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Abstract

Background—The dawn of precision medicine and CFTR modulators require more detailed
assessment of lung structure in cystic fibrosis (CF) clinical studies. High-resolution chest
computed tomography (CT) scoring has yielded sensitive markers for the study of CF disease
progression and therapeutic effectiveness. Similarly, Magnetic Resonance Imaging (MRI) is in
development to generate structural as well as functional markers.

Results—The aim of this review is to characterize the role of CT and MRI markers in clinical
studies, and to discuss study design, data processing and statistical challenges unique to these
endpoints in CF studies. Suggestions to overcome these challenges in CF studies are included.

Conclusions—To maximize the potential of CT and MRI markers in clinical studies and
advance treatment of CF disease progression, efforts should be made to develop data repositories,
promote standardization and conduct reproducible research.

Keywords
cystic fibrosis; endpoints; imaging analysis; outcome measures; reliability; surrogate endpoints

1. Introduction

High-resolution chest computed tomography (CT) has produced promising outcomes for the
clinical study of cystic fibrosis (CF) lung disease progression(1, 2). Markers from CT
imaging can convey severity related to mild and regional CF lung disease by quantifying
degrees of bronchiectasis, air trapping, and other attributes related to structural lung damage.
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It has been shown that CT markers have higher sensitivity to detect pulmonary disease
progression than FEV1%, an established outcome in CF(3-7). More recently, magnetic
resonance imaging (MRI) techniques have emerged to provide radiation-free markers that
quantify structural and dynamic aspects of the CF lung(8). Given the challenges related to
pulmonary function testing in younger individuals with CF and the need for assessments of
early-stage CF lung disease, clinical studies have incorporated CT markers as outcomes for
structural lung disease(9). However, there remain obstacles related to study design, data
acquisition/processing, and statistical analysis that have not been comprehensively
addressed, hindering more complete adaptation of established CT markers as endpoints(10).
The aim of this review is to provide information on the utility of imaging markers as
endpoints for CF studies and to describe the accompanying statistical considerations. CT
serves as the exemplar for the review, given its status as the gold standard for lung structure
assessment; however, considerations shared by MRI are also described and accompanied by
recommendations.

2. CT Imaging Analysis

2.1 Evolution of scoring systems

The clinical study of imaging markers has evolved from qualitative evaluation to quantitative
lung image analysis. Although seminal work involved the study of markings from chest
radiographs, this modality has largely been excluded from clinical intervention studies due
its poor sensitivity for monitoring CF disease progression (11) the advent of CT scoring
systems. Over the last few decades it has been shown that bronchiectasis, airway wall
thickening, mucous impaction, and trapped air are the most important markers to quantify on
chest CTs. It becomes clearer that the term “trapped air” is probably a misnomer, as
hypodense regions on expiratory CT can result both from hypoperfusion and trapped air. For
the purpose of this review, we will continue to use the term trapped air, acknowledging it
represents a mix of hypoperfusion and trapped air(12).

Semi-quantitative image analysis of CT scans to assess these attributes has yielded a variety
of scoring systems that have been used for clinical studies (Table 1). The Brody I system
was developed in 1999 using CTs of 8 patients aged 5-16 years. At that time, CF lung
disease progressed more rapidly, compared to the present day(13). The Brody Il scoring
system (14, 15) followed and was frequently used until a decade ago. De Jong and
colleagues compared various scoring systems and found that they were reproducible and
correlated with pulmonary function data(16); however, these scoring systems were not well-
standardized.

