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Abstract

Evaluating the impacts of clinical or policy interventions on health care utilization requires 

addressing methodological challenges for causal inference while also analyzing highly skewed 

data. We examine the impact of registering with a Family Medicine Group (FMG), an integrated 

primary care model in Quebec, on hospitalization and emergency department visits using 

propensity scores to adjust for baseline characteristics and marginal structural models to account 

for time-varying exposure. We also evaluate the performance of different marginal structural 

GLMs in the presence of highly skewed data and conduct a simulation study to determine the 

robustness of different GLMs to distributional model mis-specification. Although the simulations 

found that the zero-inflated Poisson likelihood performed the best overall, the negative binomial 

likelihood gave the best fit for both outcomes in the real dataset. Our results suggest that 

registration to a FMG for all three years caused a small reduction in the number of emergency 

room visits, and no significant change in the number of hospitalizations in the final year.
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1. Introduction

Health care utilization data is useful to characterize the health care system and to investigate 

the answers to a wide array of policy questions. It is defined as the number of services used 

by a patient over a period of time, such as the number of hospitalizations or the number of 

visits to a physician over a period of one year for example. The data are usually 

characterized by a highly right-skewed distribution with an inflated number of zeros, 

reflecting the fact that a majority of people are in relatively good health, and a minority of 

them are very sick.

Longitudinal datasets where the exposure may vary over time pose further obstacles in 

estimating the average causal effect of an intervention or policy. It is not unusual in such 
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observational datasets to encounter situations where covariates are simultaneously 

confounders and intermediate steps in the pathway between the exposure and the outcome. 

Typical data analysis methods will produce biased estimates in such cases [1]. The 

International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Good 

Research Practices for Retrospective Database Analysis Task Force Report suggests using 

alternative methods such as marginal structural models (MSMs) to investigate such datasets 

[2].

Marginal structural models typically produce estimates using inverse probability of 

treatment weighting (IPTW). MSMs have been shown to successfully estimate the total 

causal effect of exposure on outcome in observational studies where the exposure varies with 

time, and where some time-varying confounders are affected by previous exposure [3, 4]. In 

this manuscript, we focus on the impact patient registration in an integrated primary care 

delivery model (Family Medicine Groups or FMGs) on the utilization of services in the 

province of Québec, Canada. Utilization will be measured by two different outcomes, the 

number of emergency room visits per year and the number of hospitalizations per year. In 

this paper, we will attempt to identify the causal effect of the FMG model on the utilization 

of health care services, and to characterize the performance of different marginal structural 

GLMs in the presence of highly skewed data. This paper is organized as follows: in Section 

2, we review current practices in the analysis of health care utilization data and introduce 

marginal structural models. Section 3 presents an analysis of the health care utilization data, 

considering patient membership in a FMG over time as the key exposure of interest. This is 

followed by a simulation study designed to determine the robustness of different GLMs to 

distributional model mis-specification in Section 4. We conclude in Section 5.

2. Background

2.1 Modelling health utilization data

It is not uncommon to see health care utilization data analysed using ordinary least-squares 

(OLS) regression. However, this practice often violates the normality assumption of the OLS 

model since the data typically do not follow a normal distribution. In particular, it may 

violate the assumption of homoscedasticity since utilization data variability tends to increase 

with the mean [5]. Thus alternative analysis methods are recommended. Transformations are 

commonly used to make the data more symmetrically distributed, shortening the long right 

tail. The log transformation is usually preferred since it is easier to interpret its coefficients 

[5]. It also lessens homoscedasticity and may decrease the influence of outliers. Provided 

that the sample size is large enough, the estimates will be unbiased [5]. Transformed 

outcomes can then be analysed with either an OLS regression model, or a general linear 

model (GLM). However, inference must then be done on the log scale, which is not always 

ideal. If the inference must be done in the original scale, these transformations cannot be 

used since the un-transformed estimates will then be biased toward the mean [6].

Because the data typically consist of counts, another common analysis method is to use a 

Poisson GLM. The assumption of this model that the mean is equal to the variance must first 

be verified, and may not always hold since the counts are typically not independent. In fact, 

the Poisson procedure will often reveal over-dispersion in the data [7]. The negative 
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binomial model may be preferred over the Poisson since it allows a more flexible mean-

variance assumption that can naturally incorporate over-dispersion. However, both models’ 

predicted number of zero outcomes often fail to reach the quantity that is actually found in 

the data [7].

