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ABSTRACT Realized kinship is a key statistic in analyses of genetic data involving relatedness of individuals or structure of populations.
There are several estimators of kinship that make use of dense SNP genotypes. We introduce a class of estimators, of which some
existing estimators are special cases. Within this class, we derive properties of the estimators and determine an optimal estimator.
Additionally, we introduce an alternative marker weighting that takes allelic associations [linkage disequilibrium (LD)] into account, and
apply this weighting to several estimators. In a simulation study, we show that improved estimators are obtained (1) by optimal
weighting of markers, (2) by taking physical contiguity of genome into account, and (3) by weighting on the basis of LD.
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GENES inherited from the same ancestral copy by related
individuals are said tobe identical bydecent (IBD).At the

locus level, a pair of individuals share 0–4 genes that are IBD.
At the genome level, the kinship coefficient is often used to
summarize the average amount of IBD sharing across all loci.
The kinship coefficient is important in genetic data analyses
that either use or adjust for pairwise relatedness. The pedigree
kinship, C; the probability that genes segregating from each
individual at a randomly chosen locus are IBD, is a determin-
istic function of the pedigree relationship. However, the
realized kinship, F; the actual proportion of IBD genome be-
tween two individuals varies widely about its expectation ðCÞ
as a consequence of Mendelian sampling (Hill and Weir
2011). Additionally, in samples ascertained on the basis of
trait information or samples affected by artificial selection,
there are biases in the levels of relatedness of individuals (Liu
et al. 2003; Purcell et al. 2007). Thus, even when pedigree
information is available, estimates of realized kinship are
often preferred to pedigree kinship (Visscher et al. 2006;
VanRaden 2007, 2008; Hayes et al. 2009).

The availability of dense SNP genotypes makes it possible
to estimate realized kinship accurately without pedigree in-

formation. Such estimates are particularly useful in studies
that involve population samples (Choi et al. 2009; Yang et al.
2010; Day-Williams et al. 2011). Improving the precision of
realized-kinship estimators has value for human genetics ap-
plications involving gene mapping or genotypic disease risk
prediction, and also for animal and plant breeding, where
incremental improvements in predictive accuracy are of eco-
nomic value in trait optimization.

The matrix of inferred pairwise realized kinship is a mea-
sure of genomic similarity and a kernel in the sense of Gianola
and van Kaam (2008). It is therefore appropriate for pheno-
type prediction or whole genome prediction (de los Campos
et al. 2010). The use of this matrix for phenotype or breeding-
value prediction is the genomic best linear unbiased predic-
tion methodology (for example, Bernardo 2008). In plant
and animal breeding applications, pedigree information has
been combined with inferred kinships (Crossa et al. 2010). In
the mixed model context, the matrix is used for variance
component estimation (Yang et al. 2010), or as a proxy for
polygenic effects in the presence of major gene effects (Kang
et al. 2010).

One group of existing estimators of realized kinship makes
use only of the population allele frequencies at each SNP
marker, andnot of additional information such as the ordering
of markers along the chromosome. Estimators in this group
require only dense SNP genotypes and reliable sources of
marker allele frequencies as input. The PLINK (Purcell et al.
2007) method-of-moments estimator ðF̂PÞ estimates realized
kinship from the k coefficients; the proportion of genome at
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which two noninbred individuals share 0, 1, or 2 IBD genes.
Choi et al. (2009) adopted a maximum likelihood estima-
tor (MLE) ðF̂MÞ that estimates the k coefficients using an
EM algorithm. The classic genomic relationship matrix
(GRM) estimator ðF̂GÞ estimates kinship through the em-
pirical correlation of genotypes; see, for example Hayes
et al. (2009). An alternative version of the GRM estimator
ðF̂RÞ is more robust to presence of rare alleles (VanRaden
2008). Day-Williams et al. (2011) proposed a method-of-
moments estimator ðF̂DÞ; which estimates kinship by ex-
ploring the relationship between identity by state (IBS)
and IBD.

Other estimators make use of various sources of additional
information to improve accuracy of kinship estimation. A
number of methods have been developed to estimate IBD
sharing at the locus level; see for exampleMoltke et al. (2011)
and methods cited in Brown et al. (2012). These location-
specific IBD estimates in turn provide estimates of kinship;
note that location-specific kinships are constrained to the
values 0, 1/4, 1/2, and 1 (Day-Williams et al. 2011). Here,
we consider estimators from two of such local IBD methods
that have not been previously used to estimate genome-wide
realized kinship. The local method of Day-Williams et al.
(2011) with resulting kinship estimator F̂L; (to be distin-
guished from F̂DÞ requires information on the ordering of
markers along the chromosomes. It predicts the amount of
sharing at each marker by first estimating a neighborhood
kinship for each marker and then applying a constrained
smoothing algorithm on each chromosome. The hidden
Markovmodel (HMM) proposed by Brown et al. (2012), with
resulting kinship estimator F̂H; estimates probabilities of IBD
states between two or more individuals at each marker loca-
tion. A genetic map is needed to compute transition proba-
bilities along the Markov chain.

Finally, we consider efficient estimation of realized kinship
in the presence of linkage disequilibrium (LD). An increase in
the density of SNP panels, by itself, will not improve precision
without limit in the presence of LD, as additional SNPs are not
independent sources of information. Speed et al. (2012) de-
veloped LDAK ðF̂KÞ; a weighted version of the GRM that
takes LD into account. By analogy with methods introduced
in the population structure context by Patterson et al. (2006)
and Zou et al. (2010), LDAK equalizes contributions of linked
SNPs by downweighting SNPs which make redundant con-
tribution to the GRM as evidenced by off-diagonal terms in
the (squared) SNP correlation matrix. We derive an analo-
gous weighting by optimizing the weighted GRM estimator
variance under tractable assumptions.

This article focuses on pedigree-free estimation of realized
kinship in a homogenous population. In Methods, we first
introduce the framework of a general class of GRM estima-
tors, of which the classic GRM estimator ðF̂GÞ; the robust
GRM estimator ðF̂RÞ; and the global Day-Williams estima-
tor ðF̂DÞ are all special cases. Under the assumptions
of linkage equilibrium and absence of inbreeding, we pro-
pose a two-step GRM estimator ðF̂TÞ that approximates

the minimum variance estimator within this class. In the
general case of LD, we derive the variance for a weighted
GRM estimator, and construct an estimator ðF̂WÞ with cer-
tain optimality properties given the LD structure of the
population. We next describe the implementation of our
simulation study which compares performance of the dif-
ferent kinship estimators detailed above. Additionally, the
optimal weights derived for F̂W may also be applied to
other estimators; specifically, we consider reweighted ver-
sions of F̂L and F̂H : Results of the simulation study are
presented in Results. We show that the proposed estimators
are very competitive against existing estimators. We con-
clude with a Discussion.

