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Calculating Power by Bootstrap, with an Application to Cluster-
randomized Trials

Abstract
Background: A key requirement for a useful power calculation is that the calculation mimic the data analysis
that will be performed on the actual data, once it is observed. Close approximations may be difficult to achieve
using analytic solutions, however, and thus Monte Carlo approaches, including both simulation and bootstrap
resampling, are often attractive. One setting in which this is particularly true is cluster-randomized trial
designs. However, Monte Carlo approaches are useful in many additional settings as well. Calculating power
for cluster-randomized trials using analytic or simulation-based methods is frequently unsatisfactory due to
the complexity of the data analysis methods to be employed and to the sparseness of data to inform the choice
of important parameters in these methods.

Methods: We propose that among Monte Carlo methods, bootstrap approaches are most likely to generate
data similar to the observed data. In bootstrap approaches, real data are re-sampled to build complete data sets
based on real data that resemble the data for the intended analyses. In contrast, simulation methods would use
the real data to estimate parameters for the data and then simulate data using these parameters. Means of
implementing bootstrap power calculation are described.

Results: We demonstrate bootstrap power calculation for a cluster-randomized trial with a censored survival
outcome and a baseline observation period.

Conclusions: Bootstrap power calculation is a natural application of resampling methods. It provides a
relatively simple solution to power calculation that is likely to be more accurate than analytic solutions or
simulation-based calculations, in the sense that the bootstrap approach does not rely on the assumptions
inherent in analytic calculations. It has several important strengths. Notably, it is simple to achieve great
fidelity to the proposed data analysis method and there is no requirement for parameter estimates, or
estimates of their variability, from outside settings. So, for example, for cluster-randomized trials, power
calculations need not depend on intracluster correlation coefficient estimates from outside studies. In
contrast, bootstrap power calculation requires initial data resembling data to be used in the planned study. We
are not aware of bootstrap power calculation being previously proposed or explored for cluster-randomized
trials, but it can also be applied for other study designs. We show with a simulation study that bootstrap power
calculation can replicate analytic power in cases where analytic power can be accurately calculated. We also
demonstrate power calculations for correlated censored survival outcomes in a cluster randomized trial
setting, for which we are unaware of an analytic alternative. The method can easily be used when preliminary
data is available, as is likely to be the case when research is performed in health delivery systems or other
settings where electronic medical records can be obtained.
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Background: A key requirement for a useful power calculation is that the calculation mimic the data 

analysis that will be performed on the actual data, once that data is observed. Close approximations 

including both simulation and bootstrap resampling, are often attractive. One setting in which this 

is particularly true is cluster-randomized trial designs. However, Monte Carlo approaches are useful 

in many additional settings as well. Calculating power for cluster-randomized trials using analytic or 

simulation-based methods is frequently unsatisfactory due to the complexity of the data analysis 

methods to be employed and to the sparseness of data to inform the choice of important parameters in 

these methods.

Methods: We propose that among Monte Carlo methods, bootstrap approaches are most likely to 

generate data similar to the observed data. In bootstrap approaches, real data are resampled to build 

complete data sets based on real data that resemble the data for the intended analyses. In contrast, 

simulation methods would use the real data to estimate parameters for the data, and would then 

simulate data using these parameters. We describe means of implementing bootstrap power calculation.

Results: We demonstrate bootstrap power calculation for a cluster-randomized trial with a censored 

survival outcome and a baseline observation period.

Conclusions: Bootstrap power calculation is a natural application of resampling methods. It provides 

a relatively simple solution to power calculation that is likely to be more accurate than analytic 

solutions or simulation-based calculations, in the sense that the bootstrap approach does not rely on 

the assumptions inherent in analytic calculations. This method of calculation has several important 
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Introduction

Statistical Power

“Statistical power” is defined as “the probability 

of rejecting the null hypothesis, given that some 

particular alternative hypothesis (“the alternative”) 

is true.” Power is particularly important from the 

perspectives of ethics and of allocating scarce 

resources. It is often ethically unjustifiable to 

randomize more subjects than are required to yield 

sufficient power, and it is a waste of resources to 

invest time or money in studies that have little 

chance of rejecting the null or when power is far 

greater than necessary.

In many settings, the question of how to calculate 

power is reasonably well addressed by closed-form 

equations or easily tractable mathematical methods. 

For instance, the power for an ordinary least squares 

regression is described in basic textbooks.1 Power 

for logistic regression can use iterative techniques 

or relatively simple formulae.2,3 Major statistical 

packages such as SAS (SAS Institute, Cary NC) 

contain routines for power calculation, and both 

functions and packages for power calculation 

are available for the free and open-source R 

environment.4 There are also several stand-alone 

packages that simplify the calculation of power, for 

example, PASS (NCSS Inc., Kaysville, Utah).

However, there are many settings in which these 

simple solutions are unsatisfactory. To see how, 

it is helpful to understand a primary principle 

of power calculations: the methods used must 

conform reasonably well to the planned analysis. 

If we plan to study a confounded relationship 

using a linear regression, the power assessment 

must include the confounder. Assessing power 

using an unconfounded linear regression 

calculation will misrepresent the power obtained 

in the actual analysis. If we know the outcome-

predictor relationship is heteroscedastic, we should 

not use closed-form solutions that depend on 

homoscedasticity. Again, the power obtained in 

the actual study will not be well represented in that 

there is no requirement for parameter estimates, or estimates of their variability, from outside settings. 

