Skip to main content
. Author manuscript; available in PMC: 2017 Mar 7.
Published in final edited form as: Stat Med. 2013 Oct 24;33(7):1205–1221. doi: 10.1002/sim.6020

Table 3.

MSMs of the number of ER visits

M1 Poisson M2 Negative Binomial M3 Zero-Inflated Poisson
RR [95% CI] RR [95% CI] RR [95% CI]
= (0, 0, 1) 2.107 0.923 4.809 2.099 0.924 4.767 2.218 0.986 4.990

= (0, 1, 0) 2.173** 1.236 3.820 2.194** 1.241 3.879 1.670 0.854 3.265

= (0, 1, 1) 1.116 0.965 1.292 1.115 0.963 1.291 1.134 0.966 1.332

= (1, 0, 0) 1.146** 1.037 1.267 1.151** 1.040 1.272 0.984 0.873 1.109

= (1, 0, 1) 1.206** 1.064 1.368 1.209** 1.066 1.372 1.025 0.882 1.191

= (1, 1, 0) 1.265** 1.172 1.364 1.266** 1.174 1.366 1.078 0.987 1.177

= (1, 1, 1) 0.984 0.956 1.013 0.984 0.956 1.013 0.983 0.948 1.019

= (0, 0, 1) 1.090 0.967 1.229

= (0, 1, 0) 0.603 0.220 1.658

= (0, 1, 1) 1.028 0.829 1.276

= (1, 0, 0) 0.757** 0.639 0.896

= (1, 0, 1) 0.741** 0.595 0.924

= (1, 1, 0) 0.748** 0.660 0.846

= (1, 1, 1) 0.997 0.958 1.038

No. Obs. 199,682 199,682 199,682
QIC 3.518 2.953 3.107
BIC −1.952e+06 −1.85E+06 −1.82E+06
log-likelihood −351214 −294827 −310192
p <0.001 <0.001 0.0563
Expected no. of zeros+ 108,800 139,686 139,167

All regressions adjust for propensity score and marginal structural weights. For the ZIP, the top panel indicates the Poisson model for the counts, while the bottom panel indicates the parameters for the any/no outcome component of the model using a logistic function.

+

Actual number of zeros is 138,901.

*

p<.01,

**

p<.001 based on Wald tests