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ABSTRACT Recently it has become feasible to detect long blocks of nearly identical sequence shared between pairs of genomes. These
identity-by-descent (IBD) blocks are direct traces of recent coalescence events and, as such, contain ample signal to infer recent
demography. Here, we examine sharing of such blocks in two-dimensional populations with local migration. Using a diffusion
approximation to trace genetic ancestry, we derive analytical formulas for patterns of isolation by distance of IBD blocks, which can also
incorporate recent population density changes. We introduce an inference scheme that uses a composite-likelihood approach to fit
these formulas. We then extensively evaluate our theory and inference method on a range of scenarios using simulated data. We first
validate the diffusion approximation by showing that the theoretical results closely match the simulated block-sharing patterns. We
then demonstrate that our inference scheme can accurately and robustly infer dispersal rate and effective density, as well as bounds on
recent dynamics of population density. To demonstrate an application, we use our estimation scheme to explore the fit of a diffusion
model to Eastern European samples in the Population Reference Sample data set. We show that ancestry diffusing with a rate of
s � 50��100 km=

ffiffiffiffiffiffiffiffi
gen

p
during the last centuries, combined with accelerating population growth, can explain the observed expo-

nential decay of block sharing with increasing pairwise sample distance.
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THERE has been a long-standing interest in estimating
demography, as migration and population density are

key parameters for studying evolution and ecology. Demo-
graphic models are essential for disentangling the effects of
neutral evolution from selection, and are crucial to under-
standing local adaptation. Moreover, the inference of demo-
graphic parameters is important for conservation and
breeding management. Given the intensive nature of obtain-
ing such parameters by direct observations, which are more-
over necessarily limited to short timescales, the increasing
availability of genetic markers has spurred efforts to develop
inference methods based on genetic data.

This work focuses on estimating dispersal rate and pop-
ulation density in two-dimensional habitats by analyzing the

geographic distribution of so-called identity-by-descent
(IBD) blocks, which are commonly defined as co-inherited
segments delimited by recombination events (see Figure 1).
It has now become feasible to detect long regions of excep-
tional pairwise similarities from dense SNP or whole ge-
nome sequences (Gusev et al. 2009; Browning and
Browning 2011). For regions longer than a few cM, the
bulk mostly consists of a single IBD block unbroken by
recombination, at least when inbreeding is rare (Chiang
et al. 2016). This yields novel opportunities for inferring
recent demography, as one can study the direct traces of
coancestry.

Moreover, the length of shared blocks contains information
about their age. That is, the longer the time to the most recent
common ancestor, the shorter the expected IBD length, as
recombination has more chances to break up ancestral genetic
material. The probability that no recombination occurs in a
block of a givenmap length decays exponentially, going back in
time. Hence, long IBD blocks originatemostly from very recent
coancestry and provide insight into the recent history of a
population. Shared long blocks between pairs of populations
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can be used to infer the distribution of recent coalescence
times (Ralph and Coop 2013), and fitting deme and island
models can yield information on recent population sizes
(Palamara et al. 2012; Browning and Browning 2015) and
migration patterns (Palamara and Pe’er 2013). These works
are complementary to the analysis of short identical seg-
ments, which are informative about deeper timescales (Li
and Durbin 2011; Harris and Nielsen 2013), and they show-
case the utility of long IBD blocks for inferring recent
demography.

Here,we focus on a pattern of isolation by distance of IBD
blockswithin populations extended in two dimensionswith
local migration. For such populations, the classicalWright–
Malécot formula describes an increase of mean pairwise
genetic diversity with increasing geographic separation
(Wright 1943; Malécot 1948). Several inference methods
use such classical isolation by distance patterns as signals
to infer the parameters of recent demography. For exam-
ple, fitting increasing pairwise genetic diversity with geo-
graphic distance is widely used (Rousset 1997, 2000;
Vekemans and Hardy 2004), and approximate-Bayesian-
computation methods have been applied (Joseph et al.
2016). Similarly, the extent of geographic clustering of
rare frequency alleles can be used as a signal for inference
(Novembre and Slatkin 2009). While the signal of locally
decreased pairwise genetic diversity mostly stems from re-
cent times (Leblois et al. 2004), such patterns can be se-
verely confounded by deeper, often unknown, ancestral
patterns (Meirmans 2012). Moreover, such methods can
usually only infer the neighborhood size 4pDes

2; which
is proportional to the product of dispersal rate s2 with

effective density De: Usually, these important parameters
cannot be estimated separately, as the underlying signal is
mostly based on a short-term equilibrium between local
drift and dispersal. An exception is quickly mutating or-
ganisms such as viruses, for which phylogeographic diffu-
sion approaches yield separate estimates of s (Lemey et al.
2010). However, the mutation rates are usually too low to
provide significant additional information on recent de-
mography (Barton et al. 2013). In summary, inference
schemes based on pairwise genetic diversity suffer from
several fundamental limitations.

To overcome these problems, this work builds upon the
ideas of Barton et al. (2013), who observed that the anal-
ysis of long shared IBD blocks would, in principle, allow
one to estimate dispersal and population density sepa-
rately. They argued that such an inference scheme would
be robust to confounding by ancestral structure, since long
IBD blocks mostly originate from not long ago. Here, we
introduce a practical inference scheme based on this idea.
We first expand the theoretical results of Barton et al.
(2013). We use a model of spatial diffusion of ancestry,
which yields analytical formulas for block-sharing patterns.
We then fit these results using a composite-likelihood
framework, similar to Ralph and Coop (2013). This approach
allows one to readily include error estimates for block de-
tection, such as limited detection power or wrongly inferred
block lengths, which are problems that usually arise when IBD
segments are called from genotype data (Browning and
Browning 2012; Ralph and Coop 2013). Recently, Baharian
et al. (2016) independently derived similar equations for block
sharing under the diffusion approximation and used them for
demographic inference by fitting binned data. We extend this
work in several ways. We additionally deal with growing and
declining populations, and our composite-likelihood method
offers several significant advantages over fitting binned data.
Importantly, as a major part of this article, we extensively
evaluate our estimation scheme on simulated data. We test
its power to recover demographic parameters for several geo-
graphic models and we investigate how model deviations,
such as nearby habitat boundaries, affect inference. This yields
valuable novel insight into the validity of the underlying ide-
alized diffusionmodel and examines the scope of the inference
scheme.

Currently, large IBD block data sets are available, mainly
for humans. To showcase a practical application of our
inference scheme, we use it on a subset of the Population
Reference Sample (POPRES) data set, which Ralph and
Coop (2013) previously analyzed for long IBD blocks. Al-
though human demography is without doubt very com-
plex, the diffusion model provides a good fit to the data,
which allows us to draw conclusions about the extent of
human ancestry spread in continental Europe during the
last centuries. We also infer a rapidly increasing popula-
tion density, which stresses the importance of accounting
for rapid population growth when analyzing human IBD
sharing.