So, for example, for cluster-randomized trials, power calculations need not depend on intracluster 

initial data that resemble data that are to be used in the planned study. We are not aware of bootstrap 

power calculation being previously proposed or explored for cluster-randomized trials, but it can also 

be applied for other study designs. We show with a simulation study that bootstrap power calculation 

can replicate analytic power in cases where analytic power can be accurately calculated. We also 

demonstrate power calculations for correlated censored survival outcomes in a cluster-randomized 

trial setting, for which we are unaware of an analytic alternative. The method can easily be used when 

preliminary data are available, as is likely to be the case when research is performed in health delivery 

systems or other settings where electronic medical records can be obtained.

CONTINUED
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closed-form solution. If our study design includes 

a baseline period, we should not use a post-only 

comparison for estimating the power. These simple 

solutions must be rejected in favor of methods that 

acknowledge the real-world data settings in which 

the analysis is to be performed, not the restrictions 

of the existing power calculation solutions.

Cluster-Randomized Trials

One setting in which power assessment is not 

simple is cluster-randomized trials. In this design, a 

relatively small number of administrative clusters, 

such as hospitals, classrooms, or physician practices, 

are recruited. Each cluster may contain a large 

numbers of individuals upon whom outcomes will 

be measured. Rather than randomize subjects 

individually to treatment arms, all of the individuals 

within a cluster are randomized to the same 

treatment arm, and in practice we say that the cluster 

itself is randomized to one treatment arm or another.

This study design often reduces cost considerably, 

and in many settings it is the best way to get 

estimates of pragmatic effects—the effects of an 

intervention in a typical clinical population and in 

settings like those that nontrial patients are likely to 

encounter. For example, interventions on doctors to 

affect prescribing practices could hardly generate 

generalizable results if we randomize patients. We 

must randomize doctors, but examine the impact on 

patients.

Randomization by cluster leads to complications 

in data analysis that have long been recognized by 

statisticians.5,6 This is due to the likelihood of patients 

within a cluster to resemble each other, or, more 

formally, a lack of independence between subjects. 

This can be parameterized as the covariance or 

correlation between subjects within a cluster (the 

“intracluster correlation coefficient” or ICC) or as the 

variance of cluster-specific parameters ( 2b ). Valid 

approaches for estimating and testing treatment 

effects include calculating summary statistics by 

cluster in a first step and then comparing cluster 

summaries by treatment arm in a second step, and 

mixed effects models that incorporate all individual 

observations in a single model.5,6

There are several existing analytic approaches to 

calculating the power for cluster-randomized trials. 

Many of these rely on the “design effect”, 1+(m –1)
, where m is the number of observations per cluster 

and  is the ICC.5–8 The “effective sample size” is 

calculated by dividing the actual number of subjects 

by the design effect. Power assessment can then 

continue using methods for uncorrelated data, based 

on the effective sample size. While this approach 

can be similar to the analytic power, we do not 

recommend using it in practice, because it’s equally 

simple to find the analytic power with modern power 

calculation software. We mention the approach 

here because it helps clarify the importance of 

the ICC: with as few as 1,000 subjects per cluster, 

increasing the ICC from 0.001 to 0.002 results in a 33 

percent loss of effective sample size. In contrast, the 

confidence limits for estimated ICC are likely to be 

much broader than 0.001. Cluster sizes of 1,000 or 

greater are common in trials involving health delivery 

systems or communities.9,10

While the effective sample size approach is an 

approximation, accurate analytical approaches 

also depend on the design effect, and are similarly 

dramatically affected by the ICC. However, many 

approaches based on the design effect require that 

each cluster has an equal number of subjects, which 

may well not be the case. Several investigations into 

the impact of this have been performed, though their 

results are not general.11–14 Approximate methods of 

incorporating the impact of variable cluster size have 

been proposed, however.15–17

These analytic and approximate options for power 

assessment become difficult or untenable when 
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more complex study designs are used. For example, 

it is often possible to record a baseline period 

in which neither the treatment clusters nor the 

control clusters receive the intervention followed 

by an intervention period in which only clusters so 

randomized receive the intervention. This design is 

much stronger than an “intervention period only” 

design, since it can account for some pre-existing 

or baseline differences among the clusters. Power 

calculation via analytic methods are known for 

normal-distributed outcomes in this design, (see, 

e.g., Murray pp. 368–369;6 Teerenstra et al.18). A 

Stata add-on due to Hemming and Marsh provides 

approximate power and sample size estimation 

with variable cluster size and can accommodate 

a baseline observation period.19 For, for example, 

dichotomous, count, or survival outcomes, or for 

more complex designs with normal outcomes, 

analytic results may be unknown.

Another option useful in any difficult setting and 

in cluster randomized trials in particular is to use 

simulation, as follows. First, generate data resembling 

the data anticipated for the study under the specific 

alternative hypothesis for which a power estimate is 

required, then perform the planned test on that data. 