Methods

A general class of GRM estimators

At any autosomal locus, there are 15 possible IBD states
among the four genes of two individuals. These 15 IBD states
fall into nine genotypically distinct classes (see, for exam-
ple, Thompson 2000). When interest lies only in the
amount of sharing between (as opposed to within) the
individuals, the nine classes of states condense further into
four groups of states characterized by local kinship, f,
which takes values in f0; 1=4; 1=2; 1g. Global realized kin-
ship, F; measures the IBD proportion shared between the
individuals across the genome, and so takes values in the
range ½0; 1�: Since IBD results from the meiotic process, we
measure this proportion in terms of genetic distance. How-
ever, since recombination is a coarse process relative to
dense SNP markers, global kinship is well approximated
by the average of local kinship over a large number of
marker loci approximately evenly spaced in genetic dis-
tance throughout the genome.

We consider a general class of GRM estimators of the
following form:

F̂ða;wÞ ¼
XL
l¼1

wl3
xl yl 2 alðxl þ ylÞ þ 4alpl 2 4p2l

4plð12 plÞ
; (1)

where L is the total number of marker loci, x ¼ ðx1; . . . ; xLÞT
and y ¼ ðy1; . . . ; yLÞT are counts of reference alleles at
each marker for the pair of individuals, p ¼ ðp1; . . . ; pLÞT are the
population frequencies of the reference alleles, a ¼ ða1; . . . ; aLÞT
are multiplicative factors, and w ¼ ðw1; . . . ;wLÞT are non-
negative weights satisfying

PL
l¼1wl ¼ 1: The vectors a

and w are parameters that distinguish different GRM es-
timators, while x and y are the data random variables
and p is assumed known. Note that the denominator in
(1) is 4plð12 plÞ as opposed to 2plð12 plÞ; reflecting the
difference between kinship coefficients and the relat-
edness coefficients of the numerator relationship matrix
(Henderson 1976).

The classic GRM estimator is a special case of (1) with
al ¼ 2pl and wl ¼ 1=L for all l:
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F̂G ¼ 1
L

XL
l¼1

ðxl2 2plÞðyl2 2plÞ
4plð12 plÞ

¼ PL
l¼1

1
L
3

xlyl2 2plðxl þ ylÞ þ 4p2l
4plð12 plÞ

:

(2)

The robust GRM estimator is a special case with al ¼ 2pl and
wl ¼ 4plð12 plÞ=½

PL
m¼14pmð12 pmÞ� for all l:

F̂R ¼
PL

l¼1ðxl 22plÞðyl 2 2plÞPL
l¼14plð12 plÞ

¼ PL
l¼1

4plð12 plÞPL
m¼14pmð12 pmÞ

3
xlyl 2 2plðxl þ ylÞ þ 4p2l

4plð12 plÞ
:

(3)

The global Day-Williams estimator can be reparametrized
(see Appendix A) into the form of (1) with al ¼ 1 and
wl ¼ 4plð12 plÞ=½

PL
m¼14pmð12 pmÞ� for all l:

F̂D ¼
PL

l¼1xlyl2 ðxl þ ylÞ þ 4pl 2 4p2lPL
l¼14plð12 plÞ

¼ P
l¼1

L 4plð12 plÞPL
m¼14pmð12 pmÞ

3
xlyl 2 ðxl þ ylÞ þ 4pl 24p2l

4plð12 plÞ
:

(4)

In the general form of (1), write

ZlðalÞ ¼
xlyl 2 alðxl þ ylÞ þ 4alpl 2 4p2l

4plð12 plÞ

so that F̂ða;wÞ ¼PL
l¼1wl 3 ZlðalÞ:

Note that ZðaÞ ¼ ½Z1ða1Þ; . . . ; ZLðaLÞ�T depends on the
parameters a but not on w: We make two basic assump-
tions throughout the article. First, we assume IBD genes
have the same allelic types and non-IBD genes have in-
dependent allelic types. In addition, we assume ex-
changeability of parental lineage, so that either of the
two genes from the first individual is equally likely to
be IBD to either of the two genes of the second individual
at the same locus. Under these assumptions, it can be
shown that E½ZlðalÞ� ¼ F regardless the choice of al (see
Appendix B, General Case). Thus, E½F̂ða;wÞ� ¼ F for any a
and w:

Performance of unbiased estimators depend on their var-
iances. For a GRM estimator in the general form of (1),

Var
h
F̂ða;wÞ

i
¼
XL
l¼1

w2
l VlðalÞ þ

X
l 6¼m

wlwmCov½ZlðalÞ; ZmðamÞ�;

(5)

where VlðalÞ ¼ Var½ZlðalÞ�. Computation of Var½F̂ða;wÞ� is in-
tractable without simplifying assumptions. We next derive
the a and w that minimize Var½F̂ða;wÞ� under different
assumptions.

Linkage equilibrium

We first assume linkage equilibrium. Although in reality there
is LD, empirical results show that the relative values of
variances of estimators are well approximated by those de-
rived under this assumption (see Discussion). When markers
are in linkage equilibrium, the allelic types at different
markers on the samehaplotype are independent. Equation5 then
reduces to

Var
h
F̂ða;wÞ

i
¼
XL
l¼1

w2
l VlðalÞ: (6)

To find the GRM estimator with minimal variance, Equation
6 suggests that one should first (for each l) choose al
that minimizes VlðalÞ; and then choose w to minimize
Var½F̂ða;wÞ�.

We now make an additional assumption of no inbreeding.
For general choices of al; it can be shown (see Appendix B,
Linkage Equilibrium) that

VlðalÞ ¼
1

4plð12 plÞ
3
h
ðal22plÞ2 þ 2Fðal21Þ2 2F

                                 þ   4Fð12FÞplð12 plÞ þ ðk2 þ 1Þplð12 plÞ�;
(7)

where F is the realized kinship and k2 is the realized pro-
portion of the genome that the pair of individuals share both
genes IBD. Note that the value of VlðalÞ is asymmetric about
pl ¼ 0:5 for general choices of al; and thus is sensitive to the
choice of reference allele. However, when al is any weighted
average of 2pl and 1 [as in (8)], VlðalÞ becomes invariant to
the choice of reference allele. With such an al; VlðalÞ attains
its minimum at pl ¼ 0:5; conditional onF and k2 (see Appen-
dix B, Linkage Equilibrium).