Alternatively, a two-part model can be used where the probability that a person has a 

positive utilization of services is modelled in a first step, and the amount of services used in 

a second step [8, 9]. Zero-inflated Poisson (ZIP) or the zero-inflated negative binomial 

(ZINB) likelihoods are typically used [10]. They are based on a mixture probability 

distribution (binomial-Poisson and binomial-negative binomial respectively). For example, 

the ZIP model will first estimate the probability p to observe an excess zero count, and then 

with probability (1-p), estimate a Poisson distribution with mean λ. These models are easy 

to interpret and allow for a more appropriate analysis, particularly when this two-part model 

intuitively fits the substantive knowledge of the outcome [10].

2.2 Causal inference in longitudinal observational studies

In investigating a typical public policy intervention such as the implementation of FMGs in 

Québec, one will compare the observed outcomes between patients who received the 

intervention and those who did not. Since the intervention is not assigned at random and in 

fact, patients and physicians joined on a voluntary basis, selection bias will likely occur. In 

order to measure the average causal effect, appropriate statistical methods must be used to 

balance the data in such a way to emulate a randomized control trial and ensure that the 

exchangeability criterion holds. One such method is the use of marginal structural models 

(MSMs).

Let Ak denote a binary exposure during the kth interval, for k=1,…,K, and Y an end-of-study 

measured at the end of the Kth interval. Denote baseline confounding variables by L0, and 

denote by Lk (k=1,…,K) time-varying confounders which causally affect exposure Ak+1 and 

the outcome Y; these variables may also be affected by prior exposures. Further, there may 

be unmeasured variables, U, such as an underlying health status that affect the covariates Lk 

(k=0,…,K) and the outcome Y. An example of such a set-up for K=3 is given by the directed 

acyclic graph (DAG) in Figure 1.

A counterfactual, or potential outcome, is the outcome that would be observed if a particular 

exposure pattern were “forced” on an individual; the exposure pattern under consideration is 

indicated by parentheses, so that, for example, Y(1,1,1) indicates the outcome that would be 

observed in an individual who was exposed in intervals 1, 2, and 3. Marginal structural 

models are used to estimate the expected counterfactual outcome (or contrasts of these), 

permitting the analyst to examine questions such as what is the expected difference in 

outcome if the entire population were always exposed, versus had the population never been 

exposed?

In our context, MSMs permit estimation of the population average effect of following a 

particular FMG exposure history. The approach has grown in popularity, in part because it is 

simple to implement: it involves fitting the observed data as a function of exposure (and 

perhaps also baseline covariates) while weighting each uncensored patient by the inverse of 
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the probability of receiving the treatment actually received. For example, in the absence of 

censoring, each observation is weighted by the probability of having received the exposure 

pattern that was observed, i.e. for K=3 by

The weighting creates a pseudopopulation where the variables we have identified as 

confounders are no longer related to the exposure. In doing so, the outcome may be 

modelled as a function of exposures and baseline covariates only, avoiding conditioning on 

the time-varying covariates Lk and thereby avoiding blocking exposure effects that are 

mediated through these covariates as well as introducing collider-stratification bias through 

the unmeasured variables U.

For MSMs to provide unbiased estimates of the population average exposure effects, we 

must assume that there are no unmeasured confounders of exposure and outcome at each 

interval, the both the exposure models and the outcome model are correctly specified, and 

that positivity holds, i.e. there are no combinations of covariates for which either exposure 

level is not permitted. In the presence of censoring, the weights must additionally 

incorporate a model for continued observation in the study, and the assumptions must be 

expanded to include that all covariates that influence the outcome and loss of follow-up have 

been measured, and that the censoring mechanism model is correctly specified.

3. Identifying the impact of FMG enrolment on healthcare utilization

3.1 Context and data source

In Québec, Canada, all medically necessary services provided by a general practitioner, 

family doctor, medical specialist, or in a hospital are covered by the Régie d’assurance 

maladie du Québec (RAMQ) Health Insurance Plan. Thus the RAMQ database forms a rich 

source of information on all health services utilization by residents, along with physician 

information, and whether or not they are part of a FMG.