Repeat this process many times: the proportion of 

the simulated data sets in which the null hypothesis 

is rejected is an estimate of the power. The precision 

of the estimate is controlled by the number of 

time the process is repeated. This approach is very 

powerful, and has been implemented for cluster-

randomized trials with baseline observation periods 

in at least one package for R.20,21 The package also 

accommodates more general crossover trials.

But despite the robustness of simulation-based 

methods to some design issues, they share one 

key weakness with the analytic approach: it is often 

extremely difficult to obtain credible estimates of the 

ICC or 2b . Assessments of the variability of the ICC 

or 2b  are even harder to find, and small differences 

in these parameters can lead to large differences in 

the estimated power, as was demonstrated using the 

effective sample size approximation. The difficulty 

of obtaining estimates has led to reliance on rules of 

thumb and to articles that report ranges of ICCs, to 

serve as reference.22 While perhaps better than no 

estimate at all, estimates from unrelated areas may 

lead to poor estimates of power.

In addition, covariate imbalance between arms is 

likely when few units are randomized. Though there 

remains debate among trialists about whether 

covariate adjustment is ever appropriate, it may 

be thought desirable in the case of a cluster-

randomized trial. If so, the adjustment should also 

be incorporated into the power assessment. As the 

planned analysis gets more complex and parameters 

multiply, we should have less confidence in power 

estimates that depend on simplifying assumptions 

such as a lack of covariate effects, or on external ICC 

estimates.

Goal

In the current article, we propose a means of 

avoiding these problems and maintaining the 

greatest possible faithfulness to the planned analysis 

when performing the power calculation. In the 

Methods section, we discuss the general approach to 

power assessment using resampling methods, and 

outline two distinct settings in which they are likely 

to be useful. In the Results section, we describe a 

simulation assessment of a simple setting, as well as 

an application in which we implemented the method.

Methods

General Idea

We propose using bootstrapped samples to 

assess statistical power, modifying the samples as 

necessary to generate the desired alternative. This 

is a natural approach. Bootstrapping for power 
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calculation has been described previously in a few 

specific applications, but its generality, flexibility, 

benefits, and heuristic motivation have not been fully 

explored, to the best of our knowledge.23–26 Nor has 

the application or its unique advantages in cluster-

randomized trials been described.

Bootstrap resampling is simply sampling from 

observed data, with replacement. Heuristically, 

the idea is that the observed data represent the 

population from which they were drawn, and 

sampling an observation from among the observed 

data can thus be substituted for sampling from the 

population itself.

For estimating the power in a typical medical study, 

the method requires having relatively detailed data 

before the power must be calculated. This data 

should be as similar to the prospective study data as 

possible; one example would be baseline data that 

would also then be used in the study itself. Another 

setting where the method may be possible is in 

laboratory studies, where new experiments may be 

quite similar to completed experiments. We describe 

how the approach might be implemented in each of 

these cases.

A Simple Example: Laboratory Experiment

We begin with the laboratory experiment, a simple 

nonclustered setting, to introduce the idea. Suppose 

conditions “A” and “B” were compared in “Study I,” 

which has been completed. Now we wish to assess 

the power for a new experiment, “Study II,” where 

we will compare condition A to condition C, a 

modification of condition B. Let us assess the power 

under the alternative that the mean of condition C 

in Study II is 5 units greater than was observed for 

condition B in study I. We denote the data observed 

under condition A in Study I as xA1,…,xAn1 and the 

data observed under condition B in Study I as xB1,…,xBn2. Our bootstrap power calculation for Study 

II proceeds as follows:

1. Sample n1 values from xA1,…,xAn1 using simple 

random sampling with replacement; denote 

these values x*A1,…,x*An1.
2. Sample n2 values from xB1,…,xBn2 using simple 

random sampling with replacement; denote 

these values x*B1,…,x*Bn1.
3. Add 5 to each of the values from step 2 and 

denote the values thus modified as x*C1,…,x*Cn2; 
this is how we include the alternative in the 

calculation.

4. Perform the test comparing x*A1,…,x*An1 to  x*C1,…,x*Cn2, record whether the null was rejected 

or not.

5. Repeat steps 1–4 many times.

6. The proportion of rejections is the estimated 

power.

A diagram of steps 1 through 4 is presented in Figure 1.

Some advantages to this approach present 

themselves immediately. Suppose the distribution in 

the second group is exponential, while that of the first 

is normal. An analytic approach to the power that 

accurately incorporates this difference in outcome 

distribution is not likely to be available. The choice of 

test with such distributions might be nontrivial, but 

the above routine will quickly generate the estimated 

power regardless of the chosen test; the algorithm 

above does not even specify a test. If we assume the 

new second condition will change the scale of the 

outcome, instead of or in addition to the location, 

we could easily modify step 3 in the above algorithm 

and still generate the desired result. Note also that 

in a Monte Carlo power estimation, as in an analytic 

power calculation, the Type I error plays a role. In a 

Monte Carlo power estimation, the Type I error level 

enters through step 4, above. To change the Type I 

error level for which the power is to be estimated, the 

 level for rejection can be changed.
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A Complex Example: Cluster-Randomized Trial

Next, let us consider a cluster-randomized trial with 

a baseline observation period. Suppose we have 

collected baseline data on the presence or absence 

of an outcome, among individuals at several sites 

or clusters. We might be able to do this before 

the study was fully funded by using electronic 

medical records, for example. Each site may have 

a different number of subjects. We plan to use the 

collected data as a baseline against which we will 

compare data collected on other subjects while an 

intervention is applied to a random subset of sites. 