It follows from (7) that the optimal multiplicative factors
that minimize the unweighted single-marker variances have
the form

ael ¼ argmin
al

VlðalÞ ¼
1

1þ 2F
3 2pl þ

2F
1þ 2F

: (8)

Interestingly, ~al is a weighted average of 2pl and 1, which are
the choices used by F̂G; F̂R; and F̂D; respectively (compare
Equations 2–4). Figure 1A shows how ~al varies with pl for
different F’s. We see that al ¼ 2pl is optimal when F ¼ 0;
whereas al ¼ 1 is far from optimal even when F ¼ ð1=4Þ:
Since F̂R and F̂D use the same weights, F̂R is more efficient
than F̂D for F, 1/2 (from Equation (7)) under the assump-
tions of this section.

Conditional on a; the optimal weights that minimize
Var½F̂ða;wÞ� have the form

welðaÞ ¼ VlðalÞ21PL
m¼1VmðamÞ21; l ¼ 1; . . . ; L: (9)

The weights in (9) can be equivalently specified by the
ratios
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welðaÞ
wemðaÞ ¼ VmðamÞ

VlðalÞ
; l;m ¼ 1; . . . ; L;

which are functions of allele frequencies at the correspond-
ing pairs of markers, conditional onF; k2 and the choice of a:
For a ¼ 2p; Figure 1B shows how amarker with frequency pl
is weighted relative to a marker with frequency 0.5 under
the optimal weighting schemew~ð2pÞ for different combina-
tions of ðF; k2Þ: The optimal solution weights markers very
differently, especially for large F: In this case ða ¼ 2pÞ; the
uniform weighting of F̂G is optimal when F ¼ 0; whereas
the weighting of F̂R is optimal when F ¼ ð1=4Þ and
k2 ¼ ð1=4Þ:

The estimator F̂½ae;weðaeÞ�would be an obvious choice if we
knew ae and weðaeÞ: However, elements of ae ¼ ðae1; . . . ; aeLÞT
are functions of the unknown F; and elements of
weðaeÞ ¼ ½we1ðaeÞ; . . . ;weLðaeÞ�T are functions of the unknown F;

k2; and ae: The closed form expressions given in Equations 7–9
motivate a two-step estimator, F̂T ; which approximates
F̂½ae;weðaeÞ� following these two steps:

1. Obtain initial estimates of F and k2 using existing
methods.

2. Compute ae* (Equation 8) and then we *ðae*Þ (Equations
7 and 9) using these estimates of F and k2:

Then F̂T ¼ F̂½ae*;we *ðae*Þ�.
In practice, existing kinship estimators such as F̂G; F̂R; and

F̂D may produce negative estimates ofF in Step 1. Our imple-
mentation uses F̂G to obtain an initial estimate of F: When
this initial estimate is negative, we simply retain it as the F̂T

estimate. For simplicity, we set k2 ¼ 0when computing Vlðae*l Þ
for all l. In principle, this affects the calculation of we *ðae*Þ for
bilateral relatives, but it makes no practical difference (see
Supplemental Material, File S1, section A).

Linkage disequilibrium

We now drop the assumptions of linkage equilibrium and
absence of inbreeding. To calculate variances, we follow
the approach of Sverdlov (2014), and consider the case
where the pair of individuals are unrelated. Under these

Figure 1 (A) ~al as a function of pl for different
F’s; with al ¼ 2pl and al ¼ 1 as reference lines.
(B) Ratio of weights between a marker with
allele frequency pl and a reference marker with
allele frequency 0.5, under the optimal weight-
ing scheme ~wð2pÞ for different combinations
of ðF; k2Þ: In calculation of ~wð2pÞ; we used
k2 ¼ ð1=4Þ when F ¼ ð1=4Þ and 0 otherwise.
Note that these combinations of ðF; k2Þ corre-
spond to pedigree expectations of a pair of in-
dividuals that are full siblings, half siblings, first
cousins, second cousins, or third cousins.
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assumptions, it can be shown (see Appendix B, Linkage
Disequilibrium) that

ael ¼ argmin
al

VlðalÞ ¼ 2pl:

However, there generally does not exist an a that
jointly minimizes each of the unweighted covariance terms
in Equation 5. Thus, we conveniently set a ¼ 2p in the re-
mainder of this section.

Let Fx and Fy denote the inbreeding coefficients of the two
individuals respectively. We have

Vlð2plÞ ¼ Var½Zlð2plÞ� ¼
1
4
ðFx þ 1ÞðFy þ 1Þ (10)

and

Cov½Zlð2plÞ; Zmð2pmÞ� ¼
1
4
ðFx þ 1ÞðFy þ 1Þr2lm; (11)

where rlm is the genotype dosage correlation between locus l
and locus m. Conveniently, rlm only enters the expression in
a squared form, so the covariance is invariant to the choice
of reference allele. Combining (10) and (11), Equation 5
becomes

Var
h
F̂ð2p;wÞ

i
¼
X
l

X
m

wlwm3
1
4
ðFx þ 1ÞðFy þ 1Þr2lm;

(12)

where rlm ¼ 1 when l ¼ m: We assume that the matrix of
squared LD correlations,R ¼ ½r2lm�; is known. The goal is to find

the w that minimizes Var½F̂ð2p;wÞ�. Note that the inbreeding
coefficients, Fx and Fy; are part of a fixed scaling factor.

The optimization problem reduces to

min
w

�
wTRw2wT1

�
: wl $ 0 "  l: (13)

Presence of the second term in the objective function forces a
solution that satisfies wT1 ¼ c for some c.0; which can be
rescaled by 1=c to obtain the final solution we : The LD
weighted GRM estimator is then F̂W ¼ F̂ð2p;weÞ:

The matrix R is positive semidefinite (see Appendix B,
Linkage Disequilibrium). The above minimization problem
can be solved for general R using standard quadratic pro-
gramming procedures, and closed-form solutions exist for
special cases of R (see File S1, section B). However, in
practice, it will be necessary to divide the large set of
genome-wide SNPs into blocks. In the case where R has a
block-diagonal structure, the optimization problem can be
solved for each block. The final solutions will be a concate-
nation of the rescaled block solutions. Additional details are
given in Appendix B, Linkage Disequilibrium.

