

Let  ∈ ℝd×⋯×d be an order-k tensor with the same dimension d in all modes. For all levels 

1 ≤ ℓ ≤ k and partitions ,

(20)

Proof—Take π2 = 0[k] in Theorem 4.8.

Remark 4.12

The existing work that is most closely related to our own is that of Hu’s [9], in which the 

author bounds the nuclear norm of a tensor by that of its matricization. Since the nuclear 

norm and spectral norm are dual to each other in tensor space, many of our results apply to 

the nuclear norm as well. Particularly, letting ℓ = 2 in the bottom-up inequality (20) 

reproduces Hu’s results.

Corollary 4.13 (Top-Down Inequality)

Let  ∈ ℝd×⋯×d be an order-k tensor with the same dimension d in all modes. For all levels 

1 ≤ ℓ ≤ k and partitions ,

Proof—Take π1 = 1[k] in Theorem 4.8.

Corollary 4.14

Let  ∈ ℝd×⋯×d be an order-k tensor with the same dimension d in all modes. For all levels 
1 ≤ ℓ ≤ k,
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Proof—Note that the minimum of the maximal block sizes across all level-ℓ partitions of 

[k] is , and apply Corollary 4.13.

The above corollaries bound the amount by which norms can vary over a specific level ℓ. 
They imply that the ratios ‖Unfoldπ( )‖σ/‖ ‖σ and ‖Unfoldπ( )‖σ/‖ ‖F fall in the 

intervals [1, d(k−ℓ)/2] and [d−(k− ⌈k/ℓ⌉)/2, 1], respectively. Therefore, in the worst case, 

‖Unfoldπ( )‖σ only recovers ‖ ‖σ or ‖ ‖F at poly(d) precision. Note that the factor d(k−ℓ)/2 

has an exponent linear in the difference between the orders of the original tensor and its 

flattening. This means that the potential deviation between their spectral norms depends only 

on the difference in their orders rather than the actual orders themselves, and that the 

deviation accumulates in multiplicative fashion with a loss of  in precision at each level. 

In contrast, the factor d−(k−⌈k/ℓ⌉)/2 depends on more than just the gap between k and ℓ, with a 

larger impact for unfoldings with orders close to k.

We provide a low-order example that reaches the poly(d) scaling factor in Corollary 4.11.

Example 4.15

Consider the order-4 tensor  = Id ⊗ Id. Straightforward calculation shows that ‖ ‖σ = 1. 

Furthermore, by symmetry, the spectral norm of an unfolding induced by any partition in 

 or  must fall into one of the following five representative cases:

• For .

• For .

• For .

• For .

• For .

Therefore

We conclude this section by generalizing Theorem 4.8 to lp-norms.
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Theorem 4.16 (l
p
-norm inequalities)

Let  ∈ ℝd1×⋯×dk be an arbitrary order-k tensor, and π1, π2 any two partitions in [k]. 

Then,

a. For any 1 ≤ p ≤ 2,

b. For any 2 ≤ p ≤ ∞,

Proof—We only prove (a) since (b) follows similarly. For any given 1 ≤ p ≤ 2, taking q = 2 

in Proposition 2.4 implies that the bound between the lp-norm and spectral norm depends 

only on the total dimension of the tensor, dim( ) = ∏n∈[k] dn. Because the total dimension 

is invariant under any unfolding operation, we have

(21)

for all π ∈ [k]. Combining (21) with Theorem 4.8 gives the desired results.

5. Orthogonal decomposability and norm equality on upper cones

We have seen that the unfolding operation may change the spectral norm by up to a poly(d) 

factor for an arbitrary . This is undesirable in many flattening-based algorithms, such as 

[3, 25]. However, for some specially-structured tensors, the operator norm on the partition 

lattice may not change much either globally or locally. We demonstrate such a behavior for 

the following class of tensors:

Definition 5.1 (π-orthogonal decomposable)

Let  ∈ ℝd1×⋯×dk be an order-k tensor and consider any partition π ∈ [k]. Then  is 

called π-orthogonal decomposable, or π-OD, over ℝ if it admits the decomposition

(22)

where λ1 ≥ λ2 ≥ ⋯ ≥ λr ≥ 0, and the set of vectors  satisfies
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for all B ∈ π and all n, m ∈ [r].

