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Abstract

Evaluating the impacts of clinical or policy interventions on health care utilization requires
addressing methodological challenges for causal inference while also analyzing highly skewed
data. We examine the impact of registering with a Family Medicine Group (FMG), an integrated
primary care model in Quebec, on hospitalization and emergency department visits using
propensity scores to adjust for baseline characteristics and marginal structural models to account
for time-varying exposure. We also evaluate the performance of different marginal structural
GLMs in the presence of highly skewed data and conduct a simulation study to determine the
robustness of different GLMs to distributional model mis-specification. Although the simulations
found that the zero-inflated Poisson likelihood performed the best overall, the negative binomial
likelihood gave the best fit for both outcomes in the real dataset. Our results suggest that
registration to a FMG for all three years caused a small reduction in the number of emergency
room visits, and no significant change in the number of hospitalizations in the final year.
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1. Introduction

Health care utilization data is useful to characterize the health care system and to investigate
the answers to a wide array of policy questions. It is defined as the number of services used
by a patient over a period of time, such as the number of hospitalizations or the number of
visits to a physician over a period of one year for example. The data are usually
characterized by a highly right-skewed distribution with an inflated number of zeros,
reflecting the fact that a majority of people are in relatively good health, and a minority of
them are very sick.

Longitudinal datasets where the exposure may vary over time pose further obstacles in
estimating the average causal effect of an intervention or policy. It is not unusual in such
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observational datasets to encounter situations where covariates are simultaneously
confounders and intermediate steps in the pathway between the exposure and the outcome.
Typical data analysis methods will produce biased estimates in such cases [1]. The
International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Good
Research Practices for Retrospective Database Analysis Task Force Report suggests using
alternative methods such as marginal structural models (MSMs) to investigate such datasets

2.

Marginal structural models typically produce estimates using inverse probability of
treatment weighting (IPTW). MSMs have been shown to successfully estimate the total
causal effect of exposure on outcome in observational studies where the exposure varies with
time, and where some time-varying confounders are affected by previous exposure [3, 4]. In
this manuscript, we focus on the impact patient registration in an integrated primary care
delivery model (Family Medicine Groups or FMGs) on the utilization of services in the
province of Québec, Canada. Utilization will be measured by two different outcomes, the
number of emergency room visits per year and the number of hospitalizations per year. In
this paper, we will attempt to identify the causal effect of the FMG model on the utilization
of health care services, and to characterize the performance of different marginal structural
GLMs in the presence of highly skewed data. This paper is organized as follows: in Section
2, we review current practices in the analysis of health care utilization data and introduce
marginal structural models. Section 3 presents an analysis of the health care utilization data,
considering patient membership in a FMG over time as the key exposure of interest. This is
followed by a simulation study designed to determine the robustness of different GLMs to
distributional model mis-specification in Section 4. We conclude in Section 5.

2. Background

2.1 Modelling health utilization data

It is not uncommon to see health care utilization data analysed using ordinary least-squares
(OLS) regression. However, this practice often violates the normality assumption of the OLS
model since the data typically do not follow a normal distribution. In particular, it may
violate the assumption of homoscedasticity since utilization data variability tends to increase
with the mean [5]. Thus alternative analysis methods are recommended. Transformations are
commonly used to make the data more symmetrically distributed, shortening the long right
tail. The log transformation is usually preferred since it is easier to interpret its coefficients
[5]. It also lessens homoscedasticity and may decrease the influence of outliers. Provided
that the sample size is large enough, the estimates will be unbiased [5]. Transformed
outcomes can then be analysed with either an OLS regression model, or a general linear
model (GLM). However, inference must then be done on the log scale, which is not always
ideal. If the inference must be done in the original scale, these transformations cannot be
used since the un-transformed estimates will then be biased toward the mean [6].

Because the data typically consist of counts, another common analysis method is to use a
Poisson GLM. The assumption of this model that the mean is equal to the variance must first
be verified, and may not always hold since the counts are typically not independent. In fact,
the Poisson procedure will often reveal over-dispersion in the data [7]. The negative
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binomial model may be preferred over the Poisson since it allows a more flexible mean-
variance assumption that can naturally incorporate over-dispersion. However, both models’
predicted number of zero outcomes often fail to reach the quantity that is actually found in
the data [7].