To improve standardization and training, the CF-CT scoring system, based on the Brody Il
system, was developed in 2011. The CF-CT scoring system consists of a large training
module and 7 training sets that were scored by Brody and de Jong (the most experienced
observers at that time) to define the ‘gold standard’ ratings. To date, over 20 observers have
been trained in the Erasmus MC LungAnalysis Core Laboratory using the CF-CT method. It
has been used in multiple studies to validate chest CT as an outcome (6, 17-20). An
advantage of scoring systems like CF-CT is that the lung volume level during CT acquisition
is not very critical for the magnitude of the scores (21) (22).
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The CF-CT scoring system still has a number of disadvantages. Firstly, it is insensitive for
quantifying early changes (23), only detecting relatively large structural changes over time.
Secondly, the clinical value of the numbers generated is difficult to understand. Thirdly, the
method is time consuming and observer dependent. Hence, further development of more
sensitive methods was required.

For the development of a more sensitive and quantitative method, a morphometric approach
was created using a grid projected over the CT image. This approach was used first in a
group of 411 patients with end stage lung disease (24, 25) and later to compute volume
fractions of trapped air on expiratory scans(26). Next, this method was further developed
into the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF)
scoring system to quantify early structural changes(18). This system allows expression of
key structural changes, i.e. airway abnormalities and regions of low density, as a fraction of
total lung volume. This system can also be applied in more advanced disease(24). A
disadvantage of PRAGMA-CF is that it requires two weeks of training and takes around 30
minutes per CT to execute for an experienced observer. Fortunately, it is likely that the
system can be automated using a machine learning approach. More recently, the Airway-
Artery (AA) method was developed for the sensitive and automated analysis of all visible
airway artery pairs. It is likely that this system eventually will take over the scoring of
airway abnormalities (Kuo and colleagues, 2016, work in press and other under review).

Image analysis systems are at an early stage of development for MRI-based quantification
(27, 28). Failo and colleagues, among others, have reported that CT and MRI modalities
produce similar Brody scores(29, 30). A small study of MRI perfusion markers obtained on
non-CF adults suggested that scores might be highly dependent upon observer(31). The
sensitivity, extent of reproducibility, and repeatability of MRI-based scoring systems needs
further study.

2.2 Imaging markers as surrogate outcomes

Quantitative image analysis paved the way for reproducible, reliable CT scoring systems that
can be used to produce outcomes for clinical studies. Currently, pulmonary exacerbation,
health-related quality of life, pulmonary function and survival are the only recognized
clinical endpoints for CF studies(10, 32). As surrogate endpoints, imaging markers do not
directly measure how an individual with CF “functions, feels or survives”(33). CT markers,
meant to assess structure, are often considered as intermediate endpoints in CF studies due
to their ability to predict established clinical endpoints(2, 19, 24). MRI is a more promising
modality than CT to assess functional aspects of the lung, such as lung perfusion, pulmonary
hemodynamics, central airway dynamics and ventilation of the lung(31, 34).

Given the pathophysiology of CF, it is likely that the imaging marker is measured (perhaps
repeatedly) with a particular therapy being applied at some point in the disease process
(Figure 1). Other surrogates, such as FEV1%, are repeatedly collected throughout this
process and may impact clinical endpoints independently of the imaging marker. A CT
marker, for example, is a useful surrogate, provided it is consistently i) predictive of future
events; ii) reflective of a therapeutic response(35). Loeve and colleagues summarized over
20 studies validating CT markers as surrogate endpoints for presence and severity of CF
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lung disease, therapeutic responsiveness, reproducibility, and associations with respiratory
exacerbations, quality of life, survival and other outcomes(26). As indicated, future
validation studies should focus on criterion (ii), in order to further demonstrate surrogacy.

CT scans yield a variety of structural markers, and the choice of which is used for a
particular CF study will depend upon several factors, such as the age and severity of the
population being studied, therapy being evaluated, and duration of the study. It is important
to determine the extent to which a prospective CT marker is predictive of the clinical
endpoint and whether the therapeutic response of the CT marker (as a surrogate) is
predictive of the therapeutic response detected by the clinical endpoint. CT markers that
have scoring systems independently validated prior to the study, have been utilized in
previous CF clinical studies and are most closely aligned with the therapeutic aim and causal
pathway should be considered as surrogates. Similar factors should be considered when
selecting MRI markers as monitoring tools for clinical studies. Timing of study visits could
also be considered, as MRI may be utilized to assess short-term changes in therapeutic
studies(31, 36).

