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Abstract

In multivariate normative comparisons, a patient’s profile of test scores is compared to
those in a normative sample. Recently, it has been shown that these multivariate normative
comparisons enhance the sensitivity of neuropsychological assessment. However, multivar-
iate normative comparisons require multivariate normative data, which are often unavail-
able. In this paper, we show how a multivariate normative database can be constructed by
combining healthy control group data from published neuropsychological studies. We show
that three issues should be addressed to construct a multivariate normative database. First,
the database may have a multilevel structure, with participants nested within studies. Sec-
ond, not all tests are administered in every study, so many data may be missing. Third, a
patient should be compared to controls of similar age, gender and educational background
rather than to the entire normative sample. To address these issues, we propose a multi-
level approach for multivariate normative comparisons that accounts for missing data and
includes covariates for age, gender and educational background. Simulations show that this
approach controls the number of false positives and has high sensitivity to detect genuine
deviations from the norm. An empirical example is provided. Implications for other domains
than neuropsychology are also discussed. To facilitate broader adoption of these methods,
we provide code implementing the entire analysis in the open source software package R.

Introduction

In neuropsychological assessments, a battery of tests is administered to a patient to determine
whether his or her cognitive functions are impaired [1, 2]. Tests within these batteries are
designed to assess the patient’s memory, attention, language capacities or other functions. To
interpret the patient’s scores, these scores have to be compared to the distribution of test scores
in healthy controls. Such a comparison is called a normative comparison. A clinical neuro-
psychologist may use one standard deviation below the mean as a criterion for impairment

[3]. When a patient’s test scores are found to be below normal, this helps the neuropsychologist
characterize the patient’s cognitive deficit, and may guide differential diagnosis and treatment.
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collection and analysis, decision to publish, or In neuropsychological research, normative comparisons can be used in a similar way. For

preparation of the manuscript.

example, if a patient and a control group are studied, normative comparisons can be made for
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the reference. In this manner, new variables can be constructed that index whether patients
deviate from the norm or not. Such indices may for example be used to assess whether a new
treatment, as compared to a waiting list condition, reduces the number of patients who deviate
from the norm [4].

Normative comparisons are generally conducted for each test separately: The patient’s test
score is compared to the distribution of test scores for that specific test. This is the univariate
approach to normative comparisons. An alternative approach is to compare the patient’s pro-
file of test scores to the multivariate distribution of test scores. This is the multivariate
approach to normative comparisons [5-8]. Multivariate comparisons have been shown to be
more sensitive than univariate comparisons to detect deviations [9]. For example, profiles of
high scores on some tests and low scores on other tests, or profiles with many scores that are
only a little below normal, are readily detected [7]. An additional advantage is that no correc-
tion for multiple comparisons is required [10], because only a single multivariate comparison
is conducted. Multivariate normative comparisons have been applied in the study of disorders
as diverse as Parkinson’s disease [11-13], stroke [14], prosopagnosia [15], bacterial meningitis
[16] and HIV-associated neurocognitive disorder [9, 17].

Multivariate normative comparisons for two hypothetical situations are illustrated in Fig 1.
In the left panel, the correlation between the memory test score and language test score is 0. In
the right panel, the correlation is 0.7. Univariately, the test scores of a hypothetical patient do
not deviate, in both panels. Multivariately, the combination of the above average score on the
language test, and the below average score on the memory test does not deviate in the left
panel, but does deviate in the right panel. In other words, in the right panel, the multivariate
comparison shows that the memory score is indeed weak, given the strength of the language
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Fig 1. lllustration of multivariate normative comparisons in a situation with scores on two neuropsychological
tests. The double-headed arrows denote the 95% univariate intervals. The ellipses denote the 95% multivariate region.
The dots denote the mean score in the norm group. The triangles depict a patient’s scores. In the left panel, tests are
uncorrelated (r = 0.0). In the right panel, tests are correlated (r = 0.7).

doi:10.1371/journal.pone.0173218.9001
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score. An experienced clinician may recognize this deviating profile given his/her intuition on
the correlation between test scores in the norm group. He/she may be able to decide without
using a formal multivariate procedure that the low score on one test together with the high
score on the other test is a cause for concern. However, in situations with more than two tests,
or situations that are less familiar to the clinician, such decisions will become more difficult. A
formal multivariate comparison should then fare better than an informal one, and is likely to
promote more accurate diagnostic decisions.

An important drawback of this multivariate method is that multivariate normative data are
required, because it is necessary to estimate the covariance of test scores within the norm
group [7, 8]. As test developers typically focus on one test, or at most a few tests at a time, these
multivariate normative data are not often available. A solution might be to obtain normative
data from a neuropsychological study in which a clinical sample has been compared to a
healthy control sample on multiple neuropsychological tests. However, a single neuropsycho-
logical study will not provide normative data on all neuropsychological tests as, in any single
study, only a limited number of tests are administered. Fortunately, by combining data from
multiple neuropsychological studies, a dataset can be established that provides all required
information. This is the approach that was chosen in a recently started project (www.andi.nl).
In this project, a composite normative dataset has been constructed from healthy control data
provided by several research institutes. In the following we outline the issues that arise in the
construction of such a database.

