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Abstract

Background—The dawn of precision medicine and CFTR modulators require more detailed 

assessment of lung structure in cystic fibrosis (CF) clinical studies. High-resolution chest 

computed tomography (CT) scoring has yielded sensitive markers for the study of CF disease 

progression and therapeutic effectiveness. Similarly, Magnetic Resonance Imaging (MRI) is in 

development to generate structural as well as functional markers.

Results—The aim of this review is to characterize the role of CT and MRI markers in clinical 

studies, and to discuss study design, data processing and statistical challenges unique to these 

endpoints in CF studies. Suggestions to overcome these challenges in CF studies are included.

Conclusions—To maximize the potential of CT and MRI markers in clinical studies and 

advance treatment of CF disease progression, efforts should be made to develop data repositories, 

promote standardization and conduct reproducible research.
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1. Introduction

High-resolution chest computed tomography (CT) has produced promising outcomes for the 

clinical study of cystic fibrosis (CF) lung disease progression(1, 2). Markers from CT 

imaging can convey severity related to mild and regional CF lung disease by quantifying 

degrees of bronchiectasis, air trapping, and other attributes related to structural lung damage. 
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It has been shown that CT markers have higher sensitivity to detect pulmonary disease 

progression than FEV1%, an established outcome in CF(3–7). More recently, magnetic 

resonance imaging (MRI) techniques have emerged to provide radiation-free markers that 

quantify structural and dynamic aspects of the CF lung(8). Given the challenges related to 

pulmonary function testing in younger individuals with CF and the need for assessments of 

early-stage CF lung disease, clinical studies have incorporated CT markers as outcomes for 

structural lung disease(9). However, there remain obstacles related to study design, data 

acquisition/processing, and statistical analysis that have not been comprehensively 

addressed, hindering more complete adaptation of established CT markers as endpoints(10). 

The aim of this review is to provide information on the utility of imaging markers as 

endpoints for CF studies and to describe the accompanying statistical considerations. CT 

serves as the exemplar for the review, given its status as the gold standard for lung structure 

assessment; however, considerations shared by MRI are also described and accompanied by 

recommendations.

2. CT Imaging Analysis

2.1 Evolution of scoring systems

The clinical study of imaging markers has evolved from qualitative evaluation to quantitative 

lung image analysis. Although seminal work involved the study of markings from chest 

radiographs, this modality has largely been excluded from clinical intervention studies due 

its poor sensitivity for monitoring CF disease progression (11) the advent of CT scoring 

systems. Over the last few decades it has been shown that bronchiectasis, airway wall 

thickening, mucous impaction, and trapped air are the most important markers to quantify on 

chest CTs. It becomes clearer that the term “trapped air” is probably a misnomer, as 

hypodense regions on expiratory CT can result both from hypoperfusion and trapped air. For 

the purpose of this review, we will continue to use the term trapped air, acknowledging it 

represents a mix of hypoperfusion and trapped air(12).

Semi-quantitative image analysis of CT scans to assess these attributes has yielded a variety 

of scoring systems that have been used for clinical studies (Table 1). The Brody I system 

was developed in 1999 using CTs of 8 patients aged 5–16 years. At that time, CF lung 

disease progressed more rapidly, compared to the present day(13). The Brody II scoring 

system (14, 15) followed and was frequently used until a decade ago. De Jong and 

colleagues compared various scoring systems and found that they were reproducible and 

correlated with pulmonary function data(16); however, these scoring systems were not well-

standardized.

To improve standardization and training, the CF-CT scoring system, based on the Brody II 

system, was developed in 2011. The CF-CT scoring system consists of a large training 

module and 7 training sets that were scored by Brody and de Jong (the most experienced 

observers at that time) to define the ‘gold standard’ ratings. To date, over 20 observers have 

been trained in the Erasmus MC LungAnalysis Core Laboratory using the CF-CT method. It 

has been used in multiple studies to validate chest CT as an outcome (6, 17–20). An 

advantage of scoring systems like CF-CT is that the lung volume level during CT acquisition 

is not very critical for the magnitude of the scores (21) (22).
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The CF-CT scoring system still has a number of disadvantages. Firstly, it is insensitive for 

quantifying early changes (23), only detecting relatively large structural changes over time. 

Secondly, the clinical value of the numbers generated is difficult to understand. Thirdly, the 

method is time consuming and observer dependent. Hence, further development of more 

sensitive methods was required.

For the development of a more sensitive and quantitative method, a morphometric approach 

was created using a grid projected over the CT image. This approach was used first in a 

group of 411 patients with end stage lung disease (24, 25) and later to compute volume 

fractions of trapped air on expiratory scans(26). Next, this method was further developed 

into the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) 

scoring system to quantify early structural changes(18). This system allows expression of 

key structural changes, i.e. airway abnormalities and regions of low density, as a fraction of 

total lung volume. This system can also be applied in more advanced disease(24). A 

disadvantage of PRAGMA-CF is that it requires two weeks of training and takes around 30 

minutes per CT to execute for an experienced observer. Fortunately, it is likely that the 

system can be automated using a machine learning approach. More recently, the Airway-

Artery (AA) method was developed for the sensitive and automated analysis of all visible 

airway artery pairs. It is likely that this system eventually will take over the scoring of 

airway abnormalities (Kuo and colleagues, 2016, work in press and other under review).