The Family Medicine Group model was introduced in Québec in 2002 as a way to improve 

the organization of the primary healthcare system. A FMG is a group of family doctors who 

work closely with clinical and administrative staff in order to provide primary care to a 

group of registered patients.[11] The Population Health and Health Services Group at the 

Montreal Public Health Department and Agency for Health and Social Services has 

developed a database encompassing all vulnerable individuals in Québec who were 

identified as such in the RAMQ database between November 1st 2002 and January 31st, 

2005. A vulnerable patient is defined as a person who is either 70 years old or above, or has 

at least one of the following conditions: psychosis, chronic obstructive pulmonary disease 

(COPD), moderate to severe asthma, pneumonia, cardiovascular disease, cancer associated 

with past, present or future chemotherapy or radiotherapy treatments, cancer in a terminal 
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phase, diabetes, alcohol or hard drug withdrawal, drug addiction treated with methadone, 

HIV/AIDS, or a degenerative disease of the nervous system [12]. The database is comprised 

of 797,826 patients who were enrolled as vulnerable by a physician between November 1st 

2002 and January 31st, 2005. It contains two years before their enrolment (time zero), and 

three years subsequent. Roughly 15% of the patients (122,724) were enrolled at time zero by 

a physician in a FMG, and the remaining 675,102 were not. Only the FMGs that had been 

open for four months and had at least 300 vulnerable patients registered by January 2005 

were included [13]. This amounted to 79 practices in total (8 FMGs were excluded).

3.2 Selection of the analytic sub-sample

Neither the patients nor the physicians in the dataset were randomized to a FMG or a non-

FMG practice. There are undoubtedly underlying characteristics that made them more likely 

to join one or the other initially. Using pre-enrolment data, Coyle (2011) [14] showed that 

living outside a university/urban region, being in the highest material deprivation group, 

having diabetes, having visited the ER for ambulatory care sensitive conditions or being 

hospitalized for any cause were all risk factors that increased the chance of a patient joining 

a FMG, while having hypertension, more outpatient clinic visits, and having a usual provider 

of care decreased it. Propensity scores [15] were proposed in order to address this selection 

bias and to achieve balance on observable characteristics at baseline amongst those patients 

enrolled in a FMG at time zero and those who were not.

Coyle and colleagues (2011) [14] generated propensity scores for this dataset from the 

patient data at the year prior to enrolment (year -1); a thorough literature review was 

conducted and used in conjunction with a stepwise procedure to determine which covariates 

were predictors of joining the FMG cohort. These covariates included demographics (age, 

socio-demographic status, geography, gender), chronic illness and burden, health services 

utilization, ambulatory care use, and whether the patient had a usual provider of care. The 

final model selected by Coyle (2011) [14] was used to generate the propensity scores for the 

dataset used in the present analysis. We employed 1:1 matching without replacement using 

the psmatch2 Stata module [16] to obtain a sub-sample of the dataset in which patients who 

were, and were not, enrolled in a FMG were comparable at baseline (year 0). In doing so, we 

can then compare our longitudinal results to the cross-sectional results of Coyle and 

colleagues [14]. Furthermore, by employing matching at baseline, we take advantage of 

maximal bias reduction, as it has been established (see, for example, [17, 18]) that 

propensity score matching is better able to reduce systematic differences in baseline 

characteristics between the exposed and unexposed members of the sample than 

stratification. Of course, matching also results in a smaller analytic sample, however we 

retain 231,938 for our analysis and hence are reassured that power will not be adversely 

affected.

Table 1 describes the dataset before and after the propensity score match. Standardized 

differences are used to compare the different covariates (dividing the difference in means by 

the pooled standard deviation). The standardized difference is a measure that is not 

influenced by sample size and is appropriate in this instance since the unmatched data has a 

number of controls that is far larger than the number of exposed [19]. Most covariates are 
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well balanced in the final dataset which is made up of 231,938 vulnerable patients, half of 

whom joined a FMG at time zero. The largest standardized difference in the unmatched 

population is −0.3307 for the university/urban region, and the largest one in the matched 

population is 0.069 for the number of emergency room visits. D’Agostino (1998) [20] 

suggests that standardized differences of less than 0.10 are sufficiently balanced and this is 

the case for all our covariates. Thus remaining differences are unlikely to be clinically 

relevant.