Methods of analysis

In the simulation study, we considered six relationship types:
full siblings (FS), half siblings (HS), first cousins (C1), second

cousins (C2), third cousins (C3), and inbred cousins (IN) from
the complex JV pedigree (Goddard et al. 1996) shown in
Figure 2. Dense SNP genotypes were generated for 1000 in-
dependent pairs of each relationship type as follows:

1. Simulate recombination breakpoints and Mendelian sam-
pling for all meioses in the smallest complete pedigree
that contains the pair of relatives.

2. Assign founder genome labels (FGLs) (Sobel and Lange
1996) to founder haplotypes, and determine the inherited
FGLs at all marker positions for all nonfounders with re-
spect to the inheritance pattern simulated in step 1.

3. Sample founder haplotypes from a reference pool, and
assign alleles to nonfounders with respect to both the
sampled founder haplotypes and the inherited FGLs de-
termined in step 2.

4. At each locus, combine the two alleles inherited by the
related pair of individuals to create genotype data.

Data generation was implemented using the ibd_create
program of MORGAN version 3.3.1 (Thompson and Lewis
2016). Marker and haplotype information used in data gen-
eration were extracted from the 1000 Genomes Project
Phase 3 data (1000 Genomes Project Consortium 2015). All
5008 phased haplotypes from the combined population were
made available for sampling of founder haplotypes. This use
of real haplotypes preserves the natural patterns of LD in the
combined population. The locations of markers in Haldane
cM were obtained from the Rutgers Map version 3a (Matise
et al. 2007). A total of 169,751 markers were selected from
the 22 autosomes based on spacing (�50 markers per
cM), minor allele frequency ($0.05), and complete genotype
information (no missing genotypes). The distribution of al-
lele frequencies in the marker panel thus reflects real studies
using common SNPs. The marker density was chosen to be
dense enough to show patterns of LD, yet sparse enough to be
attainable by older SNP arrays in human genetics and by
modern SNP arrays in animal genetics.

All the kinship estimators were evaluated on the simu-
lated data. We used PLINK version 1.07 to implement the
PLINK estimator, ibd_haplo program (Brown et al. 2012) of
MORGAN version 3.3.1 to implement the HMM estimator,
and our own code to implement all other estimators. Marker
allele frequencies used in analysis were estimated by PLINK
version 1.07 for each relationship type separately. For the
MLE estimator, we adopted a very stringent convergence cri-
terion (order of 1028 of the final log-likelihood) and used
pedigree k coefficients as the starting configurations of the
EM algorithm. The GRM estimators were computed both un-
constrained to the range ½0; 1� (consistent with the theory in
Methods), and also constrained to this range.

The local Day-Williams method imputes local kinship di-
rectly, whereas the HMM method estimates probabilities of
local IBD states. For ease of comparison, we used the most
probable state from the HMM output to impute local kinship.
For these two local methods, estimates of realized (global)
kinships were calculated as the average of imputed local
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kinship across all marker loci.We simulated genotype data on
an additional 300 independent pairs of cousins (100 first
cousins, 100 second cousins, and100 third cousins) for tuning
purposes. For each of the two local IBDmethods, a sparse grid
search was implemented to find the set of tuning parameters
that maximizes local kinship imputation rate over the tuning
data set. The selected sets of tuning parameters were sub-
sequently used in the actual analysis.

All LD-adjusted methods used the reference genotypes of
all 2504 individuals from the 1000 Genomes Project Phase
3 data to obtain LD information. A naive LD-pruned GRM
estimator ðF̂NÞ is included as a baseline for comparison.
For this estimator, LD pruning was done using PLINK ver-
sion 1.07, where we sequentially threw out one of the pairs
of markers that had a genotypic dosage correlation r2 . 0:2
(option–r2 in PLINK). This pruning step reduced the
marker set to about half of the original size, and the classic
GRM was applied to the reduced marker set to obtain F̂N :

For the LD-weighted GRM estimator ðF̂WÞ; weights were
computed in blocks of 2000 SNPs using the optimization
package JuMP version 0.14.1 (Lubin and Dunning 2015) in
the Julia language. Weights of the LDAK estimator ðF̂KÞ
were computed using LDAK version 4.9 with the default
options.

Using a single processor on a standard desktop, the PLINK
estimates or any of the GRM estimates can be computed for
1000 pairs of individuals with the selected genome-wide
marker panel in a couple of minutes. The MLE estimates
can takemany hours to compute depending on run conditions
(see Results). Either of the two local IBD estimates takes sev-
eral hours to compute, but this is still computationally feasi-
ble. With reference genotypes from 2504 individuals as the
basis for LD adjustment, LD pruning takes several minutes to
implement. Weights of the LD-weighted GRM take ,15 min
to compute, whereas weights of LDAK take .15 hr to
compute.

The performances of estimators were compared on the
simulated data. To compare performance both across estima-
tors and across relationship types, we summarize estimation

accuracy by the ratio of the square root of mean squared error
(MSE) and the average realized kinship,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1000

P1000
m¼1

�
F̂m2Fm

�2r
1

1000
P1000

m¼1Fm
; (14)

whereFm’s are realized kinship and F̂m’s are their estimates.

Data availability

The 1000 Genomes Project Phase 3 data are available at
http://www.1000genomes.org/data. The Rutgers Map ver-
sion 3a is available at http://compgen.rutgers.edu/download_
maps.shtml. Information on the set of 169,751 SNP markers
used in the simulation study is provided as File S2.

Results

Table 1 summarizes the performance of different kinship es-
timators. The estimators are divided into two groups: Group-1
uses only marker-allele frequencies, whereas those in
Group-2 use additional information. First, every estimator
works better on closer relatives. This is expected given we
are measuring estimation accuracies relative to the average
amount of sharing (Equation 14), and the coefficients of var-
iation are higher for remote relatives. For each estimator, the
raw MSEs are in fact smaller on remote relatives (Table S4).
Second, estimators that make use of additional sources of
information (Group-2) generally do better than estimators
that do not (Group-1). This is also expected as chromosomes
are inherited as segments. Information such as marker order,
genetic positions, and LD pattern are informative of the joint
inheritance across markers.