Alternatively, a two-part model can be used where the probability that a person has a
positive utilization of services is modelled in a first step, and the amount of services used in
a second step [8, 9]. Zero-inflated Poisson (ZIP) or the zero-inflated negative binomial
(ZINB) likelihoods are typically used [10]. They are based on a mixture probability
distribution (binomial-Poisson and binomial-negative binomial respectively). For example,
the ZIP model will first estimate the probability p to observe an excess zero count, and then
with probability (1-p), estimate a Poisson distribution with mean A.. These models are easy
to interpret and allow for a more appropriate analysis, particularly when this two-part model
intuitively fits the substantive knowledge of the outcome [10].

2.2 Causal inference in longitudinal observational studies

In investigating a typical public policy intervention such as the implementation of FMGs in
Québec, one will compare the observed outcomes between patients who received the
intervention and those who did not. Since the intervention is not assigned at random and in
fact, patients and physicians joined on a voluntary basis, selection bias will likely occur. In
order to measure the average causal effect, appropriate statistical methods must be used to
balance the data in such a way to emulate a randomized control trial and ensure that the
exchangeability criterion holds. One such method is the use of marginal structural models
(MSMs).

Let Ay denote a binary exposure during the A interval, for &=1,...,K, and ¥ an end-of-study
measured at the end of the K7 interval. Denote baseline confounding variables by L, and
denote by L4 (k=1,...,K) time-varying confounders which causally affect exposure A1 and
the outcome Y; these variables may also be affected by prior exposures. Further, there may
be unmeasured variables, U, such as an underlying health status that affect the covariates Ly
(k=0,...,K) and the outcome Y. An example of such a set-up for K=3 is given by the directed
acyclic graph (DAG) in Figure 1.

A counterfactual, or potential outcome, is the outcome that would be observed if a particular
exposure pattern were “forced” on an individual; the exposure pattern under consideration is
indicated by parentheses, so that, for example, ¥(1,1,1) indicates the outcome that would be
observed in an individual who was exposed in intervals 1, 2, and 3. Marginal structural
models are used to estimate the expected counterfactual outcome (or contrasts of these),
permitting the analyst to examine questions such as what is the expected difference in
outcome if the entire population were always exposed, versus had the population never been
exposed?

In our context, MSMs permit estimation of the population average effect of following a
particular FMG exposure history. The approach has grown in popularity, in part because it is
simple to implement: it involves fitting the observed data as a function of exposure (and
perhaps also baseline covariates) while weighting each uncensored patient by the inverse of
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the probability of receiving the treatment actually received. For example, in the absence of
censoring, each observation is weighted by the probability of having received the exposure
pattern that was observed, i.e. for K=3 by

P(A1=ay;|Lo=ly;) x P(As=ay;|A1=a1;, Lo=lp;)x
P(As=asi|Ai=a1;, Aos=a2;, Lo=ly;)
P(A1=a1;|Lo=lo;) x P(As=ag;|A1=a1;, Lo=lo;, L1=l1;)x
P(As=as3i|A1=a1;, As=az;, Lo=lo;, L1=l1;, La=ly;)

SWi=

The weighting creates a pseudopopulation where the variables we have identified as
confounders are no longer related to the exposure. In doing so, the outcome may be
modelled as a function of exposures and baseline covariates only, avoiding conditioning on
the time-varying covariates L, and thereby avoiding blocking exposure effects that are
mediated through these covariates as well as introducing collider-stratification bias through
the unmeasured variables U.

For MSMs to provide unbiased estimates of the population average exposure effects, we
must assume that there are no unmeasured confounders of exposure and outcome at each
interval, the both the exposure models and the outcome model are correctly specified, and
that positivity holds, i.e. there are no combinations of covariates for which either exposure
level is not permitted. In the presence of censoring, the weights must additionally
incorporate a model for continued observation in the study, and the assumptions must be
expanded to include that all covariates that influence the outcome and loss of follow-up have
been measured, and that the censoring mechanism model is correctly specified.

3. Identifying the impact of FMG enrolment on healthcare utilization

3.1 Context and data source

In Québec, Canada, all medically necessary services provided by a general practitioner,
family doctor, medical specialist, or in a hospital are covered by the Régie d’assurance
maladie du Québec (RAMQ) Health Insurance Plan. Thus the RAMQ database forms a rich
source of information on all health services utilization by residents, along with physician
information, and whether or not they are part of a FMG.