3.3 Key variables

3.3.1 Exposure measure—The propensity score matching was done using the FMG 

variable defined when the patients were enrolled as vulnerable by a physician at time zero. 

However, patients did not necessarily remain in a FMG for the remaining three years, or 

even for the remaining days of the first year. Thus a second exposure variable was generated 

for the purpose of the subsequent analyses. A patient was defined to be in the FMG group 

during that year if affiliated in a FMG for at least 75% of that year; that is, A1=1 for an 

individual provided if he was enrolled in a FMG for at least 75% of the first year of follow-

up, and similarly for A2 and A3. Otherwise, the patient was in the non-FMG group. (The 

distribution of patients according to FMG affiliation over the three years of follow-up does 

not vary much when the FMG definition cut-off ranges from 75% to 100%.)

Over time, some patients moved from one group to the other, and the resulting net 

movement is described in Figure 2. For example, at the start of Year 2, a total of 6,130 

individuals had left their FMG since time zero and moved to the non-FMG group, and 1,189 

individuals joined a FMG and moved to the FMG group, resulting in a net movement of 

4,941 in the non-FMG group. Because of the administrative nature of the database, patients 

could only be lost to follow up for two reasons: death or moving into a long term care 

facility.

Table 2 describes the movement of uncensored individual patients in and out of a FMG over 

the three years of the cohort follow-up. While 95% of patients either remain in the FMG or 

outside any FMG for the entire duration as per our definition of FMG, the remaining 5% 

joined an FMG later on, left a FMG, or moved in and out of a FMG sporadically. Most of 

these “movers” also move between geographic regions during the three years.

3.3.2 Outcome measures—The utilization of health services, Y, is measured by the 

number of ER visits and the number of hospitalizations in Year 3. These variables are 

characterized by highly skewed distributions. Most individuals do not visit the ER (67%) 

and are not hospitalized (86%) during the year. However, a few individuals, arguably much 

sicker, make use of the health services quite disproportionally (maximum of 39 visits to the 

ER, and of 21 hospitalizations).

3.3.3 Confounding variables—Available confounding variables include demographic 

variables (location, material deprivation [21], gender, age), health resources utilization (past 

number of ER visits, past number of hospitalizations) and chronic illnesses. The latter are a 

surrogate for the patients’ general health, as we cannot measure level of exercise, smoking 

status, and diet directly.

Héroux et al. Page 6

Stat Med. Author manuscript; available in PMC 2017 March 07.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



3.4 Analysis via marginal structural models

With respect to the DAG in Figure 1, let Ak be the exposure of interest (FMG membership) 

at the start of the kth year in the database, k ∈ {1,2,3}. Let Y be the outcome, which is a 

count representing health care utilization in the final year (k = 3). Furthermore, let L0 denote 

a vector of baseline confounders that may influence the outcome as well as the exposure A1 

(specifically, age, gender, geographical location, diabetes, COPD, hypertension, material 

deprivation index, number of ER visits and hospitalizations); baseline confounders were 

measured in year -1, that is, before any patient joined a FMG. The exposure in the second 

and third years (A2 and A3) may also be associated with the time-dependent confounders 

geographical location, diabetes, COPD, hypertension, material deprivation index, number of 

ER visits and number of ER hospitalizations measured at the end of Years 1 and 2 (denoted 

L1 and L2).

Identify the histories of exposure and of confounders as Ā = (A1, A2, A3) and L̄ = (L0, L1, 

L2, L3) respectively. Let ᾱ = (α1, α2, α3) denote exposure histories for a given patient. Thus 

there are 23 = 8 different possible values of ᾱ. For a given patient with a history ᾱ, we will 

observe the outcome Yᾱ. The probability of observing an outcome of γ emergency room 

visits, given that our entire population experienced the same history ᾱ of FMG is denoted 

P(Yᾱ = γ).