Suppose we need to know how much power we 

would have, given the intervention increases the 

odds of an outcome at each site by a factor of 2.

Denote each subject seen at cluster c in the baseline 

period as scj, = 1,…,nc, and the outcome for subject scj 
as ycj = 1 if the outcome is observed and 0 otherwise. 

Our bootstrap power calculation would proceed 

along the following steps:

1. Within each cluster, resample nc observations, 

call these bootstrapped subjects S Bc . These will 

serve as the baseline data, thus the “B” in the 

superscript.

2. Randomize clusters to the control or intervention 

condition using whatever randomization 

strategy is planned for the actual study; this 

step may involve stratification by features of the 

“observed” S Bc .

Figure 1. Diagram for Bootstrap Power Calculation in Laboratory Experiment
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3. Again, within each cluster, resample nc 
observations, call these subjects S Ic . These will 

serve as the intervention period data, thus the “I” 

in the superscript. There will be new individuals in 

the second period; this is why we resample again.

4. For clusters assigned to the intervention 

condition, calculate the modified within-cluster 

probability in the intervention period: Calculate 

the proportion where Y Icj = 1, denote this 

proportion P Bc , and from this calculate the odds 

within the cluster, ODDS = P Bc (1–P Bc ). Multiply 

by 2, and solve for the probability implied. Call 

this P Ic , that is, 2*ODDS = P Ic (1–P Ic ) or P Ic = 2* (2*ODDS+1).
5. For clusters assigned to the intervention 

condition, set all Y Icj =0, and randomly assign 

them to have Y Icj =1 with probability P Ic . 

Optionally, a more sophisticated approach would 

be to calculate the difference P Dc =P Ic  –P Bc ; this 

is the additional probability of the outcome in 

cluster c in the intervention period. Under this 

approach we would retain the original values of YIcj . Then, among subjects with Y Icj =0, we would 

randomly reassign their outcome value so that YIcj =1 with probability nc P Dc c (1–P Bc ).
6. Perform the planned analysis (say, a generalized, 

linear mixed logistic regression model) on the 

data set comprising the S Bc  and the modified S Ic  

from step 5; record whether the null hypothesis 

was rejected or not.

7. Repeat steps 1–6 several times.

8. The proportion of rejections is the power.

A diagram of steps 1 through 6 is presented in Figure 2.

Some advantages are clear. There is no concern 

about how to incorporate the variable cluster size 

into the design effect and analytic approaches. There 

is no need to estimate the ICC or 2b , which would 

be necessary for other approaches. Similarly, we 

need not estimate the precision of our estimated 

ICC or 2b . Though it might be possible to estimate 

the ICC or 2b  using the baseline data, and then 

proceed with a simulation or analytic approach, it 

might be awkward to incorporate the variability of 

the estimate.

Note that the resampling is within cluster, so that 

the correlation within cluster is maintained, and 

so that independence across the bootstrapped 

items is also possible. The observed distribution of 

cluster sizes is also quite naturally maintained. For 

example, a cluster with 200 observed subjects will 

have 200 bootstrapped subjects in each iteration, 

and a cluster with 250 observed subjects will have 

250 bootstrapped subjects in each iteration, and 

so forth, so that the exact observed distribution 

of cluster sizes is replicated. The correlation within 

cluster is represented by differential probabilities 

of the outcome by cluster, and these will be 

maintained by the bootstrap as well: a cluster with 

an observed rate of 0.2 will have approximately 0.2 

in the bootstrapped sample, while a cluster with an 

observed rate of 0.4 will have a rate of approximately 

0.4 in the bootstrapped sample. Also note that the 

randomization to study condition is placed within 

the power assessment process so that it can depend 

on, e.g., covariate values in the resampled baseline 

data. The somewhat complex optional formulation of 

step 5 is intended to retain the actual observations 

where the outcome is observed, and only add to 

them. This would possibly facilitate the incorporation 

of covariates.

Results

Simulation Experiment

We begin with a confirmation that the approach can 

replicate an analytic power calculation, when one is 

feasible. Consider a simple laboratory experiment 

such as that described above, except where the 

outcome is known to have a normal distribution with 

mean 0 and standard deviation 1 in the control group 
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and normal distribution with mean 0.12535 and 

standard deviation 1 in the experimental group. In 

such a case, the analytic power would be exactly 0.8. 

To assess whether this power would be estimated 

correctly by the bootstrapping procedure described 

above, we simulated 1,000 data sets of 1,000 

pseudo-random normal deviates each. For each data 

set, we followed the above procedure, bootstrapping 

a sample to serve as the control, another to serve 

as the experimental group, to which we added 

0.12535, and then performing the t-test on these two 

bootstrapped samples. This bootstrap procedure 

was repeated 100 times for each of the 1,000 data 

sets. Since the precision of the estimate depends 

on the number of bootstrap samples performed, 

we must also calculate a confidence interval for 

each estimate; here we calculated exact 95 percent 

confidence limits. If the bootstrap procedure is 

correct, we would expect that 95 percent of the 95 

percent confidence intervals enclose the analytic 

power of 0.8. In fact, we found that 95.5 percent of 

the 1,000 confidence intervals enclosed the value 

of 0.8, suggesting that the method can reproduce 

analytic results admirably.