A concept similar to π-OD, referred to as biorthogonal eigentensor decomposition [28], is 

introduced in the tensor completion literature when k = 3 and π = {{1}, {2, 3}}. Informally 

speaking, π-OD imposes an orthogonality constraint on every block of singular vectors.

Remark 5.2 (0[k]-OD)

When π = 0[k] in Definition 5.1, we obtain the special case of 0[k]-OD tensors, which admit 

the decomposition (22) while satisfying

for all i ∈ [k] and all n, m ∈ [r].

The definition of 0[k]-OD tensors generalizes the definition of orthogonal decomposable 

tensors presented in [21], as we require neither symmetry nor equality of dimension across 

modes. In fact, a 0[k]-OD tensor  is a diagonalizable tensor [3], meaning that the core 

tensor output from higher-order SVD is superdiagonal (i.e., entries are zero unless i1 = ⋯ = 

ik).

Lemma 5.3

Consider an order-k tensor  ∈ ℝd1×⋯×dk.

a. Let π1, π2 ∈ [k] and π1 ≤ π2. If  is π1-OD, then  is π2-OD.

b. Let π ∈ [k] and π ≠ 1[k]. If  is π-OD, then

(23)

Proof—Part (a): For any two finite sets of vectors {xi} and {yi} for which xi, yi ∈ ℝdi, we 

have

(24)

for all B ⊂ [k]. Suppose B ∈ π2. If π1 ≤ π2, then there exist subsets C1, …, Cm ∈ π1 such 

that C1 ∪ ⋯ ∪ Cm = B. So,

which implies that  is π2-OD if  is π1-OD.
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Part (b): Suppose  is of the form . Note that π ≠ 1[k] implies ℓ ≥ 2. 

Letting  where  denotes the complement of  with respect to [k], we 

have  and π ≤ τ. By Lemma 5.3(a),  is τ-OD, so  admits a decomposition of 

the form

(25)

where

(26)

for all n, m ∈ [r].

Now define  and  for all n ∈ [r]. By (26), both 

{xn} and {yn} are sets of orthonormal vectors. By the definition of Unfoldτ ( ), (25) 

implies

which is simply the matrix SVD of Unfoldτ ( ). Hence ‖Unfoldτ ( )‖σ = λ1. Using 

monotonicity (c.f., Proposition 4.1), we have

(27)

Conversely, by the definition of the spectral norm, we have

(28)
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where the third line comes from (24) and the last line follows from the fact that  is π-OD. 

Combining (27) and (28), we conclude ‖Unfoldπ( )‖σ = λ1.

Remark 5.4

The condition π ≠ 1[k] in Lemma 5.3 is needed for (23) to hold. In fact, consider a 2 × 2 

matrix A = 2e1 ⊗ e1 + e1 ⊗ e2, where {ei, i ∈ [2]} is the canonical basis of ℝ2. Then, A is 

1[k]-OD with λ1 = 2, but .

Theorem 5.5 (Norm equality on upper cones)

If  is π-OD, then for any partition in the upper cone Uπ = {τ ∈ [k] : π ≤ τ < 1[k]} of π, 

we have

Proof—If  is π-OD, then by Lemma 5.3(b), we have ‖Unfoldπ( )‖σ = λ1. Given any τ ≥ 

π, by Lemma 5.3(a),  is also τ-OD. Again, using Lemma 5.3(b), we have ‖Unfoldτ ( )‖σ 
= λ1. Therefore, ‖Unfoldτ ( )‖σ = ‖Unfoldπ( )‖σ.