Figure 1 Example of an IBD block co-inherited from a common ances-
tor three generations back. Going back in time, recombination splits up
genetic ancestry (colored red and blue here) into blocks distributed
among ancestors. If, as depicted here, such ancestral blocks overlap
in a recent common ancestor, the intersecting stretch of the genome
will be shared and both individuals will carry few distinguishing muta-
tions. Here, we define IBD blocks to be delimited by any recombination
events on the genealogical path to the most recent common ancestor.
Thus, the recombination events that are fused again quickly by inbreed-
ing loops, as depicted by the blue chromosome (thick arrow), also de-
limit IBD blocks. However, this recombination is not detectable in
practice, and the two adjacent IBD blocks would be identified as one
long IBD segment.
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Methods

The model

To describe block sharing in two spatial dimensionswith local
migration, we use two basic model assumptions to approxi-
mate a wide range of scenarios. Obviously, the true demo-
graphic history of a population ismore complex than any such
simple model. Thus, the aim is not to have a mathemati-
cally rigorous model, which is often formally problematic
(Felsenstein 1975; Nagylaki 1978) and only holds exactly
in specific settings, but to have an accurate approximation
that captures general patterns that can be used for robust
inference of basic demographic parameters. In the following,
we outline these two central modeling assumptions.

Poisson recombination:Weapproximate recombination as a
homogeneous Poisson process, i.e., crossover events are as-
sumed to occur at a uniform rate along a chromosome.
Throughout this work, the unit of genetic distance will there-
fore be the Morgan, which is defined as the distance over
which the expected average number of intervening chromo-
somal crossovers in a single generation is one. Small-scale
processes, such as gene conversion, are not captured by the
Poisson approximation, but for the large genomic scales of
typically several cM considered here this can be neglected
(Lynch et al. 2014). Similarly, we ignore the effect of inter-
ference, which is reasonable when describing the effects of
recombination over several generations. Since the female
and male recombination rate can be markedly different, for
our purposes we use the sex-averaged rate r ¼ rm þ rf=2: In
every generation, loci on autosomes have an equal chance to
trace back to a female or male ancestor. Thus, the female and
male Poisson processes together are described by a single
Poisson process with the averaged recombination rate. Gen-
eralizing this line of thought, any individual differences in
map length can be modeled by a single Poisson process with
the population-averaged rate.

Diffusion approximation: Following a long tradition ofmod-
eling individual movement in space with diffusion (Fisher
1937; Wright 1943; Malécot 1948; Nagylaki 1978), we ap-
proximate the spatial movement of genetic material back in
time using a diffusion process. The position of ancestral ma-
terial at some time t in the past is the sum of the migration
events until then, which are often correlated only on small
timescales. Therefore, using the central-limit theorem, the
probability density for the displacement of a lineage can be
approximated using a Gaussian distribution with axial vari-
ance of s2t (Figure 2). This approximation does not depend
on details of the single-generation dispersal kernel, provided
its variance is finite. It seems plausible that diffusion of an-
cestry is often an accurate approximation on recent to inter-
mediate timescales (Barton et al. 2002), which are important
for the sharing of long IBD blocks.

If consecutive single-generation dispersal events are
uncorrelated, s2 is the average squared axial parent-

offspring distance (Rousset 1997). Even with small-
scale spatial or temporal correlations between dispersal
events, one can model the spread of ancestry using the
diffusion approximation (Robledo-Arnuncio and Rousset
2010). In this case, s2 has to be interpreted as a param-
eter that describes the rate of the spread of ancestry back
in time (Barton et al. 2002), which can differ markedly
from the single-generation squared axial parent-offspring
distance.

Here, we will need to describe the chance that pairs of
lineages of homologous loci come into close proximity. For
this, we assume that the two lineages diffuse independently.
In this case, the sum of their movements can be described
using a two-dimensional Gaussian distribution with twice
the variance of a single lineage. The probability density that
two lineages that were initially separated by ðx0; y0Þ have a
pairwise distance of zero along each axis at time t, or equiv-
alently, that the sum of the movements is ð2x0; 2 y0Þ; is
therefore:

1
4pts2 exp

 
2
x20 þ y20
4ts2

!
¼ 1

4pts2 exp

 
2

r2

4ts2

!
; (1)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
is defined as the initial Euclidean dis-

tance between the two lineages.
This ignores the fact that once coalesced, lineages re-

main at a pairwise distance of zero. Wilkins (2004) gave
recursions and approximate formulas (formulas A15 and
A17) that account for this interference of lineages in two
spatial dimensions. They show that complex interference
terms can be neglected as long as previous coalescence is
sufficiently rare. Thus, for describing the chance of pair-
wise coalescence in the relatively recent past, Equation
1 usually represents an accurate approximation, particu-
larly for well-separated samples. Other causes of correla-
tions of movements are often of local geographic nature, as
in the cases of density fluctuations or local barriers. Such
small-scale heterogeneities often average out when
viewed on larger scales, and the approximation that line-
ages move independently remains accurate on these scales
(Barton et al. 2002).

IBD sharing in the model

Using similar assumptions, Barton et al. (2013) calculated
the probability that two individuals a certain distance
apart share an IBD block longer than a minimum length
starting from a specified locus. For this specific purpose
they could directly apply the Wright–Malécot formula by
replacing mutation with recombination. For practical in-
ference from IBD blocks, more general formulas describ-
ing the total number of shared blocks of a specific
length L are advantageous. In this section, we derive such
equations.

IBD blocks of age t: Following Ralph and Coop (2013), we
first partitionNL; the number of shared blocks of map length L
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for a given pair of samples, into Nt
L; the number of blocks

coalescing at time t:

E½NL� ¼
Z N

0
E
�
Nt
L
�
dt: (2)

Throughout this article, such terms are always understood
as a densitywith respect to block length and time. Following
the ancestry of two chromosomes back in time, a change of
genealogy only occurs when there is a recombination event
somewhere along the lineage. Between these discrete
jumps, genetic material can be traced as a single locus. This
allows us to further split E½Nt

L� into the product of the
expected number of blocks of length L obtained by splitting
the two chromosomes according to the Poisson recombina-
tion over time t with the probability that a single locus
coalesces time t ago. We denote the first factor by E½Kt

L�;
and the second factor, commonly known as the coalescence
time distribution, by cðtÞ:

E
�
Nt
L
� ¼ E

�
Kt
L
�
cðtÞ: (3)

Number of candidate blocks: Under ourmodel assumptions,
the position of all recombination events on two independent
chromosomes traced back until time t is given by a Poisson
process with rate 2t: The expected number of all block pairs
overlapping at an intersection length L can then be calculated
as follows. A recombination event occurs in a small region of
map length DLwith a probability of 2tDL; and the probability
that a region of length L does not recombine follows the
exponential distribution expð22LtÞ: For chromosomes of

map length G, summing the possible start sites yields the
expected total number of blocks of length L:

E
�
Kt
L
� ¼ 2 � 2texpð22LtÞ þ ðG2 LÞ4t2expð22LtÞ; (4)

where thefirst termdescribes theblocks startingat either edge
and the second term the fully interior blocks, which require
twodelimiting recombinations. Neglecting the effects of chro-
mosome edges ðG � LÞ; this is approximated by:

E
�
Kt
L
� � G4t2expð22LtÞ: (5)

We will use Equation 5 to derive an approximate formula for
capturing the qualitative behavior of mean IBD sharing. The
slightly more complex result, including edge effects used for
inference, is derived analogously (see Appendix B).