First, test scores may differ from study to study. Although neuropsychological tests are
highly standardized, subtle differences between studies may arise due to the design of the stud-
ies. Such differences might for example be caused by differences in incentives that are given to
participants, or by differences in the order of test administration. Second, certain tests are
administered in one study but not in others (cf. Table 1). That is, for many participants, data
will be missing on those tests that were not administered in the study they participated in. The
common approach of listwise deletion discards all participants with incomplete data [18], and
would result in no participants at all.

These two issues, missing data and differences between studies, can adequately be handled
by multilevel modeling. Multilevel modeling can account for variance between studies [19]
and multilevel modeling allows for missing values [20]. Therefore, the present paper provides
a multilevel modeling extension of the multivariate approach to normative comparisons.

In making normative comparisons, it is important to correct for background variables that
might influence scores. For instance, age may affect reaction times in such a way that a reac-
tion time that implies brain damage in young adults may not be particularly uncommon in a
very senior but healthy population. Similarly, a score that implies mild cognitive impairment
in highly educated individuals may not be uncommon in healthy individuals with a lower edu-
cation. Gender usually is less influential, but can make a difference in certain verbal tests, on
which women do slightly better than men, and in some visuospatial tests, on which women

Table 1. Example of a missing data pattern, where 1 = available, and 0 = missing. For each test, and
each study, there are scores missing, although all test co-occur at least once.

Test 1 Test 2 Test3
Study 1 1 1 0
Study 2 1 0 1
Study 3 0 1 1

doi:10.1371/journal.pone.0173218.t001
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may do slightly worse [1]. Because of the importance of these background variables, test manu-
als often contain extensive norm tables to which the score of a patient can be compared. For
every background variable that is added as a potential predictor, a new dimension is added to
the table.

As an alternative to norm tables that are split for different background variables, regres-
sion-based norms are becoming increasingly common [21, 22]. Instead of defining subgroups,
participants are compared to the predicted score of a regression equation, in which test scores
are regressed on background variables such as age, gender and educational background [23,
24]. In order to correct for these background variables in a regression-based manner, we add
the background variables to the multilevel procedure as well.

In this paper, we first describe the multilevel approach to multivariate normative compari-
sons. We then use Monte Carlo simulations to test the efficacy of this approach in terms of
false positives and in terms of sensitivity to genuine deviations from the norm. We demon-
strate the application of the method. We conclude by discussing assumptions and by suggest-
ing some future directions.

Methods

A multilevel analysis requires that the data are structured such that every row of the dataset
represents a single test score for one participant. An example with simulated data for three
tests is given in Table 2.

In Table 3, the model specification is given. The model consists of three levels: the level of
test scores (abbreviated to tests, although some tests may produce multiple scores), the level of
participants and the level of studies.

Atlevel 1, scores are expressed as a function of so-called indicator variables. These variables
indicate to which test the dependent variable refers. If the indicator variable z(1) is 1, the
dependent variable test score refers to Test 1, if z(2) is 1, the variable test score refers to test 2,
etc. A similar method using indicator variables for multivariate data analysis has been
described before [25, 26].

At level 2, the effects of a participant’s background variables, that is, age, gender and educa-
tional background, are introduced. The level 2 model also includes the error terms €;;, which
denote deviations of an individual’s observed test scores to that predicted by the model for that
particular study.

Table 2. Simulated example of a multilevel dataset with one row per test score. study indicates study number; /D indicates participant number; age, gen-
derand education are background variables; z(1), z(2) and z(3) are indicator variables; test indicates test number and score indicates the score on the test

with that number.

study ID age
-2.21
-2.21
22.79
22.79
-25.21
-25.21
-11.21
-11.21
3.79
3.79

N[NNI ININ = ===
W IN N == NN ==

w

doi:10.1371/journal.pone.0173218.t002

gender education z(1) 2(2) Z(3) test score

-1 3.68 1 0 0 1 0.08
-1 3.68 0 1 0 2 1.59
1 -0.32 1 0 0 1 0.72
1 -0.32 0 1 0 2 2.06
1 0.68 0 1 0 2 0.19
1 0.68 0 0 1 3 1.26
1 1.68 0 1 0 2 0.04
1 1.68 0 0 1 3 -0.29
-1 0.68 0 1 0 2 -0.65
-1 0.68 0 0 1 3 -0.51
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Table 3. Model specification for a multilevel model with three tests, and three background variables (age, gender and level of education), including
specification of between and within study covariance structures.