Relative performances of the GRM estimators in Group-1
match our expectations under the assumption of linkage
equilibrium (Figure 1, A and B). The two-step GRM estimator
ðF̂TÞ compares favorably to others on all relationship types.
The classic GRMestimator ðF̂GÞworks well whenF � 0 (e.g.,
third cousins). The robust GRM estimator ðF̂RÞ is preferred to

Figure 2 The JV pedigree. Individual 41 and 42 are the
inbred quadruple cousins (IN) considered in the simu-
lation study. Double lines indicate consanguineous
marriages.
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F̂G on close relatives, and it dominates the global Day-
Williams estimator ðF̂DÞ on all relationship types.

The MLE estimator ðF̂MÞ stands out among estimators in
Group-1. Likelihood estimators are often known to be more
accurate than method-of-moment estimators (Milligan 2003;
Anderson and Weir 2007). However, accuracy and computa-
tional efficiency of F̂M is extremely sensitive to the starting
configurations and the convergence criterion of the EM algo-
rithm. Our implementation of F̂M adopted very favorable
conditions (see Methods of analysis). Otherwise, the results
were much less accurate and computation time much longer
(results not shown). For full siblings, the PLINK estimator
ðF̂PÞ is more accurate than any Group-1 GRM estimator.
Since F̂P estimates the k coefficients directly, this provides
higher resolution on full siblings who share two IBD genes
over, on average, 25% of the genome. When inbreeding is
present, F̂P and F̂M perform poorly relative to the other
Group-1 estimators. These two estimators estimate the
zero-inbreeding k coefficients directly and are thus more sen-
sitive to violation of the no-inbreeding assumption.

Among the estimators of Group-2, the local Day-Williams
estimator ðF̂LÞ performs better than the others on remote
relatives. However, the smoothing algorithm of F̂L tends to
produce downward bias (see File S1, section C, and Table S5)
so that F̂L must performwell on remote relatives where there
is not much room for underestimation. In contrast, the HMM
estimator ðF̂HÞ generally overestimates IBD in the presence
of LD (Brown et al. 2012). The naive LD-pruned GRM esti-
mator ðF̂NÞ shows slight improvement over the classic GRM
estimator ðF̂GÞ; but loses to the LDAK ðF̂KÞ on all occasions.
The LD-weighted GRM estimator ðF̂WÞ dominates both F̂H

and F̂K in performance and loses to F̂L only on remote rela-
tives. This reflects the amount of LD present in the selected
marker panel in the combined population, and shows that
appropriately adjusting for patterns of LD can significantly
improve the accuracy of kinship estimation.

When inbreeding is present, performance of F̂L is the most
affected among the Group-2 estimators. Glazner and Thompson
(2015) noted that, in their example, this local IBDDay-Williams
method failed to pick up short segments of complex (autozygous)
IBD; the varying kinship levels across short distances seem
to challenge this method (see File S1, section C). The perfor-
mance of F̂W is also affected by inbreeding. Perhaps the higher
IBD levels in inbred individuals conflict with the assumption of
unrelatedness in the estimator derivation.

When the LD weights are combined with the local IBD
methods, there is clear improvement in performance for the
HMM method (compare F̂H to F̂HWÞ; but less so for the Day-
Williams local method (compare F̂L and F̂LWÞ: As noted
above, the HMM overestimates IBD in high-LD regions, so
that the LD weights are beneficial.

Pedigree kinship ðCÞ is included in Table 1; it may be
considered an estimator based only on the pedigree and not on
genetic data. The MSE here represents the variation in realized
kinship among pairs of individuals in the same pedigree re-
lationship. The advantage of using genetic-data-based es-
timates of realized kinship instead of pedigree kinship is
clear. Only on remote relatives (C2 and C3) do some of the
marker-based estimates differ from the realized kinship by
more than the pedigree values do. In fact, the results of Table 1
underplay the performance of the GRM estimators on remote
relatives, since, for all the other estimators, estimates are
constrained to be within the ½0; 1� range. A comparison of
constrained and unconstrained performance of the GRM
estimators is shown in Table S6.

Discussion

We have shown that improved estimators of realized kinship
can be obtained (1) by optimal weighting of markers, (2) by
taking physical contiguity of genome into account, and (3)
by weighting on the basis of LD. In practice, the choice of

Table 1 Estimation accuracies from simulation study as measured by the ratio ð3 102Þ of the square root of MSE and the average realized
kinship (Equation 14)

Additional information Estimator

Relationship

FS HS C1 C2 C3 IN

None

F̂P PLINK 1.64 4.66 10.81 50.76 178.78 30.30
F̂M MLE 1.51 3.55 7.26 27.00 78.66 12.79
F̂D Global Day-Williams 3.12 6.38 12.34 49.55 187.68 7.33
F̂G Classic GRM 3.00 4.85 8.32 30.83 116.22 5.92
F̂R Robust GRM 2.42 4.33 7.99 31.64 120.56 5.56
F̂T Two-step GRM 2.19 4.26 7.96 30.84 116.24 5.50

LD pattern F̂N Naive LD-pruned GRM 3.01 4.70 7.87 28.20 105.46 5.82
LD pattern F̂K LDAK 2.64 4.10 7.21 23.74 85.57 6.31
LD pattern F̂W LD-weighted GRM 1.59 2.60 4.44 17.33 65.60 4.82
Marker order F̂L Local Day-Williams 2.04 2.76 6.52 10.79 24.26 8.31
LD pattern + marker order F̂LW LD-weighted local Day-Williams 2.10 2.85 6.70 11.27 23.56 8.39
Genetic position F̂H HMM 1.77 3.36 6.04 17.90 64.97 4.84
LD pattern + genetic position F̂HW LD-weighted HMM 1.57 2.83 5.16 14.55 52.19 4.52
Pedigree C Pedigree kinship 7.80 10.49 17.63 37.30 70.16 14.73

All estimators compared require dense SNP genotypes and reliable sources of marker allele frequencies as input. Pedigree kinship for the six relationship types are 0.25 (FS),
0.125 (HS), 0.0625 (C1), 0.0156 (C2), 0.0039 (C3), and 0.1094 (IN), respectively.
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estimator largely depends on the availability of information.
When one only has SNP genotypes andmarker allele frequen-
cies to work with, the two-step GRM estimator ðF̂TÞ is both
accurate and computationally efficient. If large genotyped
samples from the relevant population are available, the
LD-weighted GRM estimator ðF̂WÞ is an attractive alterna-
tive. The LD weights can be computed very efficiently using
existing optimization software, and the computation needs to
be done only once for a population. If information on marker
order or genetic positions is available, either the local Day-
Williams estimator ðF̂LÞ or the HMMestimator ðF̂HÞ can offer
a substantial increase in accuracy at the cost of longer com-
putation time (see Methods of analysis). Once computed,
these local IBD estimates across the genome can also be used
in other analyses that use location-specific IBD: for example,
in gene mapping.