The Family Medicine Group model was introduced in Québec in 2002 as a way to improve
the organization of the primary healthcare system. A FMG is a group of family doctors who
work closely with clinical and administrative staff in order to provide primary care to a
group of registered patients.[11] The Population Health and Health Services Group at the
Montreal Public Health Department and Agency for Health and Social Services has
developed a database encompassing all vulnerable individuals in Québec who were
identified as such in the RAMQ database between November 15t 2002 and January 315,
2005. A vulnerable patient is defined as a person who is either 70 years old or above, or has
at least one of the following conditions: psychosis, chronic obstructive pulmonary disease
(COPD), moderate to severe asthma, pneumonia, cardiovascular disease, cancer associated
with past, present or future chemotherapy or radiotherapy treatments, cancer in a terminal
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phase, diabetes, alcohol or hard drug withdrawal, drug addiction treated with methadone,
HIV/AIDS, or a degenerative disease of the nervous system [12]. The database is comprised
of 797,826 patients who were enrolled as vulnerable by a physician between November 15t
2002 and January 315t, 2005. It contains two years before their enrolment (time zero), and
three years subsequent. Roughly 15% of the patients (122,724) were enrolled at time zero by
a physician in a FMG, and the remaining 675,102 were not. Only the FMGs that had been
open for four months and had at least 300 vulnerable patients registered by January 2005
were included [13]. This amounted to 79 practices in total (8 FMGs were excluded).

3.2 Selection of the analytic sub-sample

Neither the patients nor the physicians in the dataset were randomized to a FMG or a hon-
FMG practice. There are undoubtedly underlying characteristics that made them more likely
to join one or the other initially. Using pre-enrolment data, Coyle (2011) [14] showed that
living outside a university/urban region, being in the highest material deprivation group,
having diabetes, having visited the ER for ambulatory care sensitive conditions or being
hospitalized for any cause were all risk factors that increased the chance of a patient joining
a FMG, while having hypertension, more outpatient clinic visits, and having a usual provider
of care decreased it. Propensity scores [15] were proposed in order to address this selection
bias and to achieve balance on observable characteristics at baseline amongst those patients
enrolled in a FMG at time zero and those who were not.

Coyle and colleagues (2011) [14] generated propensity scores for this dataset from the
patient data at the year prior to enrolment (year -1); a thorough literature review was
conducted and used in conjunction with a stepwise procedure to determine which covariates
were predictors of joining the FMG cohort. These covariates included demographics (age,
socio-demographic status, geography, gender), chronic illness and burden, health services
utilization, ambulatory care use, and whether the patient had a usual provider of care. The
final model selected by Coyle (2011) [14] was used to generate the propensity scores for the
dataset used in the present analysis. We employed 1:1 matching without replacement using
the psmatch2 Stata module [16] to obtain a sub-sample of the dataset in which patients who
were, and were not, enrolled in a FMG were comparable at baseline (year 0). In doing so, we
can then compare our longitudinal results to the cross-sectional results of Coyle and
colleagues [14]. Furthermore, by employing matching at baseline, we take advantage of
maximal bias reduction, as it has been established (see, for example, [17, 18]) that
propensity score matching is better able to reduce systematic differences in baseline
characteristics between the exposed and unexposed members of the sample than
stratification. Of course, matching also results in a smaller analytic sample, however we
retain 231,938 for our analysis and hence are reassured that power will not be adversely
affected.

Table 1 describes the dataset before and after the propensity score match. Standardized
differences are used to compare the different covariates (dividing the difference in means by
the pooled standard deviation). The standardized difference is a measure that is not
influenced by sample size and is appropriate in this instance since the unmatched data has a
number of controls that is far larger than the number of exposed [19]. Most covariates are
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well balanced in the final dataset which is made up of 231,938 vulnerable patients, half of
whom joined a FMG at time zero. The largest standardized difference in the unmatched
population is —0.3307 for the university/urban region, and the largest one in the matched
population is 0.069 for the number of emergency room visits. D’ Agostino (1998) [20]
suggests that standardized differences of less than 0.10 are sufficiently balanced and this is
the case for all our covariates. Thus remaining differences are unlikely to be clinically
relevant.