Single locus coalescence probabilities: The probability cðtÞ
that two homologous loci have their last common ancestor
time t ago depends on their pairwise sample distance r and
the parameters of the demographic model. We can follow
Barton et al. (2002) and approximate the probability of a
recent coalescence as the product of the probability of the
pairwise sample distance being zero (Equation 1) and a rate
of local coalescence which, following Barton et al. (2013), we
shall denote by 1=2De: In Appendix A, we justify this approx-
imation and give a formal definition of this so-called effective
density De: To describe a globally growing or declining pop-
ulation, which is particularly important for the human case
studied in this article, we let De depend on time t. Together,
this yields:

cðtÞ ¼ 1
2DeðtÞ

1
4pts2 exp

 
2

r2

4ts2

!
: (6)

Full formula: Substituting Equations 5 and 6 into Equation
3 gives:

E
�
Nt
L
� ¼ Gt

2DeðtÞps2 exp

 
2

r2

4ts22 2Lt

!
: (7)

To determine the total number of expected shared blocks, we
have to integrate all possible coalescence times t. For the class
of power density functions, where

DeðtÞ ¼ Dt2b D. 0;b 2 ℝ; (8)

the integral yields explicit formulas. The important case of
b ¼ 0 models a constant population density, while b.0 and
b, 0 describe populations with a growing or declining den-
sity, respectively. With b. 0; the density approaches infinity
for t ¼ 0;which corresponds to a negligible chance of coales-
cence in the present. However, since we effectively fit block
sharing on intermediate timescales (see Figure 9), this obvi-
ous problem of the model is not very limiting in practice. This
class of functions has been used to fit human demographic

Figure 2 Diffusion model visualized in one spatial dimension. Our
model is in fact two dimensional, but is qualitatively similar. Left
panel: One realization of the movement of ancestry of two homolo-
gous loci initially separated by distance r. In our model, there is a
chance that they coalesce every time they come close, which is in-
directly proportional to the local effective density parameter De (see
Appendix A). Right panel: In our model, the probability density func-
tion of having moved distance Dx at time t generations back spreads
out as a Gaussian distribution Nð0;s2tÞ with linearly increasing var-
iance of s2t:
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growth (Von Foerster et al. 1960). Importantly, linear com-
binations of such terms can be used to build more complex
density functions, including polynomials for the special case
b 2 ℕ; which then also yield analytical formulas.

Performing the integral of Equation2gives themain result:

E½NL� ¼ 2
23b
2 23 G

pDs2

 
rffiffiffi
L

p
s

!2þb

K2þb

 ffiffiffiffiffiffi
2L

p r
s

!
: (9)

Integrating this formula with respect to the block length gives
the expected number of shared blocks longer than the thresh-
old length L0:

E½N. L0� ¼
Z N

L0
E½NL�dL

¼ 2
2523b

2
G

pDs2

 
rffiffiffiffiffi
L0

p
s

!1þb

K1þb

 ffiffiffiffiffiffiffiffi
2L0

p r
s

!
; (10)

where Kg denotes the modified Bessel function of the second
kind of degree g (Abramowitz and Stegun 1964). We analyze
Equations 9 and 10 qualitatively in the Discussion section,
and Figure 3 depicts their accuracy on simulated data.

For a widely used functional form of population-density
change, an exponential growth with rate b, the integral con-
verges only for blocks of length 2L.b: Otherwise, the expo-
nential rate at which the long blocks are broken up is slower
than the exponentially increasing chance of local coales-
cence, and the expected number of blocks does not vanish
for large t. However, we can approximate exponential growth
on intermediate timescales by approximating it by using the
standard Taylor expansion up to a certain term, and then
using our results for the power density functions. Again, this
effectively fits a population density up to the intermediate
timescales, where the Taylor approximation is accurate,
while circumventing the pathological behavior of the distant
past.

Inference scheme

To learn about recent demography, we fit the observed block
sharing between a set of samples to Equation 9.Here,weuse a
likelihood method in which we approximate the likelihood
function f : u/PrðxjuÞ of the observed data x for a given set
of parameters u (s, D, b) with a composite likelihood ~f ðuÞ:
This allows us to estimate the approximate standard devia-
tions and confidence intervals from the empirical Fisher
information matrix. One can use standard numerical optimi-
zation techniques to find the maximum likelihood estimates
ûMLE: In our analysis we use the Nelder–Mead method, as
implemented in the class GenericLikelihoodModel of the Py-
thon package statsmodels, which proved to be numerically
robust and quick.

Poisson model: We can construct an approximate likelihood
of observed block sharing by using an approach that follows
Ralph and Coop (2013). First, for every pair of samples, we

bin block sharing with respect to shared block length
into small length bins. Then, we model the number of
shared blocks within each of these bins as independent Pois-
son distributions around expected rates li; which, for a
small enough bin ½Li; Li þ DL� can be approximated using
Equation 9:

liðr; uÞ ¼ E½NLiðr; uÞ�DL: (11)

Using this equation,wecancalculate a composite likelihoodof
the observed data given the demographic parameters u (see
Appendix C).

Block detection errors: The detection of IBD blocks from
genetic data is not a trivial task. In practice, one often has to
deal with erroneous detection (Browning and Browning
2012). Blocks might be called in the absence of true IBD
blocks (false positives), and only a fraction of true IBD blocks
of a given length are detected (limited power), and there is a
probability of assigning them the wrong length (error). Fol-
lowing Ralph and Coop (2013), we can include these errors
into our likelihood framework. Careful analysis allows one to
estimate block detection errors (Ralph and Coop 2013), and
the expected rates per bin can be updated accordingly (see
Appendix D).

Assumption of independence: This Poisson approximation
assumes that all shared blocks are the outcomes of indepen-
dent processes. This is obviously an oversimplification. Block
sharing can be correlated along chromosomes and among
different sample pairs because of the initially shared move-
ment of genetic material. Taking all these correlations into
accountwouldgobeyondthesimplepairwisediffusionmodel.
However, maximizing the likelihood of actually correlated
observations (composite likelihood) is a widely used practice
in inference from genetic data (e.g., Fearnhead and Donnelly
2002). It still gives consistent and asymptotically normal es-
timates, although the errors calculated from the curvature of
the maximum likelihood surface at its maximum (Fisher in-
formation matrix) will be too tight when the observations are
actually correlated (Lindsay 1988; Coffman et al. 2016).
Moreover, in many cases, correlations among blocks can be
expected to remain fairly weak, since initial correlations in
spatial movement are broken up quickly by recombination.
When analyzing well-separated samples, sharing of long
blocks is a rare event and, thus, most of the observed block
sharing will originate from independent coalescent events.