3.4.1 MSM weight models—Stabilized weights were used; these are commonly used to 

reduce the variability of the MSM estimators [3]. The denominator of the weights for the 

FMG data was obtained by multiplying the predicted probabilities of a patient belonging to a 

FMG (the treatment history weight) by that of being uncensored in the database (the 

censoring history weight), where these models are conditional on the history of covariates 

and past history. The numerator of the stabilized weights is constructed by multiplying 

treatment and censoring predicted probabilities that are conditional only on baseline 

covariates and FMG exposure history. Letting Ct be an indicator of censoring by visit t, the 

weights are computed as a product of treatment and censoring weights (swi and swi*, 

respectively) where

and
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The weights were calculated via the above equation using the confounders described in 

Section 3.3.3, using logistic regression to estimate each of the probabilities required for the 

calculations. The resulting summaries (mean, maximum) for the estimated treatment, 

censoring and final weights respectively are (1.00, 3.01), (1.37, 262.67) and (1.38, 260.27). 

The final weights are highly right skewed with 75% of patients having a weight less than 

1.52. Due to the presence of large weights, a sensitivity analyses was also conducted in 

which weights are truncated at the 95th percentile of the estimated weights distribution.

3.4.2 Outcome models—Three models were considered for the analysis of health 

services utilization by patients in year 3. First, a Poisson likelihood was used since the 

outcomes of interest are counts (Model 1). However, the overall mean and variance of the 

outcomes are not very close (mean (variance) ER visits: 0.65 (1.88); hospitalizations: 0.21 

(0.37)), suggesting that the Poisson likelihood may not be the best modelling choice, 

particularly for ER visits; FMG pattern specific means are also typically exceeded by their 

variances. The second likelihood considered was a negative binomial (Model 2), a popular 

parametric choice for over-dispersion. As well as exhibiting over-dispersion, the outcome 

data contains an excess number of zeros. The final likelihood considered is a zero-inflated 

Poisson (Model 3), which will enable explicit modelling of the excess zeros. We use a 

standard ZIP model that is a mixture of a point-mass at 0 and a Poisson distribution, with 

both the mixing probability and the Poisson mean modelled using the same covariates 

(described below) used in the Poisson and negative binomial outcome models.

Both outcomes were first modelled as a function of FMG history in the three years observed, 

and second, adjusting for some baseline covariates measured before the patients joined the 

cohort. The baseline covariates are age, gender, location, diabetes, hypertension (HTN), 

chronic obstructive pulmonary disease (COPD), socio-economic status, number of ER visits 

and number of hospitalizations. All models also adjusted for the propensity scores as a 

covariate. While matching controls for most of the variation in the baseline covariates, some 

residual imbalance may remain. By conditioning on the propensity score, we achieve 

conditional independence of individuals in the matched pairs and provide additional control 

over potential confounding at “low price” of estimating one additional parameter as the 

matching did not provide exact balance.

Robust standard errors were used to adjust for heterogeneity in the model and estimation of 

the weights used for the MSM. Since the outcome is not observed in the dataset unless the 

patient survived and did not transfer to long term care for all three years, the outcome 

models are restricted to uncensored patients only, though all subjects contribute data as 

available to the treatment and censoring models.

3.5 Health care utlization results

Tables 3 and 4 report the results of three marginal structural models for the number of 

emergency room visits and the number of hospitalizations in the final year, respectively. The 

results are presented in terms of incidence risk ratios relative to ā = (0,0,0), i.e. the case 

where a person never joins a FMG. Evidence of over-dispersion indicate that the Poisson 

model in Table 3 (Model 1) is not a good fit for the number of emergency room visits 
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(dispersion/degrees of freedom = 2.43). The negative binomial model (Model 2) estimates a 

statistically significant dispersion parameter (95% CI) of 2.34 (2.27, 2.41), suggesting that it 

provides a better fit to the data than the first model, while the zero-inflated Poisson model 

(Model 3) does not provide a good fit to the data. The negative binomial model yielded the 

smallest Quasi-Akaike Information Criteria (QIC), however this may not be a reliable 

measure with which to compare model fits when contrasting across different likelihoods or 

non-nested models. Vuong’s likelihood ratio test for non-nested likelihoods [22], however its 

performance for weighted likelihoods in the semi-parametric setting of marginal structural 

models has not been investigated.