3. Addressing Sources of Bias Specific to CT Markers

3.1 Protocol, technology and data processing standards

An issue that has received little attention until recently is the impact of standardizing image
acquisition techniques. Controlling lung volume is an important issue in the acquisition
phase. In children of 6 years of age and above, lung volume can best be controlled for using
a spirometer(37). Participants below the age of 6 years may have difficulty following
spirometer-based protocols; in these instances, general anesthesia and a pressure-controlled
protocol can be used for lung volume control(21). Children aged 3-6 years can be trained to
execute a breath hold after taking a deep breath or at the FRC level. Alternatively, CT can be
acquired for very young or non-cooperative children while the child is free breathing. For
these children, scans acquired at a volume level near functional residual volume are less
sensitive, compared to inspiratory scans for the detection of airway disease. Equally
important factors to consider include radiation dose, pitch, reconstruction kernels, and slice
thickness; all of which are known to influence image quality(17) and can be accounted for in
prospective studies.

The selection of the CT protocol is closely linked to the image analysis methods used. When
a (semi) automated analysis method is selected, tighter control of the CT protocol is
required, but scoring methods are known to be less sensitive to choice of CT protocol and
the aforementioned issues with lung volume control(22). To track disease over time, ideally
the same volume and CT protocol should be used when follow up CTs are compared to
baseline CTs. Recent work highlights the importance of standardization in multicenter
studies using CT(17). In addition to previously mentioned longitudinal validation studies,
assessment of standardization techniques are also needed for MRI. However, this issue is
considered an important technical challenge for MRI.

Age can be a substantial confounder as the chest CT resolution is an important determinant
for the smallest structures that can still be observed. This is especially important in the first
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two years of life. Minimizing confounding through study design is ideal. It may be possible
to use methods based on restriction or matching. Examples include subgroup or covariate
adjustment to determine the extent of technology, processing or other effects on analysis
results. These stratification and multivariable modeling approaches rely on measured
confounders (i.e. the variables are recorded in the database).

3.2 Assessing observer reliability

Despite advancements toward automation, CT scoring systems still require observer
evaluation to quantify degree of structural lung disease, and there is no gold standard metric
to which observers can be compared. As such, observer agreement and reliability are
indistinguishable and often used synonymously in the CF imaging literature. Observer
scoring introduces variation known as measurement error (38). It is worth noting that, in
contrast, automated scoring might introduce systematic error (e.g. over- or underestimation
of airway wall thickness). The following recommendations on observer reliability apply
generally to CT and MRI markers.

At minimum, it is recommended that any study with scored CT markers include reliability
statistics within observer. Intra-rater reliability refers to the extent to which a single observer
can replicate his previous scores on a series of scans. In terms of experimental design, the
scans to be repeatedly scored should be selected using random sampling stratified by age
and disease severity. This approach should be employed in CF studies, because of the
heterogeneous nature of disease progression. For example a study may yield high reliability
in the subcohort with severe disease and low reliability in the subcohort with mild disease.

The proportion of between-subject variation relative to the total variation is commonly used
to estimate reliability. Shoukri and colleagues provide sample size calculations based on
precision with which reliability can be estimated for test-retest data from one or more
observers(39). This approach uses the confidence interval (CI) width as a measure of
precision, level of confidence (i.e. alpha value), and specification of a “planning value” for
the reliability estimate. For example, if high intra-rater reliability is anticipated (proportion:
0.9) with sufficient precision (95% CI width: 0.2), the minimum number of scans to be
rescored is 15. Sample size requirements will increase for the following inputs: lower values
of planned reliability, higher precision and a higher confidence level. It is recommended that
test-retest sample size, like other sample sizes described later, be calculated in the study
design phase, as it will heavily depend upon the formula inputs, funding and other resource
constraints.