Image analysis systems are at an early stage of development for MRI-based quantification 

(27, 28). Failo and colleagues, among others, have reported that CT and MRI modalities 

produce similar Brody scores(29, 30). A small study of MRI perfusion markers obtained on 

non-CF adults suggested that scores might be highly dependent upon observer(31). The 

sensitivity, extent of reproducibility, and repeatability of MRI-based scoring systems needs 

further study.

2.2 Imaging markers as surrogate outcomes

Quantitative image analysis paved the way for reproducible, reliable CT scoring systems that 

can be used to produce outcomes for clinical studies. Currently, pulmonary exacerbation, 

health-related quality of life, pulmonary function and survival are the only recognized 

clinical endpoints for CF studies(10, 32). As surrogate endpoints, imaging markers do not 

directly measure how an individual with CF “functions, feels or survives”(33). CT markers, 

meant to assess structure, are often considered as intermediate endpoints in CF studies due 

to their ability to predict established clinical endpoints(2, 19, 24). MRI is a more promising 

modality than CT to assess functional aspects of the lung, such as lung perfusion, pulmonary 

hemodynamics, central airway dynamics and ventilation of the lung(31, 34).

Given the pathophysiology of CF, it is likely that the imaging marker is measured (perhaps 

repeatedly) with a particular therapy being applied at some point in the disease process 

(Figure 1). Other surrogates, such as FEV1%, are repeatedly collected throughout this 

process and may impact clinical endpoints independently of the imaging marker. A CT 

marker, for example, is a useful surrogate, provided it is consistently i) predictive of future 

events; ii) reflective of a therapeutic response(35). Loeve and colleagues summarized over 

20 studies validating CT markers as surrogate endpoints for presence and severity of CF 
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lung disease, therapeutic responsiveness, reproducibility, and associations with respiratory 

exacerbations, quality of life, survival and other outcomes(26). As indicated, future 

validation studies should focus on criterion (ii), in order to further demonstrate surrogacy.

CT scans yield a variety of structural markers, and the choice of which is used for a 

particular CF study will depend upon several factors, such as the age and severity of the 

population being studied, therapy being evaluated, and duration of the study. It is important 

to determine the extent to which a prospective CT marker is predictive of the clinical 

endpoint and whether the therapeutic response of the CT marker (as a surrogate) is 

predictive of the therapeutic response detected by the clinical endpoint. CT markers that 

have scoring systems independently validated prior to the study, have been utilized in 

previous CF clinical studies and are most closely aligned with the therapeutic aim and causal 

pathway should be considered as surrogates. Similar factors should be considered when 

selecting MRI markers as monitoring tools for clinical studies. Timing of study visits could 

also be considered, as MRI may be utilized to assess short-term changes in therapeutic 

studies(31, 36).

3. Addressing Sources of Bias Specific to CT Markers

3.1 Protocol, technology and data processing standards

An issue that has received little attention until recently is the impact of standardizing image 

acquisition techniques. Controlling lung volume is an important issue in the acquisition 

phase. In children of 6 years of age and above, lung volume can best be controlled for using 

a spirometer(37). Participants below the age of 6 years may have difficulty following 

spirometer-based protocols; in these instances, general anesthesia and a pressure-controlled 

protocol can be used for lung volume control(21). Children aged 3–6 years can be trained to 

execute a breath hold after taking a deep breath or at the FRC level. Alternatively, CT can be 

acquired for very young or non-cooperative children while the child is free breathing. For 

these children, scans acquired at a volume level near functional residual volume are less 

sensitive, compared to inspiratory scans for the detection of airway disease. Equally 

important factors to consider include radiation dose, pitch, reconstruction kernels, and slice 

thickness; all of which are known to influence image quality(17) and can be accounted for in 

prospective studies.

The selection of the CT protocol is closely linked to the image analysis methods used. When 

a (semi) automated analysis method is selected, tighter control of the CT protocol is 

required, but scoring methods are known to be less sensitive to choice of CT protocol and 

the aforementioned issues with lung volume control(22). To track disease over time, ideally 

the same volume and CT protocol should be used when follow up CTs are compared to 

baseline CTs. Recent work highlights the importance of standardization in multicenter 

studies using CT(17). In addition to previously mentioned longitudinal validation studies, 

assessment of standardization techniques are also needed for MRI. However, this issue is 

considered an important technical challenge for MRI.