One the other hand, Table 4 shows that the number of hospitalizations exhibits less 

overdispersion and is well-fitted using the Poisson model (Model 1) (dispersion/degrees of 

freedom = 1.06). The negative binomial model (Model 2) is also a good fit and estimates a 

statistically significant dispersion parameter (95% CI) of 2.89 (2.74, 3.04). The negative 

binomial QAIC is smaller than the Poisson model’s (1.389 and 1.478 respectively), and it 

estimates a number of zero counts that is much closer to the actual one (178,243 vs. 171,823 

respectively, actual is 177,762).

We conclude from Tables 3 and 4 that the zero-inflated Poisson models (Model 3) are not a 

good fit for either outcome, and that the Poisson model (Model 1) is not a good fit for the 

number of ER visits since it does not model the over-dispersion in the data. Although Model 

1 performs well for the number of hospitalizations, it does not when modelling the number 

of zero counts. Thus the negative binomial (Model 2) is the best fit for both investigated 

outcomes. According to Model 2, the rate ratio (RR) of emergency room visits and of 

hospitalizations for a vulnerable patient in the matched dataset who is in a FMG for all three 

years compared to none (95% CI) is not significant at 0.984 (0.965, 1.013) and 1.024 (0.988, 

1.062) respectively. However, patients with unstable FMG patterns all have an RR that is 

greater than one for both outcomes, and it is highly significant when the patients are not 

joining the FMG until the second or third year (ᾱ = (0,0,1) or (0,1,1)). While this is 

consistent with the descriptive analysis of this small subset of patients, the reason for their 

high service utilization is not clear. It is plausible that the larger RRs associated with these 

patterns of FMG membership are a consequence of the smaller numbers of individuals on 

which the estimates are based.

Table 5 compares four different negative binomial models of the number of emergency room 

visits to compare different ways in which the analysis might be done. All models adjusted 

for the propensity score, and all showed a significant likelihood ratio test statistic (p<0.001), 

suggesting that they are better fits than a model with just the intercept (a null model). A 

crude model is first estimated (Model 2a), adjusting only for baseline covariates. Model 2b 

adjusted for baseline covariates and for all time-varying covariates. We expect these two 

models to be confounded since the first does not account for the time-varying covariates that 

confound the relationship between the FMG status at the mid-time points and the outcome, 

and the second adjusts for these variables that are on the causal pathway between the 

exposure and the outcome. Model 2c is a reproduction of the negative binomial model 

weighed by MSMwi described in Table 3. The last model (Model 2d) adjusts for baseline 

covariates and is weighted by MSMwi, adjusting for time-varying covariates. As noted in 
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Section 2.2, Models 2c and 2d are expected to provide unbiased estimates, Model 2d being 

most accurate and producing tighter confidence intervals.

All four models show that belonging to a FMG for all three years reduces the expected 

number of visits to the ER for patients in the matched dataset, although the estimated 

coefficient in Model 2c is not significant and we expect the estimates from 2a and 2b to be 

biased. Since the MSM adjusting for baseline covariates (Model 2d) may be a better 

specified model (see Section 3.4.2), our best estimate of the RR of the number of ER visits 

(95% CI) in this vulnerable population is 0.933 (0.909, 0.958).

For hospitalizations, all four models show no significant effect of belonging to a FMG for all 

three years compared to none for patients in the matched dataset, with most RR point 

estimates very close to 1 (results not shown).

3.6 Discussion of findings

One of the key assumptions required in order for marginal structural models to produce 

unbiased estimates of the causal relationship between exposure and outcome is that there are 

no unobserved confounders, an assumption that is not testable with the observed data but 

which may be plausible given good substantive knowledge. In the analysis of the FMG data, 

it would be desirable to have more detailed information on individual-level socio-economic 

status and health status, and on the FMG’s modes of practice (CLSC, family medicine unit 

(Unité de medicine familiale or UMF), private practice, etc.), none of which are available in 

the dataset.

Some individuals were missing geographic location of residence (1.9%) and some were 

missing the material deprivation index (1.7%). Although this represents a very small 

proportion of the population of interest, it appears that the information was not missing 

completely at random. Overall, 47% of the patients who were dropped from the analysis 

because of missing values were in the FMG group in the final year. The patients dropping 

out who were in a FMG in the final year are characterized in that year by a slightly younger 

age, fewer ER visits, and less diagnoses of hypertension or diabetes compared to patients in 

a FMG in the final year who did not drop out. In the patients who were not in a FMG in the 

final year, those who were lost to follow-up were characterized by a geographic location that 

is closer to university centers, younger age, slightly more advantaged, more likely to be 

female and fewer diagnoses of hypertension, diabetes and COPD.