In the derivation of optimal estimators, assumptions such
as absence of inbreeding, linkage equilibrium, or unrelated-
nesswerenecessary tokeep computations tractable.However,
the proposed estimators applied well outside the initially
assumed context. The two-step GRM estimator ðF̂TÞ does
not seem to be affected by the presence of inbreeding. It
compares favorably to other estimators that use the same
amount of information even when the assumption of linkage
equilibrium is violated. The LD-weighted GRM estimator
ðF̂WÞ performed well on all relationship types considered,
and is only slightly affected when related individuals happen
to be inbred.

In our simulation study, relative pairs are generated as
random draws from each relationship type. In practice, non-
random sampling may create biases causing realized kinship
to differ from thepedigree values. For instance, ascertainment
by traits in human genetics and artificial selection in animal
and plant genetics can result in sampled relatives being more
(or less) genetically related than expected under the pedigree
structure (Liu et al. 2003; Purcell et al. 2007). The compari-
son of pedigree vs. realized kinships in this article (Table 1) is
thus an idealized best-case scenario.

Our simulation studyused real haplotypes andadenseSNP
marker panel. Thus LD is present in the simulated data.
However, in assuming the variance form of Equation (6),
the covariances due to LD are ignored (see Equation 5). To
investigate the impact of LD on the relative performance of
estimators, we compared the empirical and theoretical (no-
LD) SDs for several estimators and relationship types. For any
GRM estimator described in Linkage equilibrium and any re-
lationship type (except the inbred cousins) listed in Table 1,
the true variance is well approximated by empirical MSE. The
theoretical (no-LD) variance (6) is computed using the sim-
ulation values ofF and k2; and averaged across all 1000 pairs
of that relationship type. Table S3 summarizes the results.
We see that the factor by which the SD is underestimated by
ignoring LD is generally smaller on remote relatives. More
importantly, for a given relationship type, it is fairly consis-
tent across estimators. This suggests that between GRM esti-
mators that do not adjust for LD, relative efficiency computed

under the assumption of linkage equilibrium can be a good
approximation to the true relative values.

Our study assumed population homogeneity so that allele
frequencies andLDweights canbeestimatedonceandapplied
toall pairs of relatives. This choicehas theadvantageofhaving
a bigger pool of founder haplotypes available for sampling,
and thus lower correlation among estimates from different
simulation replicates. It also induces a more complex popu-
lation structure in the simulated data, which is likely to
influence performance of some estimators more than others.
In limited additional experiments, we investigated perfor-
mance of a subset of estimators on data simulated under
either European ancestry or African ancestry, and compared
results to those of Table 1 (see Table S7 and Table S8). Un-
surprisingly, the GRM estimators generally benefit from the
lesser structure in these more homogeneous pools of haplo-
types. Relative performance among the GRM estimators that
do not adjust for LD remains unchanged. The LD weighted
GRM estimator ðF̂WÞ loses to the two-step GRM estimator
ðF̂TÞ on close relatives, suggesting that the amount of LD
adjustment (given the choice of marker panel and ancestry)
is not enough to offset the effect of deviation from the as-
sumption of unrelatedness. However, these results also sug-
gest F̂W is robust to population substructure and admixture;
compared to other GRM estimators, its performance is much
less affected by the complex structure of the combined pop-
ulation (compare Table 1 with Table S7 and Table S8). The
HMM estimator ðF̂HÞ does better under African ancestry
(than under combined ancestry), and worse under European
ancestry. This is likely due to the higher LD in the European
population; F̂H is sensitive to LD (Brown et al. 2012).

For convenience, we selected SNPs based on even genetic
distance spacing and minor allele frequency (MAF). The re-
lationship between genetic distance and LD is far from uni-
form, and our results on the impact of adjusting for LD show
that it is a significant factor in our marker panel. The distri-
bution of allele frequencies in our selected marker panel is
quite similar to that in the commonly used OmniExpress24
genome-wide-association-study chip (see Figure S3). Com-
pared to the OmniExpress24 autosomal markers, our se-
lected marker panel has a slight underrepresentation for
markers with MAF $ 0:1: However, our panel was selected
with a threshold of MAF $ 0:05; whereas �9% of the
OmniExpress24 autosomal markers fall below this threshold.
We found that naive pruning of markers by MAF generally
reduces accuracy of the two-step GRM estimator ðF̂TÞ; but
can sometimes improve accuracy of other Group-1 GRM
estimators depending on relationship types. Even on MAF-
pruned marker sets, F̂T always stands out among the Group-1
GRM estimators (results not shown). Overall, our selection of
SNPs by genetic spacing and MAF create no strong biases in
our estimator comparisons.

Even as SNP panels become denser, or sequence data
become available, the issue of LD remains. Additional typed
loci do not provide additional relatedness information with-
out limit. Although methods that adjust for LD will gain from
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the use of additional markers, other methods may not benefit
and can be adversely affected. In particular, non-LD-adjusted
local methods such as the HMM estimator ðF̂HÞ should be
applied on an LD-pruned marker set to avoid overestimation
of IBD. In human applications with nominally unrelated in-
dividuals, haplotypic similarities due to LD must be distin-
guished from cryptic relatedness. In animal and plant
breeding applications, high levels of LD are a regular feature
of artificially selected populations with a small effective foun-
der population size. Therefore, methods for efficient kinship
estimation in the presence of LD remain relevant even in the
age of full genome sequencing.

Estimators developed in this article do not specifically
deal with population substructure or admixture, but they
can be generalized to do so. Thornton et al. (2012) and
Conomos et al. (2016) proposed two different methods that
estimate individual-specific allele frequencies which take
population substructure and admixture into account. The
estimated individual-specific allele frequencies were sub-
sequently applied to the classic GRM estimator and the
robust GRM estimator, respectively, for kinship estimation.
The same logic may be applied to calculate LD weights
that adjust for population substructure or admixture. These
frequencies and LD weights can then be used with our pro-
posed estimators. The merits of such an approach to ad-
dress population substructure or admixture is a topic for
future studies.
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Appendix A: Reparameterization of the Global Day-Williams Estimator

The original form of the global Day-Williams estimator introduced in Day-Williams et al. (2011) is

F̂uv ¼
euv 2

Pm
i¼1
�
p2i þ q2i

�
m2

Pm
i¼1
�
p2i þ q2i

� ;
whereFuv is the kinship between individual u and v, euv is the observed number of IBS matches between u and v,m is the total
number of markers, pi is the reference allele frequency at marker i and qi ¼ 12 pi: euv is defined as

euv ¼
Xm
i¼1

oiuv ¼
Xm
i¼1

1
4
ð1fIi¼Kig þ 1fIi¼Lig þ 1fJi¼Kig þ 1fJi¼LigÞ  ;

where Ii and Ji are the allelic types of the individual u at marker i, and Ki and Li are the allelic types of the individual v at
marker i.