Level 1 (test: i)

Level 2 (person: j)

Vi = B1jx2(1) ik + BouZ(2) jix + BajuZ(3) jx

Bijk = P10k + P11x89Ej + Pr2xgeNder + Pp1axeducation + e1jx
Bojk = P20k + P21x89Ejk + Po2kgendery + pozxeducation + exjx
Bsjic= ¢30k + $31k296jk + Pa2geNdEN) + P3zkeducation; + ez

Level 3 (study: k) Intercept Age Gender Education
10k = Y100 + V10K $116= Y110 126 = Y120 $13k= Y130
$20k = Y200 + Vook P21k = Ya10 P22k = Y20 P23k = Y230
$30k = Y300 + Vaok P31k = Y310 P32k = Y320 $33k = Y330

Combined (substitution of level 3 into 2, and level 2 into 1)

Yijk = (Y100 + Y11089€jk + Y1209€NdEr)K + V1 30educaﬁ‘?njk + Viok+ €10 Z(1) jwc +

(V200 + Y21089€jk + V2z0gender + Vggoeducatl.onjk + Vaok + €20 2(2) jjk +
(V300 + Y31089€jx + Yazogendery + Yazoeducation + Vaox + €aj) 2(3) jx
Covariance Matrix Within Covariance Matrix Between
TestA TestC TestA TestB TestC

TestA var,,, TestA vary,

TestB COVey, 1 TestB 0 vary,,

TestC COViy i var,, TestC 0 0 var,,.

doi:10.1371/journal.pone.0173218.t003

At level 3, differences between studies are introduced by adding error terms v to the inter-
cept of each test. Note that the effects of age, gender and educational background are con-
strained to be the same in different studies, as it is unlikely that these effects differ between
studies. This constraint can however easily be relaxed by adding error terms to those effects as
well.

Substituting level 3 into level 2, and level 2 into level 1 yields the combined model (cf.
Table 3). In this model, y;0o denotes the intercept of the first test. The interpretation of inter-
cepts is dependent on the scaling of background variables. If age and education are centered
on their mean and gender is contrast coded, the intercept ;¢ refers to the scores on the first
test for an “average” participant: of average age, not of a specific gender, with an average edu-
cational background. The parameters y;1¢, Y120 and y130 denote the effects of age, gender and
educational background on the first test. In addition to these so-called fixed effects, the model
also yields estimators of random effects: the covariance matrix of within study errors € and the
covariance matrix of between study errors v.

No constraints were imposed on the covariance structure of within study errors € (cf.
Table 3). Modeling each of the covariances between variables separately can account for both
dependencies between variables within tests, and between variables that belong to different
tests. Also, measurements can freely covary both positively and negatively. The covariance
matrix of within study errors was constrained to be equal over studies, as is common in multi-
level modeling [19].

As it is unlikely that test scores of “average” participants covary at the between study level,
we imposed the constraint that between study errors v did not covary (cf. Table 3). This con-
straint could be relaxed by adding these covariances to the model as well.

As mentioned in the introduction, one of the advantages of multilevel modeling is the han-
dling of missing values. More specifically, multilevel models do not require that every partici-
pant has completed an equal number of tests. Multilevel models can be estimated with Full

PLOS ONE | DOI:10.1371/journal.pone.0173218 March 7,2017 5/18



@° PLOS | ONE

Multivariate normative comparisons using aggregated data

Information Maximum Likelihood (FIML) which uses all available information from each
case [27, 28]. For FIML to result in correct parameter estimates, the missing data mechanism
should be ignorable, i.e., the fact that an observation is missing should not be due to the value
of that particular observation [18]. In the present case, missing data is due to the study design
[29], and not due to the values of test scores that participants achieve. Since the participants
that are pooled are all healthy, and the tests can be completed easily by healthy participants,
missing data within studies should not occur systematically. Therefore, the missing data mech-
anism can be classified as ignorable, and FIML will yield adequate estimates.

In sum, multilevel modeling can be used to combine the results of multiple studies, even if
data are missing, and it can incorporate background variables. Next, we indicate how multi-
level models can be combined with multivariate normative comparisons to analyze whether an
individual deviates from a composite normative database.

The multivariate normative comparison uses a version of Hotelling’s T* statistic that is
adapted for normative comparisons. If there are no background variables, the equation for this
T2 is[7,8]:

norm

2 = ! 7P 5 x)Ci G —x
Tnarm_(ﬂ+1)/ﬂ(n—1)p(y )C (y ) (1)

where 7 is the number of participants in the norm group, p is the number of tests, ¥ is a vector
of length p containing the mean scores for every test in the norm group, x is a vector of length
p containing the patient scores for every test, prime (') denotes transposition, C is the pXp
covariance matrix of the test scores in the norm group, and C ' is the inverse of this covariance
matrix.

Looking up T?,  in the F-distribution with p numerator degrees of freedom, and n-p
denominator degrees of freedom, yields a p-value corresponding to the probability that the
patient would obtain this profile of scores (or a more extreme one) if he belongs to the same
population as the norm group [8]; [7]. If this probability is very small, for example smaller
than 0.05, the patient’s profile of scores is said to be deviating.