A sensitivity analysis assessed the impact of the patients with the 95% highest marginal 

structural weights in the dataset. The weights of those 6,943 individuals, 49% of which were 

in a FMG in the final year, were truncated at the 95th percentile value of 135. The results did 

not vary greatly from the ones reported previously. The revised baseline adjusted negative 

binomial MSM (Model 2d) for the number of ER visits estimated an RR (95% CI) of 1.010 

(0.939, 1.087) compared to 0.933 (0.909, 0.958) previously reported, no longer showing a 

significant effect of being in a FMG all three years (but showing very close confidence 

intervals). Similarly, the same model estimating the number of hospitalizations reported an 

RR (95% CI) of 1.126 (0.994, 1.276) compared to 0.991 (0.957, 1.026). Thus the individuals 
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with the highest weights seem to slightly pull the estimate away from the null, but they do 

not seem to skew the reported estimates.

4. Simulation study

In order to assess the ability of the marginal structural model to identify a possible causal 

relationship between FMG and the health services utilization, synthetic datasets were 

generated and analysed using different models. First, data with time-varying confounding 

and mediation over three time intervals were generated using Poisson, log-normal and 

mixture of a Poisson distribution and a point-mass at 0. The synthetic datasets were 

generated by approximately copying the relationship between the time-varying number of 

emergency visits and the FMG exposure in the real dataset. Details of the simulation settings 

and Stata code used to generate the data are provided in Appendices I and II. Additional 

simulation results based on smaller sample sizes are provided in Appendix III.

We considered three data-generating scenarios, and for each, the data were analysed using 

the same models as are considered for the FMG data analysis: regression using a Poisson 

model, a negative binomial model and a zero-inflated Poisson model. Each regression 

adjusted for the time-varying exposure variables A1, A2 and A3. Model 1 also adjusted for 

the baseline covariate L1, Model 2 adjusted for L1, L2 and L3, and inverse weights were 

added to (marginal) Models 3 and 4, the latter also adjusting for L1, consistent with models 

2a–2d in Section 3.5

Table 6 describes the results of the Monte Carlo simulations over 500 runs, each time 

generating a dataset of 100,000 observations. True parameter values were obtained by 

randomly assigning exposure in a dataset of 1,000,000 observations run 50 times, as 

described by Xiao and colleagues [23]. Over all simulations, Model 1 estimates the effect of 

A1 with little bias since it adjusts only for baseline confounder L1 and does not adjust for 

covariates L2 and L3 that would be on this causal pathway. However, it poorly estimates A2 

since it fails to account for the effect of L2 and L3. On the other hand, Model 2 adjusts for all 

confounders and does not yield unbiased estimates of the effects of either A1 or A2 because 

the effects of these variables which are mediated through the time-dependent covariates are 

blocked by the conditioning. Models 3 and 4 consistently have smaller percent biases in 

their estimates of A1 and A2, Model 3 having an average percent bias reduction of 94% 

compared to Model 2.

Regardless of the model used, the simulation results clearly highlight the fact that using a 

likelihood that properly fits the dataset is of great importance in producing unbiased results. 

Although MSMs produce estimates that are unbiased, they are not useful when attempting to 

model data from a binomial-Poisson mixture distribution with a Poisson or a negative 

binomial likelihood. For example, Model 4 in Table 6 shows a percent bias on the estimate 

of A1 of 13.8% and 21.2% when using a Poisson and a negative binomial respectively when 

the data is generated from a binomial-Poisson mixture. However, when using a zero-inflated 

Poisson likelihood which models the excess zeros using a binomial distribution, only 0.2% 

bias remains.
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Over all three data-generating models, the adjusted ZIP model performs quite well, though 

rMSE and coverage are often similar across the models considered. The percent bias, MSE 

and coverage of the ZIP are not uniformly best, but are typically competitive with the best 

model. However, we note that these results are limited to a scenario designed to mimic the 

effect sizes observed in the FMG analysis. We then attempted to implement the simulations 

in smaller samples and found that we simply had too few events with the parameter settings 

used; we therefore increased the strength of the relationships throughout the simulations (see 