3.3 Key variables

3.3.1 Exposure measure—The propensity score matching was done using the FMG
variable defined when the patients were enrolled as vulnerable by a physician at time zero.
However, patients did not necessarily remain in a FMG for the remaining three years, or
even for the remaining days of the first year. Thus a second exposure variable was generated
for the purpose of the subsequent analyses. A patient was defined to be in the FMG group
during that year if affiliated in a FMG for at least 75% of that year; that is, A;=1 for an
individual provided if he was enrolled in a FMG for at least 75% of the first year of follow-
up, and similarly for Ayand Az Otherwise, the patient was in the non-FMG group. (The
distribution of patients according to FMG affiliation over the three years of follow-up does
not vary much when the FMG definition cut-off ranges from 75% to 100%.)

Over time, some patients moved from one group to the other, and the resulting net
movement is described in Figure 2. For example, at the start of Year 2, a total of 6,130
individuals had left their FMG since time zero and moved to the non-FMG group, and 1,189
individuals joined a FMG and moved to the FMG group, resulting in a net movement of
4,941 in the non-FMG group. Because of the administrative nature of the database, patients
could only be lost to follow up for two reasons: death or moving into a long term care
facility.

Table 2 describes the movement of uncensored individual patients in and out of a FMG over
the three years of the cohort follow-up. While 95% of patients either remain in the FMG or
outside any FMG for the entire duration as per our definition of FMG, the remaining 5%
joined an FMG later on, left a FMG, or moved in and out of a FMG sporadically. Most of
these “movers” also move between geographic regions during the three years.

3.3.2 Outcome measures—The utilization of health services, Y; is measured by the
number of ER visits and the number of hospitalizations in Year 3. These variables are
characterized by highly skewed distributions. Most individuals do not visit the ER (67%)
and are not hospitalized (86%) during the year. However, a few individuals, arguably much
sicker, make use of the health services quite disproportionally (maximum of 39 visits to the
ER, and of 21 hospitalizations).

3.3.3 Confounding variables—Available confounding variables include demographic
variables (location, material deprivation [21], gender, age), health resources utilization (past
number of ER visits, past number of hospitalizations) and chronic illnesses. The latter are a
surrogate for the patients’ general health, as we cannot measure level of exercise, smoking
status, and diet directly.
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3.4 Analysis via marginal structural models

With respect to the DAG in Figure 1, let Ay be the exposure of interest (FMG membership)
at the start of the 4" year in the database, & € {1,2,3}. Let Y be the outcome, which is a
count representing health care utilization in the final year (k= 3). Furthermore, let L denote
a vector of baseline confounders that may influence the outcome as well as the exposure A;
(specifically, age, gender, geographical location, diabetes, COPD, hypertension, material
deprivation index, number of ER visits and hospitalizations); baseline confounders were
measured in year -1, that is, before any patient joined a FMG. The exposure in the second
and third years (A, and A3) may also be associated with the time-dependent confounders
geographical location, diabetes, COPD, hypertension, material deprivation index, number of
ER visits and number of ER hospitalizations measured at the end of Years 1 and 2 (denoted
L1 and Lg).

Identify the histories of exposure and of confounders as A = (A, Ay, A3) and L = (Lo, Ly,
Ly, L3) respectively. Let @ = (a4, ap, ag) denote exposure histories for a given patient. Thus
there are 23 = 8 different possible values of a. For a given patient with a history a, we will
observe the outcome Y. The probability of observing an outcome of y emergency room
visits, given that our entire population experienced the same history a of FMG is denoted

AYa= 7).