Adjacent IBD blocks: The theory and inference scheme in-
troducedhere is basedon IBDblocks that havebeendefined to
be ended by any recombination event on the path to the
common ancestor. However, multiple, consecutive IBD blocks
of recent coancestry, for unphased data from all four possible
pairings of two sets of diploid chromosomes, produce an
unbroken segment of exceptionally high similarity that is
detected as a single long IBD block in practice. This can
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significantly inflate the number of observed IBD blocks of a
given length beyond the true value, especially for shorter IBD
segments (Chiang et al. 2016).

If adjacent IBD blocks happen to be neighbors, the error
estimation model by Ralph and Coop (2013), which is based
on introducing artificial IBD segments of known length,
partly accounts for this effect. However, this does not esti-
mate the effect of short inbreeding loops where ancestral
genetic material that was broken up by a recombination fuses
together again quickly (Figure 1), rendering the IBD block
ending recombination event ineffective (Barton et al. 2013).

Intuitively, for a large neighborhood size (a parameter pro-
portional to the product of s2 and effective density 4ps2DeÞ
short inbreeding loops that significantly extend a recent IBD
block by quick recoalescence are rare, and our approach re-
mains valid. However, for a population with small neighbor-
hood size, ineffective recombination events can potentially
confound observed block-sharing patterns and the estimates
based on them. This effect is driven mostly by coalescence
within a few generations, before the blocks migrate away from
each other. Hence, local dispersal and breeding patterns are
important; however, the diffusion of ancestry usually only
becomes accurate on intermediate timescales. Therefore, a
generally applicable theoretical treatment of this issue is not
feasible. In this article, we study the effects of this model inac-
curacy using simulations, and show that the inference scheme
is not greatly affected in the simulated scenarios.

Simulations

To test our equations and inference scheme, we simulated the
sharingof IBDblocks in a set of samples by tracing theancestry
of the chromosomes back in time for a variety of spatial
population models. Simulations were mostly done on a
two-dimensional torus thatwas large enough that IBD sharing
over more than half of the torus was very unlikely; thus we
effectively simulated a two-dimensional population without

boundary effects. Since sharing of long IBD blocks is very
unlikely to originate far back in time, we ran the simulations
up to a maximal time tmax: If not otherwise stated, we ana-
lyzed the sharing of true IBD blocks, in which every recom-
bination event was assumed to be effective.

Grid models: In our grid models, the nodes of a rectangular
grid were occupied by a prespecified number of pairs of
homologous chromosomes to mimic diploid individuals.
Similar to the classic Wright–Fisher model of panmictic pop-
ulations, for every chromosome, a parent was chosen inde-
pendently for every discrete generation back, with the
probabilities described by a prespecified dispersal kernel.
Poisson recombination events along the chromosome in-
duced a switch between the two parental chromosomes.
Whenever the ancestral material of the two distinct initial
chromosomes fell on the same chromosome and overlaps
for longer than a given threshold chromosome length, we
stored the resulting IBD block. We simulated the dispersal
following discretized uniform, Gaussian, and Laplace proba-
bility densities along each axis to have representatives of
dispersal kernels with low, intermediate, and high kurtosis.
To analyze the effects of a growing or declining population
density, we simulated a varying number of multiple pairs of
homologous chromosomes per node. A chromosome then
first picks an ancestral node as before, and subsequently a
random diploid ancestor from this node. The grid model was
also easily modified to simulate a classic nearest neighbor
stepping stone model (Kimura and Weiss 1964). Nodes were
grouped into demes, and each chromosome either chose its
parent uniformly from within its own or one of the neighbor-
ing demes.

Continuous model: spatial l-Fleming-Viot process: We
additionally simulated a model in which each individual
occupied a position in continuous space. For this, we used

Figure 3 Simulated IBD block sharing com-
pared with theoretical expectations. We show
values normalized to give rates per pair and cM.
Theoretical expectations are calculated for each
length bin using Equation 10. For the five mod-
els described in the Methods section, we kept
the population density constant at De ¼ 1; with
a dispersal rate of s ¼ 2 on a torus of size 180,
and simulated IBD sharing between 150-cM
chromosomes spread out on a subgrid with
nodes two distance units apart. (For a full set
of specific simulation parameters, see File S1.)
For every model, we ran 20 replicate simula-
tions. Distances are measured in dispersal units
ðso that s ¼ 1Þ and error bars depict the esti-
mated SDs for each bin among the 20 runs to
visualize the uncertainty of the estimates.•’s
are spread out for better visualization around
their original positions (middle •).
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DISCSIM, a fast implementation (Kelleher et al. 2014) of the
recently introduced spatial l-Fleming-Viot process. Summa-
rizing briefly, this model introduced by Barton et al. (2010)
follows lineages backward in time and events are dropped
randomly with a certain rate parameter and uniform spatial
density. In each such event, every lineage within radius R is
affected with the probability u by this event. A prespecified
number of parents, here two, are dropped uniformly within
the disc, and every affected lineage jumps to them, switch-
ing parents according to the recombination rate. Given an
initial set of loci, DISCSIM generates their coalescence tree
up to a specified time. The output contains a list of all co-
alescent nodes, which we further analyzed to detect IBD
sharing.

Application to Eastern European data

Currently, population genomic data sets which allow one to
analyze long IBD blocks are available mainly for humans. To
test the inference scheme, we applied a data set of blocks
shared between Europeans, which was generated previously
by Ralph and Coop (2013), and includes detailed error esti-
mates for IBD block detection. They reported significant dif-
ferences in patterns of block sharing between Eastern and
Western European populations. Therefore, we concentrated
our analysis on block sharing in the Eastern European subset,
as diffusion should be a better approximation for modeling
the spread of ancestry in continental regions. Moreover, East-
ern European countries are on average geographically more
compact and, thus, the position data at the country level is
expected to be more accurate.

The data: Thedetectionmethodanderror analysis of the IBD
block data were described in detail by Ralph and Coop
(2013). Summarizing briefly, IBD blocks were called for a
subsample of the POPRES data set (Nelson et al. 2008) and
genotyped at �500; 000 SNPs using the fastIBD method, as
implemented in Beagle version 3.3 (Browning and Browning
2011). Every sample used in the analysis was required to
have all reported grandparents from the same country. We
analyzed block sharing between 125 Eastern European sam-
ples (see Supplemental Material, File S1). We followed the
geographic classification of Ralph and Coop (2013), but
excluded the six Russian and one Ukrainian samples, as
location data at the country level are likely very inaccurate
for these two geographically extended countries. We ana-
lyzed shared blocks .4 cM. Within our subsample, 1824
such blocks were reported (Figure 9). We set the position
of each country to its current demographic center, defined as
the weighted mean location (File S1). In our analysis, we
used sex average map lengths of autosomes given by the
deCODE map (Kong et al. 2002), consistent with Ralph
and Coop (2013).