Figure 2. Diagram for Bootstrap Power Calculation in a Cluster-Randomized Trial with a Baseline 

Observation Period
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Real Application

Next we present a real application. In 2012, we 

received a planning grant from the United States 

National Institutes of Health (NIH)—NIH Health Care 

Systems Research Collaboratory, Pragmatic Clinical 

Trials Demonstration Projects—to plan a trial of 

decolonization to reduce clinical cultures of certain 

drug-resistant organisms and bloodstream infections 

in hospitals. The intervention was to involve daily 

bathing of all patients with an antiseptic soap, plus a 

nasal antibiotic ointment for patients who harbored 

antibiotic-resistant bacteria. For cost and practicality 

reasons, this intervention was to be implemented at 

the hospital level, rather than at the unit or patient 

level. Thus, a cluster-randomized trial was planned. 

Data collection would use the hospitals’ routine 

electronic records, so a baseline observation period 

was feasible. During the planning year, we recruited 

55 hospitals. We were then invited to pursue funding 

to actually perform the trial. That trial has since been 

funded and is ongoing as of this writing. Further 

details are available from clintrials.gov, identifier 

NCT02063867.

All data used in the analysis presented below were 

collected retrospectively from hospital medical and 

billing records, prior to the funding and performance 

of the trial. Data were anonymized by removing 

all information other than an arbitrary hospital 

and patient identifier, time of infection and type 

of organism if an infection was recorded, and time 

of hospital discharge. These data comprise all the 

information used in the analyses presented below. 

All data were collected as part of the usual business 

and medical practice of the hospitals and were 

retained by them; the hospitals graciously allowed 

the authors access to the data on their computers 

for the purposes of the work described. All work 

presented was approved by the Harvard Pilgrim 

Health Plan institutional review board (IRB). Informed 

consent was not obtained, but all data were 

analyzed anonymously and no experimentation was 

performed. All work was conducted in accordance 

with the principles expressed in the Declaration of 

Helsinki.

Due to variable length-of-stay in the hospital, the 

planned trial evaluation will treat the outcomes 

as time-to-event or survival data, censored at 

hospital discharge if no infection has occurred by 

that time. We plan to use a proportional hazards 

model, or Cox model, to assess the effectiveness 

of the intervention, with shared frailties to account 

for randomization by cluster.27-29To assess power, 

we performed a version of the bootstrap power 

calculation described above. We know of no analytic 

approach useful in this setting. The primary outcome 

is time elapsed until a clinical culture with methicillin-

resistant Staphylococcus aureus or vancomycin-

resistant Enterococcus is found, that is, a “clinical 

culture”. These are both important antibiotic-

resistant bacteria. Secondary outcomes include time 

until a clinical culture with a gram negative multi-

drug resistant organism and time until bacteremia 

resulting from any pathogen. Fortunately these 

organisms and infections are currently rare, and 

the event rate per 1,000 attributable days for them 

respectively, is 2.2, 0.6, and 1.1.

The consensus among study planners was that we 

should assess power assuming there would be 20 

percent fewer infections with the intervention. Our 

bootstrap power routine resembles that described 

above for a dichotomous outcome. As before, 

denote each subject seen at cluster c in the baseline 

as scj, j = 1,…,nc. In the baseline period, we observed 

the time of event for subject scj, which we denote tcj, and the censoring indicator cj = 1 if the event 

is the outcome of interest and 0 if it is censored, 

which includes discharge from the hospital with no 

infection, for example. We also observed the time of 
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discharge for patients who actually were infected. 

We’ll denote this time as t’cj. Our routine looks 

something like the following:

1. Within each cluster, resample nc observations. 

Call these subjects S Bc . These will serve as the 

baseline data in our assessment.

2. Randomize clusters to the control or intervention 

condition using the randomization strategy we 

plan to employ in the actual study.

3. Again, within each cluster, resample nc 
observations, call these subjects S Ic . These will 

serve as the intervention period data in our 

power assessment. In this design, there are new 

individuals in the second period; this is why we 

resample again instead of reusing the same 

subjects sampled to be the S Bc .

4. For clusters assigned to the intervention 

condition, randomly reassign 20 percent of the 

resampled event cases, where cj = 1, to instead 

be censored and have cj = 0. For these subjects, 

replace the observed event time tcj with t’cj, the 

discharge time.

5. Fit the frailty model to the data set comprising 

the S Bc  and the modified S Ic , record whether the 

null hypothesis was rejected or not.

6. Repeat steps 1–5 several times.

7. The proportion of rejections is the power.

An example using simulated data in SAS is shown in 

the Appendix.

We note that the substitution of t’cj for tcj, replacing 

the event time with the discharge time when an 

event is removed in step 4, is not perfect. Ideally, 

we would substitute the date of discharge that 

would have occurred had there been no event, 

but of course this is unknowable. The date of 

discharge after an event might well be later than this 

unknowable value, since the event itself may delay 

the time of discharge relative to the unknowable 

value, for example. It is possible that a better choice 

would be to leave the time of event unchanged, 

while changing it to a censoring rather than event 

time, effectively discharging the patient at the event 

time, although this would almost certainly censor 

nonevent time. In our application, however, the event 

rate is very small, so the difference between these 

imperfect choices is unlikely to be meaningful.