3.4.1 MSM weight models—Stabilized weights were used; these are commonly used to
reduce the variability of the MSM estimators [3]. The denominator of the weights for the
FMG data was obtained by multiplying the predicted probabilities of a patient belonging to a
FMG (the treatment history weight) by that of being uncensored in the database (the
censoring history weight), where these models are conditional on the history of covariates
and past history. The numerator of the stabilized weights is constructed by multiplying
treatment and censoring predicted probabilities that are conditional only on baseline
covariates and FMG exposure history. Letting Cybe an indicator of censoring by visit £ the
weights are computed as a product of treatment and censoring weights (sw;and swj,
respectively) where

P(A1=a1;|Lo=lg;, C1=0) x P(As=a9;|A1=a1;, Lo=lo;, C1=0, C2=0)x
P(As=azi|A1=a1;, As=ay;, Lo=lo;, C1=0, C2=0, C3=0)

sw;=
" P(Ay=ay|Lo=loi, C1=0) x P(As=as|A1=ay;, Lo=lo;, L1=ly;, C1=0, Cy=0)x

P(As=az;i|A1=a1;, As=ag;, Lo=lo;, L1=li;, La=ly;, C1=0, Cp=0, C3=0)

and

P(C1=0|Lo=ly;) x P(C2=0|A1=ay;, Lo=lo;, C1=0)x
P(ng()|A1:a1i7 A2:a2i, L():l()i, C’li()7 02:0)
P(Clzo‘LOZlOi,) X P(CQZO‘Alz(lu, L():l()i, lelh;, 01:O)><
P(C3=0|Ay=ay;, As=ay;, Lo=lo;, Li=l1;, La=lo;, C1=0, C2=0)

SW;*=
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The weights were calculated via the above equation using the confounders described in
Section 3.3.3, using logistic regression to estimate each of the probabilities required for the
calculations. The resulting summaries (mean, maximum) for the estimated treatment,
censoring and final weights respectively are (1.00, 3.01), (1.37, 262.67) and (1.38, 260.27).
The final weights are highly right skewed with 75% of patients having a weight less than
1.52. Due to the presence of large weights, a sensitivity analyses was also conducted in
which weights are truncated at the 95t percentile of the estimated weights distribution.

3.4.2 Outcome models—Three models were considered for the analysis of health
services utilization by patients in year 3. First, a Poisson likelihood was used since the
outcomes of interest are counts (Model 1). However, the overall mean and variance of the
outcomes are not very close (mean (variance) ER visits: 0.65 (1.88); hospitalizations: 0.21
(0.37)), suggesting that the Poisson likelihood may not be the best modelling choice,
particularly for ER visits; FMG pattern specific means are also typically exceeded by their
variances. The second likelihood considered was a negative binomial (Model 2), a popular
parametric choice for over-dispersion. As well as exhibiting over-dispersion, the outcome
data contains an excess number of zeros. The final likelihood considered is a zero-inflated
Poisson (Model 3), which will enable explicit modelling of the excess zeros. We use a
standard ZIP model that is a mixture of a point-mass at 0 and a Poisson distribution, with
both the mixing probability and the Poisson mean modelled using the same covariates
(described below) used in the Poisson and negative binomial outcome models.

Both outcomes were first modelled as a function of FMG history in the three years observed,
and second, adjusting for some baseline covariates measured before the patients joined the
cohort. The baseline covariates are age, gender, location, diabetes, hypertension (HTN),
chronic obstructive pulmonary disease (COPD), socio-economic status, number of ER visits
and number of hospitalizations. All models also adjusted for the propensity scores as a
covariate. While matching controls for most of the variation in the baseline covariates, some
residual imbalance may remain. By conditioning on the propensity score, we achieve
conditional independence of individuals in the matched pairs and provide additional control
over potential confounding at “low price” of estimating one additional parameter as the
matching did not provide exact balance.

Robust standard errors were used to adjust for heterogeneity in the model and estimation of
the weights used for the MSM. Since the outcome is not observed in the dataset unless the
patient survived and did not transfer to long term care for all three years, the outcome
models are restricted to uncensored patients only, though all subjects contribute data as
available to the treatment and censoring models.

3.5 Health care utlization results

Tables 3 and 4 report the results of three marginal structural models for the number of
emergency room visits and the number of hospitalizations in the final year, respectively. The
results are presented in terms of incidence risk ratios relative to & = (0,0,0), i.e. the case
where a person never joins a FMG. Evidence of over-dispersion indicate that the Poisson
model in Table 3 (Model 1) is not a good fit for the number of emergency room visits
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(dispersion/degrees of freedom = 2.43). The negative binomial model (Model 2) estimates a
statistically significant dispersion parameter (95% CI) of 2.34 (2.27, 2.41), suggesting that it
provides a better fit to the data than the first model, while the zero-inflated Poisson model
(Model 3) does not provide a good fit to the data. The negative binomial model yielded the
smallest Quasi-Akaike Information Criteria (QIC), however this may not be a reliable
measure with which to compare model fits when contrasting across different likelihoods or
non-nested models. VVuong’s likelihood ratio test for non-nested likelihoods [22], however its
performance for weighted likelihoods in the semi-parametric setting of marginal structural
models has not been investigated.