Agreement between the primary observer (an experienced or certified observer whose scores
are considered the benchmark) and other observer(s) is needed to check consistency. CT
studies typically involve a primary observer and at least one other independent observer who
is trained in the scoring system as part of the study. Depending on the extent to which a
scoring system has been validated for the target population, it is important to have well-
calibrated scores. This process is often qualitative and consists of a subset of scans, chosen
by the primary observer, being iteratively scored by the novice observer who discusses
results with the primary observer. It is recommended that the calibration subset be chosen
via stratified randomization. The scans should be selected through random sampling

J Cyst Fibros. Author manuscript; available in PMC 2017 March 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Szczesniak et al.

Page 6

stratified according to age and lung disease severity, to ensure calibration is broadly
achieved. Sample size requirements for estimating inter-rater reliability can be formed as
previously described. For example, if we consider two independent observers to have
excellent agreement on their scores (proportion: 0.8) with sufficient precision (95% CI
width: 0.2), the minimum number of scans to be scored by each observer is 52. If acquiring
high numbers of subjects for imaging is more costly than utilizing multiple observers, then
the sample size can be recalculated to include a higher number of observers. Assuming the
same agreement and precision as before but utilizing three observers, for example, requires a
minimum of 36 scans to be scored.

There are numerous inter-rater reliability indices available for CT studies (Table 2). In the
majority of CF studies, the index of choice is the intra-class correlation coefficient (ICC)
(40). There are many versions of ICC, but the most commonly utilized version in the CF
literature is the original based on the one-way random effects ANOVA model, which
assumes that raters are interchangeable. In studies in which there is an experienced rater, the
one-way random effects ANOVA can be modified to assess consistency across the different
raters. Drawbacks to use of ICC and its categorical analogue, the kappa statistic (41), have
been well described in the statistics literature, with a recent illustration involving
cardiovascular imaging markers(42). A high estimate of ICC for an overall study sample
does not always indicate strong agreement. For example, a CF study with participants who
vary in age will likely yield CT markers with broad ranges (i.e., high between subject
variability). Regardless of observer agreement, the ICC ratio will unfairly leverage the high
between-subject variability relative to within-subject variability to produce a value close to
1. Analogously, a study with a narrow subject age range may yield small between subject
variability for each CT marker with ICC estimates that are incorrectly low. For these
reasons, it is important to stratify ICC estimates by age and disease severity, which are
known sources of heterogeneity in CF clinical studies. Poor ICC estimates within strata
imply that additional calibration is necessary.

An alternative reliability statistic that relaxes the ANOVA assumption in the ICC is the
Concordance Correlation Coefficient (CCC) (43); however, this statistic does not account for
chance agreement and has not been widely used to assess reliability of imaging markers.
Threshold-based approaches, such as Bland-Altman analysis(44) and coverage probability
(CP), allow more targeted identification of discrepancies. The Bland-Altman approach
consists of plotting the mean of differences between observer measurements of a given CT
marker against the average of measurement pairs from the observers; limits of agreement on
the plot can be used to identify systematic differences in observers across the range of
measurement values, or instances of increased variation (i.e. lower precision) between
observers. These limits are determined by mean difference, standard deviation of the
differences and sample size. CP has the most advantages of the methods described (Table 2)
for all stages of reliability assessment, but requires a priori identification of an acceptable
threshold for the paired difference in observer scores.

Given the breadth of available reliability indices for CT markers, it is recommended that
researchers report estimates for their selected reliability index and descriptive statistics for
each type of CT marker, both overall and stratified by age and lung disease severity. The
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additional estimates can be used to calculate other reliability indices, such as CP, enabling
‘apples-to-apples’ comparisons of reliability estimates across CF studies and populations.