Sinceweareworkingwith genotypic data frompairs of individuals, indices of individualswithin a pair are exchangeable, and
so are indices of genes from the same individual at a given marker. Table A1 shows the correspondence between the Day-
Williams and the GRM notations at each marker position. Note that oiuv and ½1þ ðxi 2 1Þðyi 2 1Þ�=2 are equivalent for all
possible genotype combinations. Therefore, we can rewrite F̂uv as

F̂uv ¼
euv 2

Pm
i¼1
�
p2i þ q2i

�
m2

Pm
i¼1
�
p2i þ q2i

�
¼
Pm

i¼1o
i
uv 2 1þ 2pið12 piÞPm
i¼12pið12 piÞ

¼
Pm

i¼11þ ðxi2 1Þðyi 2 1Þ2 2þ 4pið12 piÞPm
i¼14pið12 piÞ

F̂D ¼
P​ m

i¼1xiyi2 ðxi þ yÞ þ 4pi2 4p2iP​ m
i¼14pið12 piÞ

;

which recovers the expression in Equation 4.

Appendix B: Computations in Methods

General Case

Let 1x1 and 1x2 be the indicator functions that the two alleles of individual 1 at marker l are the reference allele, respectively,
with l omitted from the notation. Define 1y1 and 1y2 similarly for individual 2. It is easy to see that xl ¼ 1x1 þ 1x2 and
yl ¼ 1y1 þ 1y2: Recall that the basic assumptions are:

1. IBD genes are of the same allelic types, whereas non-IBD genes are of independent allelic types.
2. Either of the two genes from one individual is equal likely to be IBD to either of the two genes of the other individual at the

same locus.

Table A1 Correspondence between notations for all possible marker genotypes

Notation Day-Williams GRM

Genotype ðIi ; Ji ;Ki ; LiÞ oi
uv ðxi ; yiÞ ½1þ ðxi 21Þðyi 21Þ�=2

AA,AA (1,1,1,1) 1 (2,2) 1
AA,AB (1,1,1,2) 0.5 (2,1) 0.5
AA,BB (1,1,2,2) 0 (2,0) 0
AB,AB (1,2,1,2) 0.5 (1,1) 0.5
AB,BB (1,2,2,2) 0.5 (1,0) 0.5
BB,BB (2,2,2,2) 1 (0,0) 1
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We have

E½xl� ¼ 2E½1x1� ¼ 2pl;
E½xlyl� ¼ E½ð1x1 þ 1x2Þð1y1 þ 1y2Þ�

¼ 4E½1x11y1�
¼ 4Fpl þ 4ð12FÞp2l ;

and

E½ZlðalÞ� ¼ E

"
xlyl2 alðxl þ ylÞ þ 4alpl 2 4p2l

4plð12 plÞ

#

¼ 4Fpl þ 4ð12FÞp2l 2 al3 4pl þ 4alpl2 4p2l
4plð12 plÞ

¼ F:

Since

E½F̂ða;wÞ� ¼ E

"XL
l¼1

wlZlðalÞ
#
¼
XL
l¼1

wl 3F ¼ F;

F̂ða;wÞ is unbiased for any a and w:

Linkage Equilibrium

We now assume linkage equilibrium and absence of inbreeding. To derive an expression for VlðalÞ defined in (5), note that

E
�
x2l
� ¼ E

h
12x1 þ 21x11x2 þ 12x2

i
¼ 2pl þ 2p2l ;

Var½xl� ¼ E
�
x2l
�
2 ðE½xl�Þ2

¼ 2pl þ 2p2l 2 4p2l¼ 2plð12 plÞ;
Cov½xl; yl� ¼ E½ðxl 2 2plÞðyl2 2plÞ�

¼ E
�
xlyl 22plxl2 2plyl þ 4p2l

�
¼ 4Fplð12 plÞ;

E
�
x2l yl

� ¼ E

h
ð1x1 þ 1x2Þ2ð1y1 þ 1y2Þ

i
¼ 4E

h
12x11y1

i
þ 4E½1x11x21y1�

¼ 4Fpl þ 4ð12FÞp2l þ 4
�
2Fp2l þ ð12 2FÞp3l

�
¼ 4Fpl þ 4p2l þ 4Fp2l þ 4p3l 2 8Fp3l ;

Cov½xlyl; xl� ¼ E
	�
xlyl 2 4Fpl 2 4ð12FÞp2l

�ðxl2 2plÞ



¼ E
�
x2l yl

�
22plE½xlyl�

¼ 4Fpl þ 4p2l þ 4Fp2l þ 4p3l 2 8Fp3l
    2 8Fp2l 2 8p3l þ 8Fp3l
¼ 4Fpl þ 4p2l 2 4Fp2l 2 4p3l¼ 4ðFþ plÞplð12 plÞ:

Calculation of the term E½1x11x21y1� involves probabilities of the underlying IBD states between the two genes of individual
1 and one gene of individual 2. Given the assumption of no inbreeding, there are only three possible IBD states with
probabilities given in Table B1.