There was a further complication. The baseline 

data in hand included 4 months of recruitment, but 

the planned total baseline accrual period was 12 

months. The intervention period was scheduled for 

18 months. We resolved this issue by referring back 

to the heuristic behind the bootstrap: the observed 

sample represents the original population. Why not 

bootstrap more than nc samples from among the nc observed subjects in each cluster in the baseline 

period? In traditional uses of the bootstrap, for 

example, to obtain confidence limits for statistics 

that have difficult asymptotic properties, this idea 

would lead to biased results—narrower confidence 

limits than appropriate. But in our setting this 

argument is not relevant. We sampled 3 *nc 
observations from each cluster for the baseline in 

step 1 and 4.5 *nc from each cluster in step 3.

Results based on 1,000 bootstrap iterations are 

shown in Table 1. Power for the primary outcome and 

two selected secondary outcomes were assessed; 

we repeated the above process for each of these. 

We also considered four values of the intervention 

effect by varying the percent selected to have their 

events removed in step 4.

The results show that for the primary outcome, there 

is ample power to detect the anticipated effect of 

preventing 20 percent of events. There is notably 

less power for the secondary outcomes. Note that 

we also present an effect of 0 percent. A 0 percent 

effect is implemented by not altering the outcomes 

for any subjects, in step 4. In this case the null 

hypothesis is true, which may strike some readers 
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as meaning we are assessing something other 

than power. We include this effect as a face validity 

check to ensure that the power assessment process 

and implementation are correct: the probability of 

rejecting the null hypothesis must be the same as 

our rejection level—5 percent in this case. The results 

show that the face validity test was passed.

As is demonstrated by the table, the results of the 

bootstrap power calculation, as with simulation-

based power procedures, are estimates. The result 

of the calculation is the proportion of rejections, 

and the precision of the estimate—controlled by the 

number of bootstrap cycles in step 6—should be 

reflected by providing confidence limits based on 

the properties of the binomial distribution. Here we 

use exact limits.

Discussion

We describe the application of bootstrap resampling 

to the problem of power calculation. Like the 

bootstrap itself, the approach is very general. 

It can be used in laboratory settings and in any 

application where fairly extensive preliminary data 

can be obtained before power calculations are 

necessary. The application of the bootstrap to 

power calculation has been proposed previously in a 

handful of specific applications.23–26 Our contribution 

is to describe its application and to explore the 

nuances of use and particular advantages in the 

setting of cluster-randomized trials. In addition, 

we emphasize that the approach can be used to 

assess power for any proposed project, an important 

point apparently missed in previous work. We also 

demonstrate that the bootstrap approach can 

replicate analytic power assessments and show 

a real example of estimating power for a cluster-

randomized trial for infection prevention in hospitals. 

The application to censored survival outcomes 

allows power estimation for a setting in which 

analytic results are not available.

The bootstrap power approach offers several 

advantages beyond its ability to account for 

arbitrary complexity in the structure of the data 

and the fact that it does not rely on estimates from 

the literature. Primary among these is that it can 

use the precise analysis method contemplated 

for the planned study, an advantage shared with 

simulation approaches, but without the requirement 

of verisimilitude in the simulation. For example, 

covariates can easily be incorporated without 

making assumptions about their joint distribution. 

In place of this requirement, it substitutes the 

requirement that the preliminary data be sufficiently 

similar to that of the intended study. The bootstrap 

Table 1. Power and Exact 95 Percent CI for Power for Primary and Select Secondary Outcomes*

INTERVENTION 
EFFECT

MRSA OR VRE 
CLINICAL CULTURES

GRAM NEGATIVE MULTI-
DRUG RESISTANT 

CLINICAL CULTURES

ALL-PATHOGEN 
BACTEREMIA

0% 5.6% (4.3–7.2%) 4.1% (3.0–5.5%) 5.2% (3.9–6.8%)

10% 35% (32–38%) 14% (12–16%) 22% (19–24%)

20% 93% (91–95%) 44% (41–47%) 67% (63–69%)

30% 100% (99.6–100%) 83% (81–86%) 97% (96–98%)

Staphylococcus aureus Enterococcus.
*Based on 1,000 bootstrap samples for each effect size and outcome.
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power approach also incorporates variability in 

key parameters without further consideration 

of the analyst. Another advantage is the ease of 

implementing the thinking of study planners. For 

example, in the shared frailty proportional hazards 

application, the expert consensus was that 20 

percent of the infections might be prevented by the 

intervention. Using the bootstrap power approach, 

we were able to implement that effect directly, 

without having to consider implications for model 

parameters such as the hazard ratio.

Additionally, while we demonstrated simple 

alternative hypotheses, it would be trivial to 

implement complex ones. For example, we could 

change the mean in the laboratory experiment by 

the same amount by leaving half the experimental 

subjects unchanged and doubling the effect in the 

other half. In our real example, we could change 

the shape of the survival curve by removing 

events preferentially among early events. Another 

advantage is that it is entirely generic—any analytic 

method can be inserted into the data analysis 

step and the power assessment algorithm will be 

unchanged. This suggests that bootstrap power 

calculations could easily be used to compare the 

power of two competing analyses in a particular 

data setting.