3.3 Acquiring baseline CT measurement

Baseline CT collection in clinical trials is necessary for assessing randomization, safety and
quality of procedure/protocol adherence. Even in modified protocols described previously,
young children (aged below 5 years) will not have the same participant performance in CT
studies at baseline as they do in follow-up. It is recommended that the mean and variability
of baseline CT data be examined prior to inclusion in efficacy analyses. The coefficient of
variation, which is the SD divided by the mean in the sample, can be used to examine the
quality of baseline data. A large value for this ratio would imply that the baseline data may
not be reliable to assess efficacy; however, these data could still be used for phenotyping the
patient and checking randomization. These issues do not exist for child participants who are
5 years of age or older; change scores or other longitudinal variables have been validated in
previous CF studies(3, 5, 19) and can be used in efficacy analyses.

As an individual grows, the sensitivity of a given CT marker will increase, due to airway
development, improved ability to perform protocol steps (e.g. breath holds) and other
factors. Growth introduces subtle changes related to the CT scanner performance that have
not been thoroughly explored in CF studies. Discarding any baseline data is undesirable
from a statistical standpoint. Depending on the coefficient of variation, it may be appropriate
to include data from very young cohorts by adjusting for growth using established metrics.
This could possibly be achieved using metrics as covariates or by performing a calibration
analysis. The effectiveness of these approaches to salvage baseline CT data is unknown but
could be investigated with the advent of young CF cohorts with imaging data.

4 Modeling CT Markers as Clinical Endpoints

4.1 Model Assumptions

The collection of CT marker data on an individual subject will consist of overall and region-
specific scores. We will need to assume that the outcome variable, given a treatment and
possibly other exposure variables, forms a model that follows some type of statistical
distribution. Most often, we assume a (multivariate) normal distribution. Distributions of CT
markers and modeling assumptions should be assessed and reported in clinical studies. A
normal distribution may be reasonable for CT markers observed at later stages of disease
severity, but it is plausible in early-stage CF to encounter subjects whose CT markers are
long-tailed (e.g. log-normal) or have zero values (e.g., bronchiectasis). Zeroes may be
indicative of minimal or absent structural lung disease, an outcome that may be of interest
itself. The data may appear “clumped” at zero, as there could be a proportion of subjects
who at a young age have not experienced an insult in addition to their CFTR dysfunction
resulting in bronchiectasis or other structural lung changes at a young age. Examples of such
additional insults can be viral infection or acquisition of Pseudomonas aeruginosa. The
remaining subjects who have developed structural lung disease will have continuous values
for CT markers. The resulting data forms a skewed distribution that may not be well
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approximated with a symmetric, bell-shaped curve like the normal distribution. Data of this
nature are sometimes referred to as zero-inflated or semicontinuous data(45).

Examples of non-normally distributed data have been recently encountered in the Australian
Respiratory Early Surveillance Team for CF (AREST CF) cohort (Figure 2). PRAGMA-CF
markers for disease and bronchiectasis, obtained with permission from the previously
published cohort data(9), have substantial lack of fit under the normal assumption. The mean
and SD are both overestimated for % disease and % bronchiectasis. The fit to the % disease
data is improved by accounting for the skewness using a lognormal distribution. Special care
is required to fit the % bronchiectasis data, as roughly 42% of the data are zeroes. Min and
Agresti reviewed and discussed practical strategies to combat zero-inflated and semi-
continuous data(45), which can be extended for longitudinal studies through use of random
effects(46). Assuming a normal distribution in either scenario could yield biased estimates
and misleading results about the extent of structural lung disease in the cohort being studied,
and about the effects of treatment or associations with other exposure variables. Approaches
to model CT markers and their relationships with covariates using alternative distributions
should be considered for CT as well as for MRI marker data analysis.