One the other hand, Table 4 shows that the number of hospitalizations exhibits less
overdispersion and is well-fitted using the Poisson model (Model 1) (dispersion/degrees of
freedom = 1.06). The negative binomial model (Model 2) is also a good fit and estimates a
statistically significant dispersion parameter (95% CI) of 2.89 (2.74, 3.04). The negative
binomial QAIC is smaller than the Poisson model’s (1.389 and 1.478 respectively), and it
estimates a number of zero counts that is much closer to the actual one (178,243 vs. 171,823
respectively, actual is 177,762).

We conclude from Tables 3 and 4 that the zero-inflated Poisson models (Model 3) are not a
good fit for either outcome, and that the Poisson model (Model 1) is not a good fit for the
number of ER visits since it does not model the over-dispersion in the data. Although Model
1 performs well for the number of hospitalizations, it does not when modelling the number
of zero counts. Thus the negative binomial (Model 2) is the best fit for both investigated
outcomes. According to Model 2, the rate ratio (RR) of emergency room visits and of
hospitalizations for a vulnerable patient in the matched dataset who is in a FMG for all three
years compared to none (95% ClI) is not significant at 0.984 (0.965, 1.013) and 1.024 (0.988,
1.062) respectively. However, patients with unstable FMG patterns all have an RR that is
greater than one for both outcomes, and it is highly significant when the patients are not
joining the FMG until the second or third year (@ = (0,0,1) or (0,1,1)). While this is
consistent with the descriptive analysis of this small subset of patients, the reason for their
high service utilization is not clear. It is plausible that the larger RRs associated with these
patterns of FMG membership are a consequence of the smaller numbers of individuals on
which the estimates are based.

Table 5 compares four different negative binomial models of the number of emergency room
visits to compare different ways in which the analysis might be done. All models adjusted
for the propensity score, and all showed a significant likelihood ratio test statistic (p<0.001),
suggesting that they are better fits than a model with just the intercept (a null model). A
crude model is first estimated (Model 2a), adjusting only for baseline covariates. Model 2b
adjusted for baseline covariates and for all time-varying covariates. We expect these two
models to be confounded since the first does not account for the time-varying covariates that
confound the relationship between the FMG status at the mid-time points and the outcome,
and the second adjusts for these variables that are on the causal pathway between the
exposure and the outcome. Model 2c is a reproduction of the negative binomial model
weighed by MSMw;described in Table 3. The last model (Model 2d) adjusts for baseline
covariates and is weighted by MSMw;, adjusting for time-varying covariates. As noted in
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Section 2.2, Models 2c and 2d are expected to provide unbiased estimates, Model 2d being
most accurate and producing tighter confidence intervals.

All four models show that belonging to a FMG for all three years reduces the expected
number of visits to the ER for patients in the matched dataset, although the estimated
coefficient in Model 2c is not significant and we expect the estimates from 2a and 2b to be
biased. Since the MSM adjusting for baseline covariates (Model 2d) may be a better
specified model (see Section 3.4.2), our best estimate of the RR of the number of ER visits
(95% CI) in this vulnerable population is 0.933 (0.909, 0.958).

For hospitalizations, all four models show no significant effect of belonging to a FMG for all
three years compared to none for patients in the matched dataset, with most RR point
estimates very close to 1 (results not shown).

3.6 Discussion of findings

One of the key assumptions required in order for marginal structural models to produce
unbiased estimates of the causal relationship between exposure and outcome is that there are
no unobserved confounders, an assumption that is not testable with the observed data but
which may be plausible given good substantive knowledge. In the analysis of the FMG data,
it would be desirable to have more detailed information on individual-level socio-economic
status and health status, and on the FMG’s modes of practice (CLSC, family medicine unit
(Unité de medicine familiale or UMF), private practice, etc.), none of which are available in
the dataset.