The bootstrap approach to power calculation is likely 

to be more accurate than analytic or simulation-

based calculations, in the following sense. In order 

to make analytic calculations or simulation-based 

power assessment, we typically rely on parametric 

assumptions about the outcome and covariates, if 

any. To the extent that these are not true, they will 

introduce inaccuracies to the power calculations. 

These will be present, for example, even for 

approximately normal outcomes for which we 

calculate power assuming a normal distribution, 

if the outcome is not in fact normal. In cluster-

randomized trial settings, we may have the added 

assumptions of fixed cluster sizes, or of regularity 

required to usefully represent the variability of the 

cluster size through the coefficient of variation, as 

well as the intracluster coefficient issues outlined 

above. Each of these introduces at least potentially, 

and often practically, inaccurate assumptions that 

are avoided by the Monte Carlo approach, provided 

that the preliminary data exhibit the features 

that make simulation or analytic approaches 

unsatisfactory.

The primary weakness of the approach is the 

reliance on the availability of detailed data. We 

provide the example of laboratory experiments as a 

case where detailed data may well be available, and 

demonstrate a real example of a large human trial 

in which it is possible. On the one hand, we believe 

it will frequently be possible in pragmatic projects 

using established care delivery systems, where 

detailed data are often easily available through 

existing electronic records. On the other hand, in 

such settings, it may also be possible to estimate key 

parameters, such as the ICC, from the preliminary 

data, diminishing the advantage of the bootstrap. 

We believe the bootstrap power approach is still 

markedly superior, however, in that it incorporates 

the variability of these parameters as compared 

with fixed estimates, or at best, large variability for 

estimates of second moments.

When data available are not sufficiently similar to the 

desired power calculation setting to allow the use of 

the bootstrap, simulation may be the best strategy. 

This approach is likely to allow incorporation of 

more idiosyncratic aspects of each particular study. 

Simulation requires that only modest information be 

acquired before undertaking the power assessment. 

In our opinion, purely analytic power calculation 

is best reserved for simple situations or situations 

so novel that very little data are available to aid in 

power assessment.
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Note that unlike other power calculation tools, 

the bootstrap method is particularly tied to the 

available data. While the approach is very general 

in that it can be applied whenever sufficient data 

exists, each solution will be unique to that existing 

preliminary data and, indeed, to the proposed 

analysis for that data set. It may be most helpful 

to retain the bootstrap method in your toolbox for 

the times when data sufficient to implement it are 

available and when exploration of that data call the 

assumptions needed for analytic power calculations 

into question.

A few other items bear some attention. One is the 

particular utility of being able to bootstrap more 

than the observed number of subjects in each 

cluster. This allowed us to expand the time scale 

of the available baseline in the cluster-randomized 

trial application. It also suggests that we can assess 

the number of subjects needed to achieve a given 

power, as is often desirable. Another is the unique 

feature that there is no need to explicitly estimate 

parameters from the collected data. Thus for 

the cluster-randomized trial example, we did not 

calculate the baseline rate or survival curve for each 

event, or need to know the sample size available at 

each cluster. These are features that play heavily into 

analytic and simulation-based power assessments. 

As mentioned above, it is incumbent upon the 

user to repeat the bootstrap process many times 

and to report a confidence interval for the power 

calculation. The exact number of “many” depends on 

the application: in some cases, as few as 20 iterations 

may be sufficient, if the null is rejected in all or in 

none of them. More typically, 100 or 200 are often 

sufficient, while for grant applications, we sometimes 

use 1,000. Finally, as noted above, power estimates 

from bootstrap and simulation methods are explicitly 

estimates, and can and should be accompanied by 

confidence limits. Ironically, power calculations from 

analytic methods treat their inputs as fixed and offer 

no formal means of assessing uncertainty. At best, 

we may vary parameters informally to demonstrate 

the effects of uncertain inputs to the formulae.

Conclusion

Power calculation by bootstrap is the simple 

proposal to use resampling techniques to generate 

data under the alternative hypothesis and to use 

replication to assess power under that hypothesis. 

Bootstrap power calculation is a powerful tool that 

offers unique advantages compared to analytic 

calculation or simulation. It allows power to be driven 

by detailed baseline data and avoids weaknesses 

common to other approaches to power, including 

the need to assume that literature-based estimates 

apply to the population under study and the need to 

find viable estimates of all parameters in the analysis. 