4.2 Differential recruitment and missing data in CT studies

In prospective CT studies, participation will depend upon the eagerness of the individual
subject. If the study has an intervention arm, participation will generally be high for CF
subjects, regardless of whether CT scans are part of the protocol. Subject retention may be
complicated in longitudinal settings in which it is expected that a subset of participants
could drop out, miss scans, or receive scans at times that are not commensurate with the
protocol (creating mistimed measurements). The nature of missing data in CT studies can
also include technical failures, protocol violations (e.g. inappropriate data storage or slice
thickness), and subject noncompliance. At the very least, missing data can reduce efficiency,
thereby limiting statistical power; at worst, missing data can seriously bias study findings. In
CT studies, this could imply incorrect conclusions about structural lung disease progression
over time, or limited ability to detect efficacy in CF therapeutic studies. Practical methods to
limit missing data and address the potential bias via statistical analyses, accounting for the
missing data mechanism, are available(47).

In retrospective CT analyses, caution should be applied when selecting individual scans for
inclusion. It has been shown in US CF registry analyses that sicker patients tend to have
more clinical encounters. Because these patients are sicker, they tend to have worse
outcomes(48). Such issues are avoided when only routine clinical scans are included in the
analysis. It is recommended to randomly select scans for inclusion, if the study is
retrospective. In prospective studies, such as clinical trials, the impact of including
clinically-indicated scans could be assessed through sensitivity analyses. Ignoring this
source of sampling bias could produce misleading results about associations between
treatment and progression of structural lung disease as measured by CT.
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4.3 CT marker selection and sample size for models

Several CT markers have been developed over the years and have varying levels of
sensitivity (Table 1). CT marker variability depends upon the type of cohort being studied,
the scan protocol and scoring algorithm. Minimizing these sources of variability, in turn,
maximizes the precision with which treatment effects or associations can be examined using
a particular CT marker. Bronchiectasis and trapped air can be established with great
precision and are well validated as clinically relevant endpoints. Scoring of airway thickness
is more system dependent. The recently objective AA method allows assessment of both
bronchiectasis and airways wall thickness with great precision; however, this method is
time-consuming and not yet automated. The less intensive PRAGMA-CF scoring system has
been shown to correlate well with the AA method and thus is currently the best available
method as shown in published work (18) and studies now under review

CT marker effect sizes have not been thoroughly described in the literature, although
estimates may be gleaned from completed studies (Table 1). None of the current CT markers
have a designated minimally important clinical difference, a threshold used to indicate the
smallest change in outcome that a patient would still identify as clinically important. Percent
reduction for a given CT marker has been proposed as a biologically plausible outcome for
CF clinical studies(18). For example, a 30% reduction in trapped air would be considered
clinically relevant. It is worth noting that whatever particular feature the CT marker is
intended to measure also determines clinical meaning of the % reduction. For instance,
extent of bronchiectasis is a monotonically increasing attribute of structural lung disease,
whereas trapped air may be reversed, to some extent, over time.

Both the choice of CT marker and threshold indicating clinically meaningful % reduction
will impact sample size required for an interventional study (Figures 2c—2d). Effect sizes
were formulated based on mean PRAGMA % disease and % bronchiectasis in children aged
0-5 in AREST CF cohort (9) and were calculated as a % difference between means of two
hypothetical treatment arms, assuming a traditional two group clinical trial design (i.e. mean
% disease in children aged 0-5 is 1.90, 30% reduction would imply that in the interventional
trial arm mean % disease would be reduced to 1.33, 50% would reduce it to 0.95, etc.).
Higher magnitudes of the relative difference in % disease (Figure 2c) and % bronchiectasis
(Figure 2d) allow for lower sample size requirements per group. Given the relatively low
numbers of CF participants, it is likely that only large magnitudes of relative difference will
be detectable in interventional studies using scoring systems such as PRAGMA-CF. More
sensitive outcome measures, such as the AA-ratio, have the potential to improve precision,
thereby enabling detection of relative difference with lower sample sizes.

5. Recommendations

With the number of imaging studies in CF and the advent of (semi) quantitative methods,
there are several ways to improve the utility of CT and MRI markers. CT markers have been
well validated in the literature, but their role in the randomized controlled trial setting still
needs to be proven. MRI markers for studying CF lung disease progression are at an early
stage; research to date indicates that this modality tends to overestimate the extent of early
disease and underestimate advanced disease. Given the current findings on standardization

J Cyst Fibros. Author manuscript; available in PMC 2017 March 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Szczesniak et al.