This normative comparison is two-sided, as both overall positive and overall negative devia-
tions are considered abnormal. A one-sided variant has also been developed [7, 30]. In one-
sided testing, all tests have to be standardized to bring them on the same scale. It is then
decided that an individual is deviating from the norm if two conditions are satisfied: (1) the
sum of deviations over tests is in the expected direction, and (2) the p-value does not exceed
0.10.

To account for the multilevel structure in the normative database, we make three adjust-
ments to the multivariate normative comparisons method. First, the covariance matrix C is
now the sum of two covariance matrices: the within study covariance matrix and the between
study covariance matrix. Second, ¥y now denotes the normative scores predicted given an age,
gender and level of education that matches that of the patient. Third, the degrees of freedom
have to be adjusted, as, in case of missing data, participants do not contribute information to
the estimation of all parameters, and as individuals are nested within studies and thus observa-
tions are not completely independent [19].

There is no consensus on how degrees of freedom should be computed and different soft-
ware packages use different methods [31]. We use the method implemented in the multilevel
modeling software package nime [32], which for our case equals the number of observations—
(number of studies + number of estimated effects + 1).

Similar to the issue of determination of degrees of freedom, determination of the # to be
used in Eq (1) is not straightforward when dealing with nested and missing data. Fortunately,
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once n becomes moderately large (above 100), even large differences in choice of n are of little
influence. We set n equal to the total number of participants.

Simulations

In simulation study 1, we investigated the effect of ignoring between study variance on the
false positive rate. We did this by fitting models both with and without between study variance.
In simulation study 2, we investigated the effect of missing data on false positive rate and sensi-
tivity. In simulation 2, scores on certain tests were deleted for all participants in a study, as if
the researchers in that study had decided not to administer that test.

Methods

The settings for the simulation studies are given in Table 4. In simulation study 2, either 0%,
40% or 70% of the data was made missing. Missing data was introduced by deleting data
according to the pattern in Fig 2. The 0% condition is intended not as a control condition, but
as a check of multilevel normative comparisons, without the added complication of missing
data. Because of the nature of the aggregate database, 0% missing data will never be encoun-
tered in real settings. If only regularly administered tests were included in the database, only
40% to 70% missing data should be achievable. However, if all possible neuropsychological
tests were included, the percentage missing test scores should be much higher; this would not
allow the current model specification and normative comparison methods. This limitation is
discussed further in the discussion section. Ten tests were used in the simulation: Twelve tests
is the average number of tests that a neuropsychologist uses [33].

The parameter values for the two simulation studies are given in Table 5. The ANDI data-
base was used to set the sample sizes of studies and the number of studies. The ANDI database
was also used to estimate the effect sex, age and level of education would have on test scores.
The simulation settings (see https://doi.org/10.5281/zenodo.321858) were based on these esti-
mates. Information on the ANDI database (which groups contributed, how many studies and
participants are available per test variable etc.) is presented in the documentation on www.
andi.nl. Another large Dutch sample was examined to verify that effects as observed in the
ANDI database can be considered representative [34]. The effects of background variables
were all assumed to be linear. A parameter of —0.125 for age indicates for example that for
every year that a participant increases in age, the participant on average achieves a score that is
0.125 points lower. The variance between studies was assumed to be small compared to the
variance between participants within studies.

In both simulation studies, patient data were simulated with the same parameters that were
used to simulate normative data, on the understanding that patients’ scores differed from the
scores in the norm group on 0, 1, 2, 5 or 9 tests. These deviations were introduced by

Table 4. Settings used in the two simulation studies.

Settings
Number of tests 10
Number of participants per study 50
Number of studies 30
Percentage of test scores missing Simulation 1: 0%
Simulation 2: 0%, 40% or 70%
Number of simulations 1000 per condition

doi:10.1371/journal.pone.0173218.t004

PLOS ONE | DOI:10.1371/journal.pone.0173218 March 7,2017 7/18


https://doi.org/10.5281/zenodo.321858
http://www.andi.nl
http://www.andi.nl

o @
@ : PLOS | ONE Multivariate normative comparisons using aggregated data

0% missing 40% missing
1 1 4
2 2
3 3
4 4
5 5
6 6 —
7 7
8 8 -
9 9 -
10 10 —
1" 11
12 12 —
13 13 —
5 15 L 15
2 16 2 16 —
R é D97
18 18 —
19 19 —
20 20 —
21 21 -
22 22 —
23 23
24 24 —
25 25 —
26 26 —
27 27 —
28 28 —
29 29 —
30 30
T T T T T T T T 1
172 3 456 7 8 9 172 3 456 7 8 9
Tests Tests

Studies

OCO~NOOOAWN -~

70% missing

!
123 4567 809

Tests

Fig 2. Missing data patterns for the 0%, 40% and 70% missing data conditions, with studies on the y-axis and tests on the x-axis. Colored

boxes are non-missing test scores, white boxes are missing test scores.

doi:10.1371/journal.pone.0173218.g002

Table 5. Parameter values in the two simulation studies.