Data analysis: Throughout the analysis, we worked with
block length bins ranging from 0 to 30 cM with a bin width
of DL ¼ 0:1 cM, and applied the error function estimates
reported by Ralph and Coop (2013). For maximizing the
likelihood, we calculated the likelihood of block sharing
in the bins from 4 to 20 cM  ; which is informative about
the last few centuries (see Figure 9). We excluded the
longer shared blocks from our analysis since these blocks

Figure 4 Various population density scenarios. Simulated
IBD block sharing per pair and cM in various density sce-
narios was compared to theoretical expectations based
on Equation 9. The block sharing of a subset of 150-cM
chromosomes four distance units apart placed on an ini-
tial grid was analyzed. Along each axis, dispersal was
modeled by a Laplace distribution with s ¼ 1; and the
number of diploid individuals per node n either remained
constant at n ¼ 10; grew as nðtÞ ¼ t; or declined as
nðtÞ ¼ 200=t; in all cases, t denotes the time back mea-
sured in generations, and at every step nðtÞ was rounded
to the nearest integer value. For each scenario, 20 repli-
cate runs were done. •’s depict the mean and error bars
the SD for every bin. The solid lines show the theoretical
prediction based on Equation 9.
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have a considerable chance of originating in the last few
generations, which is not expected to be accurately cap-
tured in the diffusion model. Longer shared blocks are
also confounded by the sampling scheme that excluded
individuals with reported grandparents from different
countries.

We used our inference scheme tofit several specificmodels
of past density D as follows:

1. For a constant population: D ¼ C:
2. For a population growing at accelerating rate: D ¼ C=t:
3. For a growthmodel where the growth rate is fitted as well:

D ¼ Ct2b:

In each case, tmeasured time back in generations. To learn
about the certainty of estimates, in addition to using the
curvature of the likelihood surface (Fisher information ma-
trix), we bootstrapped the data. Since we suspected strong
correlations and systematic deviations from the model, we
resampled different units. We bootstrapped on the level of
blocks by redrawing each block a number of times following a
Poisson distribution of mean 1, and similarly over country
pairs, since we suspected systematic correlations on this
level.

Furthermore, we analyzed the deviation of pairwise
block sharing between pairs of countries from the expected

value predicted by the best fit model. For this, we assumed
that the observed block sharing was Poisson distributed
around the predicted block sharing. Transforming the block
count data x/2

ffiffiffi
x

p
converts these Poisson distributions

into approximately Gaussian distributions with an SD of
1, which helped visual inspection of the statistical signifi-
cance of residuals.

Data availability

We implemented the described methods to simulate and
analyze IBD sharing data in Python. The source code was
uploaded to the freely available Github repository https://git.
ist.ac.at/harald.ringbauer/IBD-Analysis. The preprocessed
human IBD block-sharing data, including the detection-error
estimates used here, were the result of the analysis of Ralph
and Coop (2013), and can be freely accessed at http://www.
github.com/petrelharp/euroibd.

Results

Block sharing in simulated data

We compared simulated block-sharing patterns with the the-
oretical expectations. For each bin, we depicted rates per pair
and normalized for a rate per cM.

Figure 5 Maximum likelihood estimates. We sim-
ulated a Laplace model on a grid of nodes of torus
length 180 for t ¼ 200 generations back. We set
the dispersal rate at s ¼ 2 and the number of in-
dividuals per node to D ¼ 1: In every run, a random
subset of 100, 270, 440, or 625 chromosomes of
map length 150 cM was picked from an initial
sample grid spaced two nodes apart. For each
sample size, 100 simulations and subsequent pa-
rameter estimates were run. Every • depicts the
maximum likelihood parameter estimate of a single
run. The 95% confidence intervals were calculated
from the Fisher information matrix. MLE, maximum
likelihood estimate.
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Constant population density: For a constant population
density, the theoretical expectation (Figure 3) is given by
Equation 9:

E½NL� ¼ G
8pDs2

 
rffiffiffi
L

p
s

!2

K2

 ffiffiffiffiffiffi
2L

p r
s

!
;

where K2 denotes the modified Bessel function of the second
kind of degree two (Abramowitz and Stegun 1964). This
formula predicts that block sharing approaches exponential
decay with distance, as Bessel functions KgðxÞ converge toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=2r expð2rÞp
for r � 1 (Abramowitz and Stegun 1964).

This decay then dominates the polynomial terms in front of
the Bessel functions, and the slope of this exponential decay
(on a log scale) converges to

ffiffiffiffiffiffi
2L

p
=s as

ffiffiffiffiffiffi
2L

p
r=s. 1: For the

long blocks considered here, this quick decay is approached
for pairwise sample distances of a few s. In all simulations,
block-sharing patterns were very similar among the five dif-
ferent simulated models, and closely followed the theoretical
expectation (Figure 3).

Growing and declining populations: We simulated block
sharingforthreescenariosofagrowing,declining,andconstant
population with growth parameters b ¼ 1; 0; 21: Figure 4
shows that the results are again in good agreement with the-
ory.We depicted the result for the simulated Laplace dispersal;
the other dispersal kernels yielded almost identical results. In
all scenarios, the decay of block sharing with distance
approached exponential decay with rate

ffiffiffiffiffiffi
2L

p
=s; where the

specific density scenario determined the speed of convergence.

Inference in simulated data

We tested our parametric inference scheme and analyzed its
ability to recover the underlying demographic parameters
from simulated block-sharing data. For every simulated block
data set, we numerically computed the maximum likelihood
estimates uMLE for shared blocks between 4 and 20 cM, put
into bins of width 0.1 cM.

Constant population density: Results for the parameter in-
ference for a population of constant density are depicted in
Figure 5. We simulated a varying number of samples on a
grid, consisting of one chromosome each, to test the behavior
of the inference scheme with respect to limited sample size.
Naturally, the variance of estimates increased with decreas-
ing sample size, but the bias remained small. Moreover, the
estimated SEs captured the true estimator variance relatively
well (see File S2). This confirms that most of the shared
blocks were the result of uncorrelated coalescence events,
as heuristically argued above. The typical log-likelihood sur-
face for a single simulated IBD block-sharing data set was
found to be smooth (Figure S2), and in all cases, numerical
maximization did not result in spurious maxima, even for
initial estimates orders of magnitudes off. Moreover, esti-
mates of density and dispersal rate were only slightly corre-
lated in the scenario considered here (File S2).

Varying population density:We also tested the ability of the
inference scheme to detect recent changes in population
densities. For this, we simulated three scenarios of a growing,
declining, and constant population with growth parameters

Figure 6 Likelihood estimates for various population density scenarios. The same scenarios used in Figure 4 were simulated. For 20 runs each,
625 chromosomes of length 150 cM were randomly picked from a sample grid and traced back using a Laplace dispersal kernel with s ¼ 1; and
the maximum likelihood fits and 95% confidence intervals were calculated from their block sharing. For the estimated population density, the true value
of the simulations and the maximum likelihood estimate for every run are shown. MLE, maximum likelihood estimate.
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b ¼ 1; 0; 2 1: Results are depicted in Figure 6. The estimates
of the demographic parameters allowed us to robustly distin-
guish these three scenarios. Interestingly, accurate estimates
of the dispersal rate were feasible in all these demographic
scenarios; even when fitting a model with constant popula-
tion size to the other two scenarios of a recently, quickly
changing, population size (Figure S1). This can be explained
by the fact that the eventual rate of decay, the main signal for
estimating s from fitting Equation 9, remains the same, in-
dependent of the specific population density scenario. The
speed of convergence varies, but in all cases the eventual rate
is approached relatively quickly within several dispersal dis-
tances (Figure 4).

