Table 4.
M1 Poisson | M2 Negative Binomial | M3 - Zero-Inflated Poisson | |||||||
---|---|---|---|---|---|---|---|---|---|
RR | [95% CI] | RR | [95% CI] | RR | [95% CI] | ||||
ᾱ = (0, 0, 1) | 1.660 | 0.725 | 3.802 | 1.657 | 0.725 | 3.788 | 2.184 | 0.846 | 5.636 |
| |||||||||
ᾱ = (0, 1, 0) | 2.165* | 1.201 | 3.901 | 2.177** | 1.209 | 3.921 | 0.645 | 0.357 | 1.166 |
| |||||||||
ᾱ = (0, 1, 1) | 1.030 | 0.784 | 1.352 | 1.029 | 0.784 | 1.351 | 1.178 | 0.780 | 1.777 |
| |||||||||
ᾱ = (1, 0, 0) | 1.217** | 1.056 | 1.404 | 1.218** | 1.056 | 1.405 | 0.980 | 0.756 | 1.272 |
| |||||||||
ᾱ = (1, 0, 1) | 1.492** | 1.268 | 1.755 | 1.493** | 1.269 | 1.757 | 1.215 | 0.944 | 1.565 |
| |||||||||
ᾱ = (1, 1, 0) | 1.360** | 1.211 | 1.528 | 1.361** | 1.212 | 1.529 | 1.181 | 0.939 | 1.485 |
| |||||||||
ᾱ = (1, 1, 1) | 1.024 | 0.988 | 1.062 | 1.024 | 0.988 | 1.062 | 1.016 | 0.952 | 1.084 |
| |||||||||
ᾱ = (0, 0, 1) | 1.455** | 1.132 | 1.870 | ||||||
| |||||||||
ᾱ = (0, 1, 0) | 7.50e–8** | 5.69e-9 | 9.89e-7 | ||||||
| |||||||||
ᾱ = (0, 1, 1) | 1.206 | 0.763 | 1.906 | ||||||
| |||||||||
ᾱ = (1, 0, 0) | 0.722 | 0.491 | 1.061 | ||||||
| |||||||||
ᾱ = (1, 0, 1) | 0.735 | 0.498 | 1.087 | ||||||
| |||||||||
ᾱ = (1, 1, 0) | 0.811 | 0.613 | 1.073 | ||||||
| |||||||||
ᾱ = (1, 1, 1) | 0.988 | 0.907 | 1.076 | ||||||
| |||||||||
No. Obs. | 199,682 | 199,682 | 199,682 | ||||||
QIC | 1.478 | 1.389 | 1.399 | ||||||
BIC | −2.224e+06 | −2.16E+06 | −2.16E+06 | ||||||
log-likelihood | −147552 | −138717 | −139683 | ||||||
p | <0.001 | <0.001 | 0.108 | ||||||
Expected no. of zeros+ | 171,823 | 178,243 | 178,195 |
All regressions adjust for propensity score and marginal structural weights. For the ZIP, the top panel indicates the Poisson model for the counts, while the bottom panel indicates the parameters for the any/no outcome component of the model using a logistic function
Actual number of zeros is 177,762.
p<.01,
p<.001 based on Wald tests