Parameters

Intercepts 20
Age effect -0.125
Gender effect 0.5
Education effect 1.25
Residual variance of test scores within studies 25
Residual correlation between test scores within studies 0.4
Residual variance of test scores between studies 5
Residual correlation between test scores between studies 0.0

doi:10.1371/journal.pone.0173218.t005

subtracting two standard deviations (computed from the total variance) of the test scores in

the norm group from the patient’s simulated test scores. So if patients truly deviated, they did
so in a negative way. Two standard deviations could be considered the difference between
patients and the norm group that is maximally interesting from a statistical perspective:
Patients with much more extreme scores are easily recognized as being deviating, and patients
with much less extreme scores are probably non-deviating. A 2 standard deviation difference

PLOS ONE | DOI:10.1371/journal.pone.0173218 March 7,2017
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is however a large difference in neuropsychological terms. Research has shown that 1 and 1.5
standard deviations are common for impairments that are secondary to a particular disorder,
for example for attention problems that accompany major depression [35].

In applying the multivariate comparison, false positive rate was defined as the fraction of
simulations in which a significant multivariate difference was observed in conditions in which
there were no simulated differences. Sensitivity was defined as the fraction of simulations in
which a multivariate difference was observed, in conditions in which simulated differences
were present.

The multivariate results were contrasted with results of univariate comparisons. For the
univariate comparisons, we recorded whether any of the patients’ scores, using an alpha of
0.05, deviated significantly from the norm univariately. This implies that in the power condi-
tion, we did not require that the deviation corresponded to any of the simulated deviations.
This definition keeps results comparable between univariate and multivariate results, but
works in favor of univariate comparisons: They do not need to be correct to be sensitive.

In the case of no simulated deviations, the rate of finding at least one deviation is known as
the familywise error rate. It has been shown that the familywise error rate becomes much too
high if multiple comparisons are made [7]. Therefore, corrections can be applied, such as the
Bonferroni correction, which divides the criterion for significance by the number of compari-
sons. Therefore, we compared the results that were obtained using the multivariate compari-
sons to univariate comparisons that were either uncorrected, or Bonferroni corrected.

All comparisons were one-sided, as clinicians are generally only interested in patients’ per-
formance being worse than in the norm group. This means that we used a p-value of 0.10 for
the multivariate comparison as our criterion value, with the added criterion that the summed
difference is in the expected direction, as described in the method section. Given these two cri-
teria, we expect the overall proportion of significant deviations to equal 0.05 if no differences
were simulated. For the univariate comparison, we used 0.05 as our one-sided criterion.

A critical p-value of 0.05 or equivalently a 95% confidence interval is often used in scientific
research, but not in clinical practice. In clinical practice, more lenient criteria, such as 1 SD or
1.5 SD below the mean are common. In fact, research has shown that sensitivity and specificity
may be optimal with such a 1.5 SD criterion [36]. However, in applications of the multivariate
normative comparison, the 95% confidence interval has been shown to be sensitive to devia-
tions, even in comparison to univariate results with more lenient criteria [9]. Therefore, the
0.05 criterion was used in these simulations as well.

We fitted the multilevel models using the software package nlme [32], because it is flexible
in specifying covariance structures both for the € and v terms. R code that can be used to per-
form the entire analysis including the multivariate normative comparison can be found in the
supporting information (S1 R Code).

Results
Simulation study 1

If between study variance was neglected, the false positive rate was 0.066 for the multivariate
comparison, which is only slightly elevated compared to the required 0.05. If between study
variance was estimated, the false positive rate was adequate, 0.050. For Bonferroni corrected
univariate comparisons, the familywise false positive rate was 0.049 without estimated between
study variance, and 0.047 with estimated between study variance. For uncorrected tests, the
familywise error rate was too high; 0.306 without estimated between study variance, 0.276 with
estimated between study variance.
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Fig 3. False positives (where number of deviations = 0) and sensitivity (where number of deviations > 0) as a function of the
number of simulated deviations, for 0%, 40% and 70% missing data in the norm group. Error bars represent 95% confidence
intervals.

doi:10.1371/journal.pone.0173218.g003

Simulation study 2

If 0% of the data were missing, the false positive rate was 0.060 for the multivariate compari-
son. If 40% of the data were missing, it was 0.059, whereas it was 0.097 if 70% of the data were
missing. For the uncorrected univariate comparisons, the familywise error rate was too high,
around 0.3, for all three percentages missing. For the Bonferroni corrected univariate compari-
son, the familywise error rate was 0.046, 0.046, and 0.040 for 0%, 40% and 70% missing. The
multivariate results show that false positive rate is not completely under control if the percent-
age missing test scores becomes very high.