True vs. detectable IBD blocks: In Figure 7, the effect of
undetected recombination events on estimates of demo-
graphic parameters and overall IBD block number is
depicted. This was investigated with simulations in the
DISCSIM model, as it allowed easy and continuous tuning
of the neighborhood size 4ps2De through the parameter
describing the probability that an event hits an individual
within its range (Barton et al. 2013). Pairwise coalescence
times for all pairs of loci along the chromosome were
extracted, but now only the effective recombination events
were counted, which were defined as jumps of coalescence

times between adjacent pairs of loci with at least one co-
alescence time older than a preset time threshold of 1000 gen-
erations back, the time at which the backward simulations
were run. This would capture most short recombination-
coalescence loops, while still being well below the bulk of
ancestral coalescence times. The effect of the nondetect-
able recombination events became significant only for very
low neighborhood sizes ð,15Þwhen the detected number
of IBD blocks of a certain length was inflated by wrongly
inferring multiple shorter blocks as a single longer block.
While estimates for density remained almost unbiased, the
inferred dispersal rates increased significantly, likely due
to an excess of block sharing for distant samples. However,
even for very low neighborhood sizes, when the effective
density of individuals measured in dispersal units was
about one (for neighborhood size 4pDes

2 � 12:6Þ; the upward
bias remained ,50%.

Sampling guidelines

Edge effects: In practice, populations are not extended in-
finitely beyond the sampling area, but have range boundaries.
This forces lineages to deviate from the simple diffusion
model, as they cannot wander out of the species range
(Wilkins and Wakeley 2002; Wilkins 2004). This might be
a common violation of our model assumptions. We assessed
how much our inference method was affected using simu-
lated data from habitats of limited size. In these simulations,
we assumed that the lineages were reflected once they
reached a range boundary.

Our results (File S3) indicated that, in cases when the
boundaries were close to the samples such that the distance
to the nearest samples was on the same order of magnitude as
s, the estimates for the dispersal rate s and densityD become
biased downward; an effect also observed for the inference
method of Novembre and Slatkin (2009) which is based on
the sharing of rare alleles. Similarly, we observed that the
estimates for D and s become biased downward for habitats
of width � 10s: Therefore, we recommend to always check
whether most of the samples are collected far from the hab-
itat edges ð.sÞ and whether the habitat is sufficiently large
ðdiameter . 10sÞ:

For the special case of rectangular habitats with reflecting
boundaries, the method of images described by Wilkins
(2004) gives a simple way of calculating the coalescence
probabilities for two spatially diffusing lineages (Equation
6). In principle, it is straightforward to update our formulas
for expected block sharing accordingly. One simply has to add
terms describing the expected block sharing with ghost sam-
ples reflected at the edges. However, we did not implement
this correction, as this approach cannot be extended to more
irregularly shaped habitats and boundary edges, as usually
encountered in reality.

Clumped sample distribution: In practice, samples are not
always evenly distributed, but are often clumped due to
sampling constraints. To investigate how such clustered

Figure 7 Observable IBD blocks and estimates compared with the theo-
retical predictions for true IBD blocks. Simulations were run with DISCSIM
for an initial grid of 150-cM chromosomes that were three distance units
apart on a torus with axial size 90. Dispersal rate was set to one. IBD
blocks were detected as consecutive runs of coalescence times , 1000
generations, and then used to estimate demographic parameters. For
various densities corresponding to neighborhood sizes 4–86, 10 DISCSIM
runs were simulated. The mean of these runs was compared with the
theoretical prediction using Equation 9, which assumes that every recom-
bination event is effective.
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sampling affects our inference scheme, we compared the
results of various scenarios of clumping (File S3). The esti-
mates and their inferred uncertainty were not affected sub-
stantially; only in the cases of very asymmetric clumping did
we observe a small upward bias of dispersal estimates. This
overall robustness is not surprising as the distribution of pair-
wise sampling distances is not changed much as long as the
clumping is not overly pathogenic (i.e., a very low number of
sample clusters).

Inference in POPRES data

When fitting our models to the Eastern European subset of
the POPRES IBD data, the model of quick population
growth with a population density DeðtÞ ¼ 1=t fit markedly
better than a model of constant population size, which
underestimated sharing of short blocks (Figure 8) at the
maximum likelihood parameters. In the more complex
model, DeðtÞ ¼ t2b; the growth rate parameter b was esti-
mated to be close to one. The increase of likelihood was
small ðDL ¼ 1:1Þ; especially when considering that there
are correlations in the data that make the difference of
true likelihood even smaller (Coffman et al. 2016). Simi-
larly, fitting several, more complex, density functions as
sums of power terms did not significantly increase the
likelihood. In all three models, the estimates for dispersal
s were � 60—70 km=

ffiffiffiffiffiffiffiffi
gen

p
; even under the likely misspe-

cified constant population size model (Table 1), and boot-

strapping on the country-pair level yielded 95% confidence
intervals that ranged from 45—80 km=

ffiffiffiffiffiffiffiffi
gen

p
:

The estimated parameter uncertainty when bootstrapping
over single blocks was only slightly larger than was estimated
from the curvature of the likelihood, but bootstrapping over
country pairs gave markedly increased confidence intervals
(Figure S3), which implies that there are systematic correla-
tions at this level in the data. This was further confirmed by
the analysis of the residuals for the country pairs, which
yielded a gradient toward the Balkans for more block sharing
than predicted by the best fit models. The deviations were
statistically most significant for short blocks because of the
increased power due to the higher number of shared blocks
(Figure 5); however, the overall pattern also held for longer
blocks (Figure S4).

Discussion

The main goal of this article was to develop a robust in-
ference scheme for populations extended in two spatial
dimensions that uses pairwise shared long IBD blocks to
reliably estimate the dispersal rate s and the effective pop-
ulation density De separately. For this, we derived analyt-
ical formulas for block sharing under a model of diffusion
of ancestry that extended the previous work of Barton
et al. (2013), and fit these results by maximizing a com-
posite likelihood similar to that used by Ralph and Coop

Figure 8 Fit of models to Eastern European block-sharing data. (A) To better visualize the data, observed block sharing was binned into
distance and block length bins. The •’s depict the average block sharing within each bin and the lines are predictions from the best fit
models. The error bars represent SDs under the assumption of Poisson counts in every bin; some are clearly too tight and there are outliers,
which hints at more systematic deviations at the country-pair level (see also Figure 5). p., pair. (B) Residuals for pairs of countries for blocks of
length 4–6 cM. Upper line in every field: total number of IBD blocks predicted by the best fit model. Lower line: observed number of IBD
blocks. Color of every field is determined by statistical significance (z-value when transformed x/2

ffiffiffiffiffi
2x

p Þ: AL, Albania; AT, Austria; BA,
Bosnia; BG, Bulgaria; CZ, Czech Republic; HR, Croatia; HU, Hungary; ME, Montenegro; MK, Macedonia; PL, Poland; RO, Romania; RS, Serbia;
SK, Slovakia; SL, Slovenia.
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(2013). Using extensive tests on data simulated under a
variety of scenarios, we demonstrated that our method
could robustly perform this task.