Page 10

for each modality, CT and MRI markers may be feasible for Phase 11l and single center
Phase Il studies, respectively. There is now a CTN-TDN task force, composing guidelines
that will further harmonize study protocol recommendations, complimenting existing efforts
in the European Union that have been published (17) and are under review for CT. Similar
efforts have recently been initiated for MRI. Furthermore, minimal barriers exist to
implementing these standards for routine clinical scans. Clinical standardization at CTN-
TDN sites is expected to decrease bias inherent in the historical (less standardized) CT
scanning and data collection methods, thereby enabling data pooling. Another strategy to
minimize bias in MRI and CT studies is training and certification of observers. Additional
standards for scoring systems should include randomized ordering, de-identification of
scans, uniform lighting conditions, and well-defined analysis time. The advent of automated
image analysis systems is also expected to decrease inherent bias in CT and MRI data
processing.

Reproducibility is essential to elevate pre-processing and statistical analysis standards for
imaging studies. Researchers should use online supplements to provide detailed data
summaries, including formulas for pre-processing, aggregate calculations and statistical
considerations, as in the recent study by Ramsey and colleagues (9). Accessing completed
studies via data repositories could also streamline development of novel and robust imaging
analysis methods. Such repositories could be leveraged to gain historical control data for
examining novel therapies, similar to the use of CF patient registries to gain historical
control data as comparisons of clinical trial findings. As reproducibility improves, annual
reporting of summary statistics or trends in clinical data, such as lung function, BMI, and
other markers reported by the US CF Foundation(49), could be expanded to include CT
markers. With multiple modalities being used in parallel, efforts to use CT in conjunction
with MRI and other markers can be considered to effectively monitor CF lung disease.

Although challenges with reliability, model assumptions and missing data are still at the
forefront of imaging marker analysis, new challenges will emerge with more automated
scoring systems, requiring development of spatial data models to understand detailed lung
structure and consideration of multiple comparison adjustments as debated in the
neuroimaging literature(50). Additional prospective longitudinal studies that include both
imaging markers and functional outcomes will be helpful to examine associations between
the two evolve over time, improving our understanding of both imaging markers and of the
more traditionally used functional markers.
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CT marker
Intervention

Figure 1. Conceptual Model of Relationship between CT and Clinical Endpoints
Conceptual model adapted from Weintraub et al (35) reflects the uncertainty regarding the

nature of the relationship between a given CT marker (surrogate), the clinical endpoint and
other markers. The horizontal solid, black line represents the causal pathway of the CF
disease process on which the clinical endpoint is situated (e.g., survival). The sloped, solid
black line represents the CT marker in relation to the causal pathway. If these two lines
intersect as indicated by the star, then the CT marker is a true surrogate. An intervention is
likely applied downstream in the CF disease process, affecting the CT marker and/or the
clinical endpoint, as noted by the dashed line with a downward arrow on each of the sloped
and horizontal lines. It is also possible that another marker (e.g. FEV1%) affects the clinical
endpoint independently of the CT marker as indicated by the gray line.
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Figure2. CT Marker Distributions and Sample Size

PRAGMA data from AREST CF cohort (N=83 scans) in children less than 5 years of age.
Histograms of % disease (a) and % bronchiectasis (b) with overlaying normal and lognormal
distributions (solid and dashed curves, respectively); the “clump” of data in the leftmost
vertical bar represents instances in which zero was the observed marker value; the sample
mean (SD) for (a) and (b) were 1.90 (1.72) and 0.40 (1.14), respectively. Relative differences
in % disease versus sample size (c) and in % bronchiectasis versus sample size (d);
differences were based on mean and % reduction for each CT marker for two hypothetical
treatment arms, assuming 80% power and type | error rate of 5%.
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