With respect to power, as can be seen in Fig 3, uncorrected univariate comparisons show
more significant results than multivariate or Bonferroni corrected univariate normative com-
parisons. Because familywise error was too high for uncorrected comparisons, the advantage
in terms of power cannot be interpreted. Multivariate normative comparisons and Bonferroni
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corrected univariate comparisons show similar results in all conditions, with the exception of
the 5 simulated deviations condition. When the patient deviates on 5 tests, the multivariate
comparison is more sensitive.

Fig 3 also shows that sensitivity was about equal with 0% and 40% missing data. The com-
parisons with 70% missing data had slightly higher sensitivity. This should not be taken to sug-
gest that 70% missing data is preferable, as the false positive rate was also slightly higher.

Follow-up simulation studies

As a follow-up, we investigated the effect of the magnitude of between study variance on the
false positive rate. To this end we computed the intraclass correlation (ICC), which is defined
as the ratio of the between study variance and the sum of the within and between study vari-
ance. In simulation studies 1 and 2 this ICC was 0.167. A preliminary analysis of the ANDI
database shows ICCs ranging from 0 to 0.4, depending on the type of tests under study. These
ICC’s thus suggest that between study variance might vary considerably in real applications.

To investigate whether a larger between study variance affects false positive rate, we
repeated simulation study 2 with a between study variance of 17, yielding an ICC of 0.4 (17 /
(17 + 25)). With this higher level of between study variance, the false positive rates for multi-
variate normative comparisons were 0.060, 0.069 and 0.114 in the 0%, 40% and 70% missing
data conditions. For Bonferroni corrected univariate normative comparisons, the false positive
rates for these conditions were 0.060, 0.066 and 0.074. For uncorrected univariate compari-
sons, the false positive rates were too high, around 0.35. These results indicate that false posi-
tive rate only slightly increases if between study variance increases.

In realistic settings, not every study will have the same number of participants, i.e. sample
sizes will be unbalanced. To investigate its effects, we ran simulations with a mean of N = 50,
and a standard deviation of 10, with 70% missing data. These simulations showed a false posi-
tive rate of 0.112 for the multivariate comparisons, which is about the same as for the equal
sample size case. Univariate uncorrected results showed a false positive rate of 0.302, while
Bonferroni corrected results showed a false positive rate of 0.06. Therefore, unequal sample
sizes do not seem to be problematic for multivariate or univariate comparisons. We also
looked at simulations with unequal sample sizes and fewer participants, i.e a mean of N = 25,
and a standard deviation of 5. For these simulations, the multivariate comparisons showed a
false positive rate of 0.192, while the univariate uncorrected result was 0.327 and the Bonfer-
roni corrected result was 0.054. The false positive rate is increased for the multivariate result.
This seems to be because the problems of 70% missing data are combined with a mean
decrease of 50% of the number of participants in this condition.

All simulations so far have been done with ten tests. We also checked whether the same
results were obtained for 20 and 5 tests. Fitting models to data from 20 tests took considerably
more resources than fitting models with 10 tests. Therefore, we only ran the 70% missing con-
dition, and performed 100 rather than 1000 simulations. With 5 tests, we ran 1000 simulations
with a 60% missing condition, as 70% of 5 does not give a whole number of test scores to
remove.

A total of 11 simulations with 20 tests showed convergence issues and had to be rerun, dem-
onstrating that with more parameters, results can become more unstable with this amount of
missing data. Multivariate results showed a false positive rate of 0.17. Uncorrected univariate
results showed a false positive rate of 0.36. Bonferroni corrected results showed a false positive
rate of 0.02. The elevated type 1 error rate for multivariate comparisons seems to originate in
less precise estimates of covariances between tests: Because the number of participants and
studies were kept equal, increasing the number of tests implies that the number of studies in
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which two tests are administered together decreases. So some covariance estimates are based
on a single study with 30 participants. Because the Bonferroni corrected tests do not use
covariance, they remain conservative.

With 5 tests and 60% missing, the false positive rate was 0.07 for the multivariate compari-
sons. Uncorrected univariate results showed a false positive rate of 0.214. Bonferroni corrected
results showed a false positive rate of 0.055. This shows that with fewer tests, the multivariate
method performs appropriately.

Lastly, we investigated the effect of including fewer studies, as fewer than 30 studies might
be available for some neuropsychological tests. We simulated data with 20 studies for 10 tests
with 40% missing data, because with 70% missing not all covariances could be estimated. The
false positive rate was 0.07 for the multivariate method, 0.326 for the univariate uncorrected
method and 0.055 for the Bonferroni corrected method. So although the number of studies,
and therefore also participants, was cut by a third, false positives rates were not affected.

Empirical example

To give an impression of what the analysis would look like in practice, the method was applied
to the ANDI database described earlier, and was used to examine the profile of a patient with
Parkinson’s disease. The details of the Parkinson’s disease dataset have been described else-
where [13, 37].