Appendices I–II), and conducted further simulations in sample of size 100 and 500. In these 

much smaller samples, the ZIP model tended to perform less well, and the negative binomial 

model generally performed well (results shown in Appendix III). Thus we urge caution and 

recommend careful assessment of model fit in any application: as we saw in the FMG data, 

the negative binomial model appeared to fit the data significantly better than the Poisson and 

ZIP models, though coefficient estimates were quite similar to those yielded by the Poisson 

model.

5. Discussion and conclusion

In this paper, we sought to estimate the causal effect of vulnerable patients being registered 

to a Family Medicine Group in Québec for three consecutive years on their utilization of 

health services. To model time-varying confounders and exposure over the three years of 

observed data, marginal structural models were used, estimated via IPTW. Weighting the 

regression models allowed the removal of any measured confounding bias based on 

observed factors at each time period (essentially removing all arrows in the DAG pointing to 

the exposure). Since the outcomes of interest were counts, generalized linear models with 

different likelihoods were assessed for best fit. Synthetic datasets were also generated and 

analysed using the same methods in order to assess the overall performance of these 

marginal structural models.

Our results suggest that registration to a FMG for all three years caused a slight reduction in 

the number of emergency room visits, and no significant change in the number of 

hospitalizations in the final year. These findings are consistent with Strumpf et al. (2011) 

[24], who analyzed the same dataset using propensity score weighting and FMG status at 

time zero to investigate patients’ emergency department and hospital utilization. Although 

they did not adjust for time-varying FMG status and confounding, their results are very 

similar to ours, finding very small differences in utilization of FMG patients compared to 

non-FMG patients. Our results rely on the assumption that all confounding variables have 

been measured. Although physician-level variables were not explicitly included in the 

exposure models, many of the physician characteristics that are related to FMG status are 

also patient-level characteristics, e.g. region in which the practice is located is the same as 

the region in which the patient is treated. Thus, while it may not be exactly true that we have 

captured all confounding variables, we believe that the assumptions holds at least 

approximately, as major predictors of health care services utilization and FMG status such as 

age, diabetes, hypertension, chronic obstructive pulmonary disease, socio-economic status, 

number of ER visits and hospitalizations prior to the study period were all captured in our 

data.
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The negative binomial likelihood gave the best fit for both outcomes in the real dataset. 

Simulations displayed the importance of correctly specifying the likelihood when modelling 

these types of skewed zero-inflated outcome data. Although the simulations found that the 

zero-inflated Poisson likelihood performed the best overall in simulations designed to mimic 

the FMG data, models with this likelihood did not produce the best fits when modelling the 

real data. In this dataset, the negative binomial likelihood was able to best capture the 

variations in the health services utilization. A variety of plausible likelihoods should be 

compared when modelling these types of outcomes.

The simulations also highlighted the need for larger samples, as models that perform well in 

larger samples may not fare as well in settings where information is more limited. Even 

when sample sizes are large, if outcomes are rare, there may be exposure patterns whose 

effects estimates are unstable. But note that there were few patients in those unstable FMG 

groups. For example, we found that patients with some unstable FMG patterns such as 

belonging only during the second year of the study (the 0,1,0 pattern) had a significantly 

higher rate of ER visits and hospitalizations than individuals who never belonged to an FMG 

under most of the models considered, however this was the smallest exposure pattern group, 

containing fewer than 65 of the more than 206,000 patients in the total sample.

Care must be taken when analysing the causal effect of the introduction of a policy such as 

FMGs on health care utilization outcomes in an observational study. Propensity scores and 

marginal structural models are statistical tools that should be used in order to properly adjust 

for selection bias based on observed factors, time-varying covariates and to model the time-

varying exposure. Proper specification of the likelihood function modelling the zero-

inflated, right-skewed utilization count data is also essential in order to produce unbiased 

estimates of the impact of the introduction of the policy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Figure 2. 
LTC is the number of patients who transitioned to a long-term care facility. “Net movement” 

represents the net number of individuals incoming from the other cohort.
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