It should be particularly useful, as demonstrated, in 

application to cluster-randomized trials. 
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Appendix: SAS code

/* Demonstration code to do bootstrap power, for frailty models */ 
 
/* First, generate some "observed" baseline data that we will resample from. 
   This will be replaced with real data in practice. */ 
 
/* This simulation is not meant to be especially accurate! */ 
data simfrail; 
beta1 = 2; 
beta2 = -1; 
do hosp = 1 to 60; *frailty loop; 
  frailty = normal(0) * sqrt(.25); 
/* as and additional covariate, assume 1 ward of each of 4 types at each hosp */ 
    do wardtype = 1 to 4; 
/* id = patient */ 
    do id = 1 to ceil(33 + (33*uniform(0)));   
     *add variability to ward size: ward size  = 33 - 65;      
      x2 = (normal(0) gt 0); * covariate; 
   mean = exp(1.5 - log(2)*x2 + frailty);  * mean event time;  
      event = rand("EXPONENTIAL") * mean;     * observed event time; 
   inelig = event + 2;                     * time of censoring--  
                     recall that this is not an accurate simulation!; 
      censored = (uniform(0) gt (.1 + (.015 * x2))); 
   * indicator of censoring: ~89% censored ; 
      if censored then time = inelig; 
     else time = event;    * implements censoring; 
    output; 
 end; 
    end; 
  end; 
run; 
 
 
/*****************************************/ 
/* bootstrap                             */ 
/*****************************************/ 
proc sort data = simfrail; by hosp wardtype; run;  
 
%let nreps = 100;  * number of iterations of the process; 
 
/* bootstrap for "baseline" */ 
proc surveyselect data=simfrail noprint method = urs samprate = 1 
  out=base outhits reps= &nreps; /* reps = number of bootstrapped data sets */ 
strata hosp wardtype;  /* observed n/ward maintained */ 
run; 
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strata hosp wardtype;  /* observed n/ward maintained */ 
run; 
 
/* Add both periods together */ 
/* add period indicator */ 
data c1; 
set  
base (drop = numberhits expectedhits samplingweight in = base) 
ix (drop = numberhits  expectedhits samplingweight  in = ix); 
if base then period = 0; 
else if ix then period = 1; 
run; 
 
proc sort data = c1; by replicate hosp; run; 
 
/*****************************************/ 
/* randomize hosps to arms               */ 
/*****************************************/ 
/* first, order on hosp size, within replicate */ 
proc summary data = c1; 
class replicate hosp; 
var censored; 
output out=c1a n=nhosp mean=pct_censored; 
  /* pct_censored = 1 - rate of outcome.  Matching on one is the same as matching on the other */ 
run; 
 
/* _freq_ contains the number of obs/hosp; type < 3  
            has various summaries for the data set */ 
proc sort data=c1a (where = (_type_ eq 3)) out=c1b; by replicate nhosp; run; 
 
/* now, make strata of 4 hosps by size; within these, rank by percent censored */ 
data c1c; 
set c1b; 
strata = int((_n_ -1)/4); 
run; 
 
proc sort data = c1c; by replicate strata pct_censored; run; 

/* bootstrap for "Ix period" */ 
/* sample subjects as above */ 
proc surveyselect data=simfrail noprint method = urs samprate = 1 
  out=ix outhits reps= &nreps; /* reps = number of bootstrapped data sets */ 
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merge c1 c1d (keep = replicate hosp arm); 
by replicate hosp; 
if arm eq 1 and censored eq 0 and period eq 1 then do; 
  censored = (uniform(0) lt .2);  /* alternative risk reduction percent in here */ 
  if censored eq 1 then time = inelig; 
  end; 
run; 
 
proc sort data = c2; by replicate hosp; run;  
 
 
/*****************************************/ 
/* fit the model to each replicate       */ 
/*****************************************/ 
ods select none; 
ods output type3 = kktype3 parameterestimates = kkpe; 
proc phreg data=c2; 
by replicate; 
  class hosp x2(ref='0') arm(ref='0') period(ref='0'); 
  model time*censored(1) = x2 wardtype arm|period; 
  random hosp / noclprint; 
run; 
ods select all; 
 
/* check to see when rejected */ 
data kkpesum; set kkpe (where = (parameter="arm*period")); 
reject = (probchisq < .05); 
run; 

 
/* now, randomize, in pairs */ 
data c1d; 
set c1c; 
retain arm; 
if int((_n_ -1)/2) = (_n_ -1)/2 then arm = uniform(0) > .5; 
  else arm = 1 - arm; 
run; 
 
proc sort data = c1d; by replicate hosp; run; 
 
/* now, merge arm status into data */ 
/* also, implement alternative truth */ 
data c2; 
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/* generate proportion rejected == power, plus CI */ 
proc freq data = kkpesum; 
tables reject / binomial(level='1'); 
run; 
 
/* results, will vary with random seed in data generation and proc surveyselect: 
89% power, CI 81-94%.   
 
                                       The FREQ Procedure 
 
                                                     Cumulative    Cumulative 
                  reject    Frequency     Percent     Frequency      Percent 
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                       0          11       11.00            11        11.00 
                       1          89       89.00           100       100.00 
 
 
                                      Binomial Proportion 
                                         for reject = 1 
                                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                                Proportion                0.8900 
                                ASE                       0.0313 
                                95% Lower Conf Limit      0.8287 
                                95% Upper Conf Limit      0.9513 
 
                                Exact Conf Limits 
                                95% Lower Conf Limit      0.8117 
                                95% Upper Conf Limit      0.9438 
 
                                  Test of H0: Proportion = 0.5 
 
                                ASE under H0              0.0500 
                                Z                         7.8000 
                                One-sided Pr >  Z         <.0001 
                                Two-sided Pr > |Z|        <.0001 
 
                                       Sample Size = 100 
 
*/ 
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