Because the ANDI database contains many tests, we only selected tests that the patient had
completed, and fitted the model to only those tests. For this example, the model was fitted to
two variables of the Auditory Verbal Learning Test (AVLT), three variables of the Stroop test,
two variables of the Trail Making Test (TMT), one variable of the Letter Fluency Test, one vari-
able of the Semantic Fluency Test, summing up to a total of nine variables. For each of these
variables, more than 1700 participants were available in the ANDI database (www.andi.nl/
home). All varjables were demographically corrected for age, sex and level of education, except
for TMT part A, for which correction for sex was not necessary. All test variables were trans-
formed to normality using Box-Cox transformations, and were recoded and standardized [38].

In Fig 4, four bivariate plots are given for the patient with Parkinson’s disease. A selection
of two-dimensional plots is given because although the multivariate comparison provides a
single result for eleven dimensions, this eleven-dimensional result is not easily visualized. As
can be seen, correlations between variables differ, i.e. the shape of the bivariate distribution dif-
fers. The Stroop Color and Word variables in the top left plot are correlated, presumably
because they belong to the same test and tap into the same naming speed component. The
Stroop Color and TMT part b variables in the top right plot are only slightly correlated, pre-
sumably because although they both involve speed, one involves paper-and-pencil tracing,
while the other involves verbal naming. Recalling words from memory after 30 minutes in the
AVLT, and tracing a path in the TMT in the bottom left plot are completely uncorrelated,
which is why the ellipse is circular. In all these bivariate plots, the patient falls within the 95%
confidence interval. For the bottom right plot, this is not the case, as the patient falls far below
the ellipse. This is mainly due to a very slow performance on the color-word interference con-
dition of the Stroop. This slow performance is incongruent with the normal performance on
the other Stroop subtask.

The multivariate test resultis T>  (9,30902) = 4.32, p < 0.001. Using the one-sided crite-
rion, we first have to ascertain whether the sum of differences is negative, which it is, —0.76.
Therefore, we can conclude that this patient is impaired, as p <0.10.
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Fig 4. Four selected bivariate plots. The ellipses denote the 95% multivariate region. The dots denote the
mean score in the norm group. The triangles depict the patient’s scores.

doi:10.1371/journal.pone.0173218.9004

Discussion

Multivariate normative comparisons are a valuable tool in neuropsychological assessment.
Therefore, it is important that a multivariate normative database becomes available. We pro-
posed the construction of such a multivariate database by joining healthy control group data
from published neuropsychological studies. In this paper we also outlined a solution to three
issues that arise when constructing such a combined database. First, test scores may differ
between studies. Second, not all tests are administered in all studies. Third, patients should be
compared to controls of a similar age, gender and level of education. We developed a method
that uses multilevel modeling to solve these three issues.

Our first set of simulations shows that estimating the variance between studies keeps false
positive rate at an acceptable level. The results of our second set of simulations show that the
number of false positives is too high if the percentage of missing data is 70%, but is satisfactory
if 40% of the data is missing. Sensitivity of normative comparisons remains intact, even if 70%
of the data is missing.

The power advantage, or enhanced sensitivity, of the multivariate comparison over Bonfer-
roni corrected univariate comparisons was not visible in all conditions. Only when the patient
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deviated on half the tests, did the multivariate comparisons outperform Bonferroni corrected
univariate comparisons. This is in line with earlier results [7], where it was shown that the
advantage of the multivariate comparisons over univariate comparisons is greatest with inter-
mediate numbers of deviations, with smaller advantages when the number of deviations is
either very high or very low.

In the simulations with 20 tests and the simulations with smaller N, the false positive rate
was not under control for the multivariate comparisons. This may be the result of the very
large number of parameters needed in comparison to the number of participants, which pri-
marily affected the estimates of the covariance between tests. A potential solution for such
cases, if extra data collection is impossible, could be to provide restrictions on the covariances
using a factor model, or to include prior information on the covariances.

Note that the proposed multilevel approach estimates between study variance. An alterna-
tive way to aggregate data over studies is to assume that between study variance does not need
to be estimated. This assumption might in some applications be required if not sufficient stud-
ies are available to estimate this between study variance component [39]. Fortunately, in neu-
ropsychology, sufficient studies are available as many studies administer the same
instruments. Another alternative is to estimate between study variance, but to refrain from
using it in comparisons. This may be more in line with current practice, where norms are used
from a single normative study. However, we see the possibility to include between study vari-
ance as an advantage, as it allows for generalization, whereas assuming that between study vari-
ance is zero does not allow for generalization to new studies and new cases [40].