Baharian et al. (2016) recently independently arrived at
similar formulas for block sharing under a model of spatial
diffusion, which they fit by regressing block sharing data
binned according to pairwise geographic distance and
block length. Our work is conceptually similar, but pro-
vides several important extensions. We additionally de-
scribed the effect of recent population density changes,
which seems especially relevant for human populations.
For the special case of a constant population size, our re-
sults matched an equivalent result of Baharian et al.
(2016), and our approach allowed us to additionally in-
corporate chromosomal edge effects. Moreover, our likeli-
hood framework offers several advantages over regressing
binned data because it makes use of the information con-
tained in the lengths of shared blocks. It can also be used to
quantify the uncertainty of the parameter estimates, and
can readily include error estimates for block detection.
Another major contribution is our extensive testing on sim-
ulated data. These simulations yielded insights into the
general accuracy of the underlying idealized model as-
sumptions. They also helped us to investigate how several
deviations from the model that might occur in practice;
including ineffective recombination events, wrongly spec-
ified growth models, irregular sample distribution, and
nearby habitat boundaries; affect inference.

Exponential decay of IBD sharing with distance and
block length

The derived formulas for sharing long IBD blocks under dif-
fusion of ancestry are structurally similar to the Wright–
Malécot formula (Barton et al. 2013) which describes allelic
identity by state using similar approximations. A polynomial
factor is multiplied with a Bessel function of the second
kind, Kg

� ffiffiffiffiffiffi
2l

p
r
s

�
; for allelic correlation l ¼ m (the mutation

rate), while here l ¼ L (the IBD block map length). For long
blocks, L is much larger than typical mutation rate m. This
allows us to probe the tail of the Bessel function
ð ffiffiffiffiffiffi

2l
p

r=s. 1Þ; where it approaches exponential decay that
dominates the polynomial factor. This exponential decay

occurs with both an increasing block length
ffiffiffi
L

p
and an in-

creasing geographic distance r. The theory predicts that for
long blocks, this decay can be over orders of magnitude
when pairwise geographic sample distance increases multi-
ple dispersal distances (Figure 3), which is observed in the
human data (see Figure 8). This pattern persists even in the
case of recent population density changes (see Figure 4).
When global density changes can be modeled as the sums of
power terms of the form in Equation 8, the result for
expected block sharing will be given by the sums of the
corresponding Bessel functions (Equation 9). Each of those
approaches exponential decay with rate

ffiffiffiffiffiffi
2L

p
=s; thus, also

their sum does. Therefore, estimates of the dispersal rate s

that use the decay rate in the exponential regime can be
expected to be relatively robust with respect to recent de-
mographic history (see also Figure S1).

Implications for demographic inference

The fast rate at which long blocks are broken up and the
ability to probe the exponential regime of decay offer
several significant advantages for demographic inference,
which our inference scheme can use. First, long blocks
typically stem from very recent times (see Figure 9). This
is clearly advantageous for populations that have been in
equilibrium for only a relatively short time, as is likely
often the case. Inference methods that rely on allelic cor-
relations probe recent timescales as well (Barton et al.
2013). They similarly pick up locally increased identity
by state by recent coancestry. However, this is often only
a small signal on top of a majority of identity by state
stemming from ancient times. Thus, these methods are
much more susceptible to confounding by ancestral struc-
ture (Meirmans 2012), and have stringent, often unrealis-
tic, equilibrium time requirements (Leblois et al. 2003),
which our method can avoid. For instance, in the human
case, the best fit model predicts that most long blocks stem
from within the last 50 generations (Figure 9). Second,
quick exponential decay, both with sampling distance
and block length, offers a very robust signal for demo-
graphic inference. As demonstrated, the expected number
of blocks that are multiple cM long decays by orders of
magnitude over a geographic scale of several dispersal dis-
tance units. This pattern should be relatively robust with
respect to small-scale heterogeneities of habitat or dis-
persal. Such quick decay also aids robust inference, as
shown by the accuracy of the inference method on simu-
lated data. This is in contrast to inference that is based on
classic measures of pairwise genetic similarity. Such mea-
sures usually only decay with the logarithm of distance
(Barton et al. 2002), which causes low and often problem-
atic signal-to-noise ratios (Watts et al. 2007). Third, using
the logarithmic regime of the Wright–Malécot formula
only allows one to infer the neighborhood size propor-
tional to the product of density and dispersal. Naturally,
however, their separate values are of interest. As demon-
strated, inference based on long IBD blocks allows one to

Table 1 Maximum likelihood estimates for Eastern European IBD
data

Density model Parameter MLEa 95% C.I.b 95% C.I. bootstrapc

De ¼ D D 0.047 0.043–0.051 0.038–0.065
s 67.8 62.9–72.8 53.03–81.50

De ¼ D=t D 1.71 1.48–1.94 1.22–2.87
s 62.6 56.1–69.0 42.2–82.6

De ¼ Dt2b D 2.13 1.39–2.86 1.16–5.83
s 63.0 56.2–69.8 44.2–82.4
b 1.05 0.98–1.13 0.90–1.25

MLE, maximum likelihood estimate.
a All units so that distances are measured in km and time in generations.
b Calculated from Fisher information matrix.
c Calculated from 100 estimates on data bootstrapped over country pairs.
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obtain robust separate estimates of these two important
demographic parameters.

Analysis of human data

The analysis of human data nicely demonstrates our
inference scheme. The true demographic scenario is
doubtless more complex, including heterogeneous, time-
dependent migration rates and large-scale migrations.
However, qualitatively the patterns of IBD sharing appear
to fit well with our diffusion model. Despite several sig-
nificant deviations, the best fit model explains the overall
broad trends in the empirical data (Figure 8), such as the
decay of the number of shared blocks with both increasing
geographic distance and block length. Using our inferred
model, we predicted most of the shared blocks we used
(.4 cM) and hence our signal originates within the last
50 generations (Figure 9), which corresponds to the past
1450 years (assuming 29 years per generation; Fenner
2005). This mostly postdates the period of large-scale
migrations in Europe (“Völkerwanderung”; Davies 2014).
Our inferred demographic parameters seem to be plausible.
There is a clear signal for rapidly accelerating recent pop-
ulation growth, which is in agreement with historical esti-
mates (McEvedy and Jones 1978) and previous genetic
studies based on the allele-frequency spectrum (Keinan
and Clark 2012; Gao and Keinan 2016). Historical dis-
persal estimates infer values of typical migration distances
per generation ranging from a few to several dozen kilo-
meters (Wijsman and Cavalli-Sforza 1984; Pooley and
Turnbull 2005). While agreeing on orders of magnitude,
these are somewhat lower than our estimates ðs � 502
100 km=

ffiffiffiffiffiffiffiffi
gen

p Þ: However, there is also evidence that pre-
industrial individual human migrations over large dis-
tances are rare, but occur at a significant rate (Pooley
and Turnbull 2005).