Some individuals were missing geographic location of residence (1.9%) and some were
missing the material deprivation index (1.7%). Although this represents a very small
proportion of the population of interest, it appears that the information was not missing
completely at random. Overall, 47% of the patients who were dropped from the analysis
because of missing values were in the FMG group in the final year. The patients dropping
out who were in a FMG in the final year are characterized in that year by a slightly younger
age, fewer ER visits, and less diagnoses of hypertension or diabetes compared to patients in
a FMG in the final year who did not drop out. In the patients who were not in a FMG in the
final year, those who were lost to follow-up were characterized by a geographic location that
is closer to university centers, younger age, slightly more advantaged, more likely to be
female and fewer diagnoses of hypertension, diabetes and COPD.

A sensitivity analysis assessed the impact of the patients with the 95% highest marginal
structural weights in the dataset. The weights of those 6,943 individuals, 49% of which were
in a FMG in the final year, were truncated at the 95" percentile value of 135. The results did
not vary greatly from the ones reported previously. The revised baseline adjusted negative
binomial MSM (Model 2d) for the number of ER visits estimated an RR (95% CI) of 1.010
(0.939, 1.087) compared to 0.933 (0.909, 0.958) previously reported, no longer showing a
significant effect of being in a FMG all three years (but showing very close confidence
intervals). Similarly, the same model estimating the number of hospitalizations reported an
RR (95% CI) of 1.126 (0.994, 1.276) compared to 0.991 (0.957, 1.026). Thus the individuals
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with the highest weights seem to slightly pull the estimate away from the null, but they do
not seem to skew the reported estimates.

4. Simulation study

In order to assess the ability of the marginal structural model to identify a possible causal
relationship between FMG and the health services utilization, synthetic datasets were
generated and analysed using different models. First, data with time-varying confounding
and mediation over three time intervals were generated using Poisson, log-normal and
mixture of a Poisson distribution and a point-mass at 0. The synthetic datasets were
generated by approximately copying the relationship between the time-varying number of
emergency visits and the FMG exposure in the real dataset. Details of the simulation settings
and Stata code used to generate the data are provided in Appendices | and I1. Additional
simulation results based on smaller sample sizes are provided in Appendix I11.

We considered three data-generating scenarios, and for each, the data were analysed using
the same models as are considered for the FMG data analysis: regression using a Poisson
model, a negative binomial model and a zero-inflated Poisson model. Each regression
adjusted for the time-varying exposure variables Ay, A, and Asz. Model 1 also adjusted for
the baseline covariate L4, Model 2 adjusted for L4, L, and L3, and inverse weights were
added to (marginal) Models 3 and 4, the latter also adjusting for L4, consistent with models
2a-2d in Section 3.5

Table 6 describes the results of the Monte Carlo simulations over 500 runs, each time
generating a dataset of 100,000 observations. True parameter values were obtained by
randomly assigning exposure in a dataset of 1,000,000 observations run 50 times, as
described by Xiao and colleagues [23]. Over all simulations, Model 1 estimates the effect of
A with little bias since it adjusts only for baseline confounder L1 and does not adjust for
covariates Ly and L3 that would be on this causal pathway. However, it poorly estimates A,
since it fails to account for the effect of L, and L3. On the other hand, Model 2 adjusts for all
confounders and does not yield unbiased estimates of the effects of either A, or A, because
the effects of these variables which are mediated through the time-dependent covariates are
blocked by the conditioning. Models 3 and 4 consistently have smaller percent biases in
their estimates of A and Ay, Model 3 having an average percent bias reduction of 94%
compared to Model 2.