The current approach requires several assumptions. First, the multilevel procedure assumes
that all contributing studies have drawn random samples of healthy participants. At first sight,
this assumption may not be met in neuropsychological studies. For example, some researchers
will only draw random samples from one gender, e.g. women, because they are studying the
effects of a particular disease that occurs predominantly in women, e.g. breast cancer. This
matching will however be harmless to our assumption of random sampling, as the assumption
pertains to the data after correction for age, gender and educational background. As another
example, close acquaintances of patients are popular controls: They are typically from similar
educational backgrounds as the patient population and are often willing to participate [41].
Again, the fact that background is similar does not seem to be problematic, as educational
background is included in the model. Finally, some control samples cannot be presupposed to
be from the healthy population, such as non-schizophrenic psychiatric patients or even absti-
nent non-Korsakoff alcoholics [42, 43]. These should not be included in the composite norma-
tive database.

Second, multilevel analysis assumes that the included studies are randomly sampled from a
population of studies. In practice, all available studies that fit the inclusion criteria would be
included, rather than taking a sample. Therefore, we argue that this assumption is likely to be
met. Note that this is similar to a random-effects meta-analysis, where all studies, and not a
random sample, on the effect under investigation are included.

Third, the current methodology may allow for missing data at the level of individual partici-
pants. This requires that the missing data mechanism can be considered ignorable. Fortu-
nately, we do not expect many non-ignorable missing values in neuropsychological studies.
Patients may find it difficult to complete test batteries, e.g. because of fatigue. Therefore, test
batteries are designed to be not too demanding [1]. This implies that healthy participants often
can complete the entire battery, and therefore few scores are generally missing. Because the
number of non-ignorable missing data points, if present, should thus be small, the amount of
bias in the estimates they incur will most likely be negligible.
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Fourth, the normative comparison method assumes that scores are multivariate normally
distributed around predicted scores. Little is known about the multivariate distribution of tests
because large multivariate datasets have generally not been available. We do however know
that violations of univariate normality, which preclude multivariate normality, are common in
neuropsychology. Neuropsychological test scores may for example be skewed and truncated
by ceiling or floor effects [44]. Statistical tests have been shown to be generally robust to mild
violations of distributional assumptions in a group comparison setting [45] as well as in a nor-
mative comparison setting [46] but more serious violations may result in a larger false positive
rate. The multivariate comparison method has been shown to be robust to varying levels of
skewness of the multivariate distribution but not to varying levels of kurtosis [8]. Solutions
that have been proposed when multivariate normality is not tenable, involve transformations
of the data [47] or non-parametric comparisons [8].

Fifth, the current method requires calculation of the covariance between every pair of tests.
Therefore, every test has to be administered with each of the other tests to at least a few partici-
pants. This limits the number of tests that can be included, as only the more common tests will
have been administered together with all other tests. This was the case for the empirical exam-
ple: A selection of tests had to be made to ensure that all covariances could be estimated with
the present method. If less common tests need to be included, solutions may lie in models that
restrict covariances, for example to obey a certain factor structure, or in collecting additional
data [48].

The current approach can be extended in a variety of ways. First, although the proposed
model flexibly handles missing data in test scores, it still resorts to listwise deletion of cases
having a missing value on one of the covariates. Because missing covariates are handled differ-
ently from missing scores, this may result in many cases being dropped that were previously
included. In these situations, alternatives to FIML such as multiple imputation might be a
good solution.

This method can be extended beyond clinical neuropsychology, but note that clinical neu-
ropsychology has three advantages that may not be present in every other field. The first is that
neuropsychological test administration has been standardized to a high degree, such that data
from different studies can be pooled. If there are for example differences between how tests are
scored, additional steps may be necessary to harmonize measurements across studies [39]. The
second advantage is that clinical neuropsychology is a large field, so many studies are available
that have tested control groups. In smaller fields, it may be difficult to find sufficient studies
that have administered the same test to accurately estimate between study variance. The third
is that neuropsychologists administer multiple tests to the same participants, and therefore
covariances between tests can be estimated. In fields where smaller test batteries are common,
the lack of overlapping tests may imply that multivarjate normative comparisons according to
the current methodology are not feasible. These advantages are however present in other fields,
for example, in personnel psychology where highly standardized tests are regularly adminis-
tered in large batteries. But also outside of psychology, the methods described here can be used
just as easily for example in medicine, where physiological measures like blood pressure and
heart rate are compared against the norm. Profiles of such measures could be compared
against the norm as well using the multivariate method described here.

In conclusion, a large composite multivariate normative dataset can be established by com-
bining data from many different studies. The current multilevel extension of multivariate nor-
mative comparisons can be used to handle (i) variability in test scores between studies (ii)
missing data which arise because not all studies administered the same tests, and (iii) back-
ground variables. This multilevel extension allows routine multivariate comparisons of
patients’ test scores to multivariate normative data. This will enhance sensitivity of normative
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comparisons in neuropsychology, and may also be valuable in other contexts, e.g. in clinical or
personnel psychology or medicine.

Supporting information

S1 R Code. Model fitting code & multivariate comparisons code. Requires the nlme pack-
age.
(DOCX)
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