We detected a systematic, large-scale deviation from a
simple diffusion model with uniform population density, as
there is a clear gradient for higher block sharing in the
direction of the Balkan countries (Figure 5). This was al-
ready observed by Ralph and Coop (2013). They hypoth-
esized that this could be due to the historic Slavic
expansion, a hypothesis supported by admixture analysis

(Hellenthal et al. 2014). However, the pattern of increased
block sharing also holds for longer, typically younger,
blocks, which could hint additionally at a consistently
lower population density in these regions. Such systematic
regional deviations from the diffusion model also imply
that care should be taken when estimating parameters
and their uncertainty ranges.

Outlook

Our inference scheme based on long IBD blocks requires
large amounts of data, as it needs dense genotype data
from a few dozen individuals, spatial information of the
samples, and a linkage map. However, the novel opportu-
nities and advantages for inference of recent demography
should justify the effort. The possibility to accurately
estimate dispersal distances and past effective population
densities could yield interesting novel insights for a whole
range of organisms. The necessary data sets are within
reach for several systems, and they will become even more
accessible in the near future with increasing genotyping
capacities.

A salient extension of our model would be to address
complications such as anisotropy (Jay et al. 2013) and
large-scale heterogeneities in migration patterns or pop-
ulation densities across the landscape. For classic mea-
sures of genetic similarity, elaborate computational
techniques have been recently applied for inference
within such complex demographic scenarios (Duforet-
Frebourg and Blum 2014; Petkova et al. 2016). As argued
above, analysis of IBD blocks would be even more suited
to this task, as the length of shared blocks gives additional
information. However, analytical solutions, which hugely
facilitate inference, are likely no longer feasible. Infer-
ence will have to be based on numerical predictions, al-
though using block sharing of different lengths will be
even more computationally intensive than extracting in-
formation from a single genetic similarity matrix. Conse-
quently, this challenge is beyond the scope of this article.
We hope that future work will help to fully use the po-
tential of shared IBD blocks, and that our inference
scheme marks only one step in a new era of demographic
inference.

Figure 9 Left panel: Age of shared IBD blocks.
Density of blocks of certain length originating
t generations ago, as calculated from the 1=T pop-
ulation density growth model with best fit param-
eters. Most of the signal is predicted to have arisen
within the last 50 generations (green line). Block
sharing would have been more recent assuming a
constant population density. Right panel: Distribu-
tion of block lengths used in our analysis of empir-
ical human data. Pw: Pairwise.
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Appendix A: Effective Density

Weusediffusion tomodel the separation of two lineages backward in time. Let rðx; tÞdenote the probability density of the vector
x of pairwise distances along each axis at time t back. In our model, two lineages coalesce instantaneously at an average
coalescence rate nðxÞ depending on x: For the probability of coalescing at time t ago, we get:

cðtÞ ¼
Z
R2
rðx; tÞnðxÞdx:

In cases where only discrete sample distances x are possible, such as the stepping stone model, the integral has to be replaced
with a sum. The key observation is that nðxÞ is usually negligible outside a small area around the origin, since in most models
only very close samples ðjxj � sÞ have an appreciable chance to coalesce. Within such small areas around the origin, for t � 1
we approximate rðx; tÞ with � rð0; tÞ and get:

cðtÞ � rð0; tÞ
Z
R2
nðxÞdx ¼ rð0; tÞ 1

2De
; (A1)

where we have defined 1
2De

:¼ RR2nðxÞdx: It can be shown that stepping stone models asymptotically converge to this model
when rescaling appropriately (Barton et al. 2002, 2013). With demes separated by one distance unit, De corresponds to the
number of diploid individuals per deme, which motivates the name effective density. Here we give this more general definition
of De to allow one to directly calculate its value in various scenarios we simulated above (see File S2).

Appendix B: Chromosomal Edge Effects

Here, we give the full result for block sharing that includes chromosomal edge effects, which we use for inference. We shall
denote the Equation 9 with fixed G ¼ 1Mwith nLðbÞ;where the dependencies other than b are suppressed for ease of notation.
Then, integrating Equation 4 yields:

E½NL� ¼ ðG2 LÞnLðbÞ þ nLðb2 1Þ;

the formula for one chromosome of length G. For multiple chromosomes of different lengths, one has to sum this formula over
all chromosomes. For pairs of diploid individuals, the resulting formula also has to be multiplied by a factor of four, since for
every pair of individuals four pairs of chromosomes are compared.

Appendix C: Likelihood

Using the Poisson approximation (Equation 11), the likelihood of a pair of samples ðjÞ at distance r sharing blocks of length
L
!¼ L1; L2; . . . ; Ln falling into a set of bins i1; i2; . . . ; in is given by:

efj ¼ Pr
�
L
!����r; u	 ¼ Cli1li2⋯linexp

 
2
X
i
li

!
; (C1)

where C absorbs all constants that do not depend on the model parameters u—this constant can be dropped when doing
likelihood-based analysis. Continuing to assume independence, we take the product over all pairwise likelihoods efj to get the
total composite likelihood:

~f
�
L
!
; u

	
¼
Y

Pairs j

efj�Lj
!
; rj; u

	
  ;

where Lj
!

denotes the shared blocks of the jth pair.
The number of pairs nðn2 1Þ=2 increases quadratically with sample size n. This scaling is advantageous for an inference

scheme, but implies that the runtime also grows with the square of sample size. However, algorithms to maximize functions
with a low number of parameters are very efficient, so even sample sizes of hundreds of individuals can easily be handled.
Calculation can be also sped up by grouping pairs with the same pairwise distance—such as when analyzing multiple
individuals from a population with the same spatial coordinates—since then the li does not have to be calculated repeatedly
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for every individual pair. Denoting the length bins of blocks shared over all pairs by i1; i2; . . . ; in and the number of pairwise
comparisons by k yields:

Pr
�
L
!����r; u; k	 ¼ Cknli1li2⋯linexp

 
2k
X
i
li

!
;

where the factor Ckn does not depend on the model parameters and can be dropped when maximizing the likelihood.

Appendix D: Block Detection Errors

The probability density ~lðyÞ of actually observing a pairwise shared block of length y can be calculated from the theoretical
probability lðxÞ of sharing true blocks of length x:

~lðyÞ ¼ fðyÞ þ
Z G

0
Rðy; xÞcðxÞlðxÞdx; (D1)

where fðyÞ describes the false-discovery-rate function depending on block length y, cðxÞ is the power to detect a block of length
x, and Rðy; xÞ is the probability of detecting a block of true length x as block of length y. Doing a careful analysis using
techniques such as manually inserting shared blocks and rerunning the IBD block detection allows one to estimate these error
functions (Ralph and Coop 2013).

In the likelihood framework, for every block length bin of a pair of samples,first the predicted true sharingl is calculated for a
set of demographic parameters u, and then updated according to Equation D1with the detection error estimates to get the final
predicted rates ~l; from which the likelihood of observed block sharing can be computed as before. This error model is
straightforwardly included into the framework of working with small length bins.
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