Regardless of the model used, the simulation results clearly highlight the fact that using a
likelihood that properly fits the dataset is of great importance in producing unbiased results.
Although MSMs produce estimates that are unbiased, they are not useful when attempting to
model data from a binomial-Poisson mixture distribution with a Poisson or a negative
binomial likelihood. For example, Model 4 in Table 6 shows a percent bias on the estimate
of Ay of 13.8% and 21.2% when using a Poisson and a negative binomial respectively when
the data is generated from a binomial-Poisson mixture. However, when using a zero-inflated
Poisson likelihood which models the excess zeros using a binomial distribution, only 0.2%
bias remains.
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Over all three data-generating models, the adjusted ZIP model performs quite well, though
rMSE and coverage are often similar across the models considered. The percent bias, MSE
and coverage of the ZIP are not uniformly best, but are typically competitive with the best
model. However, we note that these results are limited to a scenario designed to mimic the
effect sizes observed in the FMG analysis. We then attempted to implement the simulations
in smaller samples and found that we simply had too few events with the parameter settings
used; we therefore increased the strength of the relationships throughout the simulations (see
Appendices I-11), and conducted further simulations in sample of size 100 and 500. In these
much smaller samples, the ZIP model tended to perform less well, and the negative binomial
model generally performed well (results shown in Appendix I11). Thus we urge caution and
recommend careful assessment of model fit in any application: as we saw in the FMG data,
the negative binomial model appeared to fit the data significantly better than the Poisson and
ZIP models, though coefficient estimates were quite similar to those yielded by the Poisson
model.

5. Discussion and conclusion

In this paper, we sought to estimate the causal effect of vulnerable patients being registered
to a Family Medicine Group in Québec for three consecutive years on their utilization of
health services. To model time-varying confounders and exposure over the three years of
observed data, marginal structural models were used, estimated via IPTW. Weighting the
regression models allowed the removal of any measured confounding bias based on
observed factors at each time period (essentially removing all arrows in the DAG pointing to
the exposure). Since the outcomes of interest were counts, generalized linear models with
different likelihoods were assessed for best fit. Synthetic datasets were also generated and
analysed using the same methods in order to assess the overall performance of these
marginal structural models.

Our results suggest that registration to a FMG for all three years caused a slight reduction in
the number of emergency room visits, and no significant change in the number of
hospitalizations in the final year. These findings are consistent with Strumpf et al. (2011)
[24], who analyzed the same dataset using propensity score weighting and FMG status at
time zero to investigate patients’ emergency department and hospital utilization. Although
they did not adjust for time-varying FMG status and confounding, their results are very
similar to ours, finding very small differences in utilization of FMG patients compared to
non-FMG patients. Our results rely on the assumption that all confounding variables have
been measured. Although physician-level variables were not explicitly included in the
exposure models, many of the physician characteristics that are related to FMG status are
also patient-level characteristics, e.g. region in which the practice is located is the same as
the region in which the patient is treated. Thus, while it may not be exactly true that we have
captured all confounding variables, we believe that the assumptions holds at least
approximately, as major predictors of health care services utilization and FMG status such as
age, diabetes, hypertension, chronic obstructive pulmonary disease, socio-economic status,
number of ER visits and hospitalizations prior to the study period were all captured in our
data.
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The negative binomial likelihood gave the best fit for both outcomes in the real dataset.
Simulations displayed the importance of correctly specifying the likelihood when modelling
these types of skewed zero-inflated outcome data. Although the simulations found that the
zero-inflated Poisson likelihood performed the best overall in simulations designed to mimic
the FMG data, models with this likelihood did not produce the best fits when modelling the
real data. In this dataset, the negative binomial likelihood was able to best capture the
variations in the health services utilization. A variety of plausible likelihoods should be
compared when modelling these types of outcomes.

The simulations also highlighted the need for larger samples, as models that perform well in
larger samples may not fare as well in settings where information is more limited. Even
when sample sizes are large, if outcomes are rare, there may be exposure patterns whose
effects estimates are unstable. But note that there were few patients in those unstable FMG
groups. For example, we found that patients with some unstable FMG patterns such as
belonging only during the second year of the study (the 0,1,0 pattern) had a significantly
higher rate of ER visits and hospitalizations than individuals who never belonged to an FMG
under most of the models considered, however this was the smallest exposure pattern group,
containing fewer than 65 of the more than 206,000 patients in the total sample.

Care must be taken when analysing the causal effect of the introduction of a policy such as
FMGs on health care utilization outcomes in an observational study. Propensity scores and
marginal structural models are statistical tools that should be used in order to properly adjust
for selection bias based on observed factors, time-varying covariates and to model the time-
varying exposure. Proper specification of the likelihood function modelling the zero-
inflated, right-skewed utilization count data is also essential in order to produce unbiased
estimates of the impact of the introduction of the policy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure2.
LTC is the number of patients who transitioned to a long-term care facility. “Net movement”

represents the net number of individuals incoming from the other cohort.
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