Theorem 5.5 states that the spectral norm is invariant for π-OD  under any unfolding 

induced by the partitions in the upper cone Uπ of π. This lies in contrast with the poly(d) 

factor we have seen for unstructured tensors.

Corollary 5.6

If  is 0[k]-OD, then for all partitions π ≠ 1[k], we have

Corollary 5.6 implies that for 0[k]-OD tensors, the operator norm is invariant under any 

unfolding operations except vectorization. Lastly, π1, π2 ∈ Uπ1∧π2 implies the following 

corollary:

Corollary 5.7

Let π1, π2 ∈ [k]. If  is (π1 ∧ π2)-OD, then

6. Discussion

In this paper, we presented a new framework representing all possible tensor unfoldings by 

the partition lattice and established a set of general inequalities quantifying the impact of 

tensor unfoldings on the operator norms of the resulting tensors. We showed that the 

comparison bounds scale polynomially in the dimensions {dn} of the tensor, with powers 

depending on the corresponding partition and block sizes for any pair of tensor unfoldings 
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being compared. As a direct consequence, we demonstrated how the operator norm of a 

general tensor is lower and upper bounded by that of its unfoldings.

In general, an unfolding operation may inflate the operator norm by up to a poly(d) factor, as 

seen in Corollary 4.11. Note that the quantity dim( ) plays a key role in the worst-case 

inflation factor and is a manifestation of the curse of dimensionality. Specifically, dim( ) 

can be quite large as the mode dimensions and tensor order increase, with particular 

sensitivity to the latter. In such settings, our main result seems to bode poorly for flattening-

based algorithms; however, we believe that it should be interpreted with caution because our 

comparison bounds deal with arbitrary tensors rather than those often sought in applications. 

In fact, π-OD tensors permit much tighter bounds in which some unfoldings, including 

certain matricizations, leave the operator norm relatively unaffected. In practice, π-OD 

tensors, or those within a small neighborhood around π-OD tensors, arise widely in 

statistical and machine learning applications [1, 11, 16, 26].

Additionally, our work enables us to compare different unfoldings at the same level ℓ. Recent 

work on problems featuring nuclear-norm regularization has shown that not all n-mode 

flattenings are equally preferable [13]. Indeed, as illustrated in Example 4.15, the operator 

norm of level-2 unfoldings (i.e. matricizations) can be quite different. Recently, several 

algorithms have been proposed to account for this behavior. For example, Tomioka et al. 
[23] consider a weighted sum of the norms of all single-mode matricizations. Other 

techniques include two-mode matricization [26] and square matricization [15, 20], in which 

the original tensor is reshaped into a matrix by flattening along multiple modes. Our work 

provides general bounds to evaluate the effectiveness of such schemes. In particular, the 

results presented here are used in the theoretical analysis of a two-mode higher-order SVD 

algorithm proposed recently [26].

We have not attempted to characterize the degree to which operator norm relations on the 

partition lattice restrict the original tensor. Essentially, this is a converse problem asking 

whether π-OD is a necessary condition for Theorem 5.5 and Corollary 5.6 in addition to 

being sufficient. If not, it would be useful to determine the extent to which such equalities 

inform us about the intrinsic structure of the original tensor. From a practical standpoint, 

norm comparisons between different matricizations are relatively simple, but the optimal 

manner in which to use this information to learn about the original tensor remains unknown.

In closing, we emphasize that while this work focuses on theory rather than computational 

tractability, it possesses practical implications as well. Because direct calculation of the 

operator norm of a level-ℓ tensor is generally computationally prohibitive for ℓ ≥ 3, 

exploiting level-2 unfoldings may be attractive when the unfolding effect is small enough. 

Alternatively, for more precise calculations, a number of approximation algorithms exist for 

higher-order tensor problems [23, 27] at the cost of increased computation. Given that the 

trade-off between accuracy and computation is often unavoidable, our work may be of help 

in finding an appropriate application-specific balance when working with higher-order 

tensors.
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Figure 1. 
The partition lattice [4].
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