Table B1 IBD states and probabilities for the two genes of individual 1 and one random gene from individual 2

IBD state (1,2,1) (1,2,2) (1,2,3)

Probability F F 122F
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Following the above results, the closed-form expression of the variance VlðalÞ of Equation 5 is derived in Box B1, assuming
0, pl ,1: For general choices of al; VlðalÞ is not symmetric about pl ¼ 0:5; and is thus sensitive to the choice of reference allele.
The part of VlðalÞ that is responsible for this asymmetry is

ðal22plÞ2 þ 2Fðal21Þ2;

where al can be a function of pl:
Suppose, however, that al is a weighted average of 2pl and 1: al ¼ b3 2pl þ ð12 bÞ for b 2 ½0; 1�: Then

ðal22plÞ2 þ 2Fðal21Þ2
¼ ðb3 2pl þ 12b22plÞ2 þ 2Fðb3 2pl þ 12b21Þ2
¼ ð2pl21Þ2

h
ðb21Þ2 þ 2Fb2

i
:

Then VlðalÞ takes the value

Box 1 Derivation of Vl (al) under the assumption of no inbreeding.
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4Fð12FÞ þ k2 þ 1þ
ð2pl21Þ2

h
ðb21Þ2 þ 2Fb2

i
2F

4plð12 plÞ
;

which is symmetric about pl ¼ 0:5; and it attains its minimum at pl ¼ 0:5; conditional on F and k2:
Returning to the general form of VlðalÞ and setting its derivative with respect to al equal to 0, leads to

~al ¼
1

1þ 2F
3 2pl þ

2F
1þ 2F

:

Thus the optimal ~al is a weighted average of 2pl and 1, and Vlð~alÞ is invariant to the choice of reference allele.
For fixed a [and therefore fixed VðaÞ�; we can find the set of optimal weights ~wðaÞ by solving the following minimization

problem:

min
w

XL
l¼1

w2
l VlðalÞ : wT1 ¼ 1;  wl $0 "  l:

With Lagrange multipliers l,

Lðw; lÞ ¼
XL
l¼1

w2
l VlðalÞ2 l

 XL
l¼1

wl2 1

!

@L
@wl

¼ 2wlVlðalÞ2 l ¼ 0

~wlðaÞ ¼
l

2
3VlðalÞ21:

The above expression holds true for all l, implying

~wlðaÞ ¼
VlðalÞ21PL

m¼1VmðamÞ21:

The nonnegativity constraint is automatically satisfied as VlðalÞ. 0 for all l.

Linkage Disequilibrium

We drop the assumptions of linkage equilibrium and absence of inbreeding, but assume instead that the two individuals are
unrelated, so that xl ? ym are independent, for all l andm. Under the new assumptions, all of the results from General Case still
hold, butmost of the results from Linkage Equilibrium do not. Let the inbreeding coefficients of the two individuals be Fx and Fy;
respectively,

E
�
x2l
� ¼ E

h
12x1 þ 21x11x2 þ 12x2

i
¼ 2pl½1þ Fx þ ð12 FxÞpl�;

Var½xl� ¼ E
�
x2l
�
2 ðE½xl�Þ2

¼ 2pl½1þ Fx þ ð12 FxÞpl�2 4p2l¼ 2plð12 plÞðFx þ 1Þ:

Analogous results hold for yl: It can be verified (line 5 of Box B1) that

~al ¼ argmin
al

VlðalÞ ¼
Cov½xlyl; xl þ yl�

Var½xl þ yl�
:

This time
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~al ¼
Cov½xlyl; xl� þ Cov½xlyl; yl�

Var½xl� þ Var½yl�

¼
�
E
�
x2l
�
2 2E½xl�E½yl� þ E

�
y2l
��

32pl
E
�
x2l
�
2 ðE½xl�Þ2 þ E

�
y2l
�
2 ðE½yl�Þ2

;

¼ 2pl;

since

2E½xl�E½yl� ¼ ðE½xl�Þ2 þ ðE½yl�Þ2 ¼ 8p2l :

Now

Cov½xlyl 2 alðxl þ ylÞ; xmym 2 amðxm þ ymÞ�
¼   Cov½xlyl; xmym�2 amCov½xlyl; xm þ ym�

        2 alCov½xmym; xl þ yl� þ alamCov½xl þ yl; xm þ ym�;

where

Cov½xlyl; xm þ ym� ¼ Cov½xlyl; xm� þ Cov½xlyl; ym�
¼ E½xlxm�E½yl�2E½xl�E½xm�E½yl�
      þ E½ylym�E½xl�2E½yl�E½ym�E½xl�
¼ 2plðE½xlxm� þ E½ylym�2 8plpmÞ;

Cov½xmym; xl þ yl� ¼ 2pmðE½xlxm� þ E½ylym�2 8plpmÞ;
Cov½xl þ yl; xm þ ym� ¼ Cov½xl; xm� þ Cov½yl; ym�

¼ E½xlxm� þ E½ylym�2 8plpm:

Setting a ¼ 2p;

Cov½xlyl2 2plðxl þ ylÞ; xmym2 2pmðxm þ ymÞ�
¼ Cov½xlyl; xmym�2 4plpmðE½xlxm� þ E½ylym�2 8plpmÞ
¼ E½xlxm�E½ylym�2 4plpmðE½xlxm� þ E½ylym�Þ þ 16p2l p

2
m

¼ ðE½xlxm�2 4plpmÞðE½ylym�24plpmÞ
¼ rlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xl� � Var½xm�

p
3 rlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½yl� � Var½ym�

p
¼ 4plð12 plÞpmð12 pmÞðFx þ 1ÞðFy þ 1Þr2lm:

It then follows that

Cov½Zlð2plÞ; Zmð2pmÞ�

¼ Cov½xlyl2 2plðxl þ ylÞ; xmym2 2pmðxm þ ymÞ�
4plð12 plÞ3 4pmð12 pmÞ

¼ 1
4
ðFx þ 1ÞðFy þ 1Þr2lm;

Vlð2plÞ ¼ Var½Zlð2plÞ� ¼
1
4
ðFx þ 1ÞðFy þ 1Þ:
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We assume that the matrix of squared LD correlations, R ¼ ½r2lm�; is known. Correlation matrices are positive semidefinite. By
the Schur product theorem, R; the Hadamard product of a correlation matrix and itself must also be positive semidefinite.

As noted in the text (Equation 13), we solve the following minimization problem for the LD weights,

min
w

�
wTRw2wT1

�
: wl$ 0 "  l:

When R has a block-diagonal structure (e.g., each chromosome forms a block), we can rewrite the minimization problem in
terms of subvectors and submatrices,

min
w

Xn
i¼1

h
wT

ðiÞRðiÞwðiÞ 2wT
ðiÞ1
i

: wl$ 0  "  l:

Since the wðiÞ’s form a partition of w and the RðiÞ’s are independent submatrices of R; minimization can be imple-
mented for each block independently. We can solve for wðiÞ in block i using the corresponding submatrix RðiÞ: If
wT

ðiÞ1 ¼ ci for the block solutions, the final solution ~w will be a concatenation of the block solutions wðiÞ’s rescaled
by 1=

P
ici:
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