Age can be a substantial confounder as the chest CT resolution is an important determinant 

for the smallest structures that can still be observed. This is especially important in the first 
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two years of life. Minimizing confounding through study design is ideal. It may be possible 

to use methods based on restriction or matching. Examples include subgroup or covariate 

adjustment to determine the extent of technology, processing or other effects on analysis 

results. These stratification and multivariable modeling approaches rely on measured 

confounders (i.e. the variables are recorded in the database).

3.2 Assessing observer reliability

Despite advancements toward automation, CT scoring systems still require observer 

evaluation to quantify degree of structural lung disease, and there is no gold standard metric 

to which observers can be compared. As such, observer agreement and reliability are 

indistinguishable and often used synonymously in the CF imaging literature. Observer 

scoring introduces variation known as measurement error (38). It is worth noting that, in 

contrast, automated scoring might introduce systematic error (e.g. over- or underestimation 

of airway wall thickness). The following recommendations on observer reliability apply 

generally to CT and MRI markers.

At minimum, it is recommended that any study with scored CT markers include reliability 

statistics within observer. Intra-rater reliability refers to the extent to which a single observer 

can replicate his previous scores on a series of scans. In terms of experimental design, the 

scans to be repeatedly scored should be selected using random sampling stratified by age 

and disease severity. This approach should be employed in CF studies, because of the 

heterogeneous nature of disease progression. For example a study may yield high reliability 

in the subcohort with severe disease and low reliability in the subcohort with mild disease.

The proportion of between-subject variation relative to the total variation is commonly used 

to estimate reliability. Shoukri and colleagues provide sample size calculations based on 

precision with which reliability can be estimated for test-retest data from one or more 

observers(39). This approach uses the confidence interval (CI) width as a measure of 

precision, level of confidence (i.e. alpha value), and specification of a “planning value” for 

the reliability estimate. For example, if high intra-rater reliability is anticipated (proportion: 

0.9) with sufficient precision (95% CI width: 0.2), the minimum number of scans to be 

rescored is 15. Sample size requirements will increase for the following inputs: lower values 

of planned reliability, higher precision and a higher confidence level. It is recommended that 

test-retest sample size, like other sample sizes described later, be calculated in the study 

design phase, as it will heavily depend upon the formula inputs, funding and other resource 

constraints.

Agreement between the primary observer (an experienced or certified observer whose scores 

are considered the benchmark) and other observer(s) is needed to check consistency. CT 

studies typically involve a primary observer and at least one other independent observer who 

is trained in the scoring system as part of the study. Depending on the extent to which a 

scoring system has been validated for the target population, it is important to have well-

calibrated scores. This process is often qualitative and consists of a subset of scans, chosen 

by the primary observer, being iteratively scored by the novice observer who discusses 

results with the primary observer. It is recommended that the calibration subset be chosen 

via stratified randomization. The scans should be selected through random sampling 
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stratified according to age and lung disease severity, to ensure calibration is broadly 

achieved. Sample size requirements for estimating inter-rater reliability can be formed as 

previously described. For example, if we consider two independent observers to have 

excellent agreement on their scores (proportion: 0.8) with sufficient precision (95% CI 

width: 0.2), the minimum number of scans to be scored by each observer is 52. If acquiring 

high numbers of subjects for imaging is more costly than utilizing multiple observers, then 

the sample size can be recalculated to include a higher number of observers. Assuming the 

same agreement and precision as before but utilizing three observers, for example, requires a 

minimum of 36 scans to be scored.

There are numerous inter-rater reliability indices available for CT studies (Table 2). In the 

majority of CF studies, the index of choice is the intra-class correlation coefficient (ICC)

(40). There are many versions of ICC, but the most commonly utilized version in the CF 

literature is the original based on the one-way random effects ANOVA model, which 

assumes that raters are interchangeable. In studies in which there is an experienced rater, the 

one-way random effects ANOVA can be modified to assess consistency across the different 

raters. Drawbacks to use of ICC and its categorical analogue, the kappa statistic (41), have 

been well described in the statistics literature, with a recent illustration involving 

cardiovascular imaging markers(42). A high estimate of ICC for an overall study sample 

does not always indicate strong agreement. For example, a CF study with participants who 

vary in age will likely yield CT markers with broad ranges (i.e., high between subject 

variability). Regardless of observer agreement, the ICC ratio will unfairly leverage the high 

between-subject variability relative to within-subject variability to produce a value close to 

1. Analogously, a study with a narrow subject age range may yield small between subject 

variability for each CT marker with ICC estimates that are incorrectly low. For these 

reasons, it is important to stratify ICC estimates by age and disease severity, which are 

known sources of heterogeneity in CF clinical studies. Poor ICC estimates within strata 

imply that additional calibration is necessary.

An alternative reliability statistic that relaxes the ANOVA assumption in the ICC is the 

Concordance Correlation Coefficient (CCC) (43); however, this statistic does not account for 

chance agreement and has not been widely used to assess reliability of imaging markers. 

Threshold-based approaches, such as Bland-Altman analysis(44) and coverage probability 

(CP), allow more targeted identification of discrepancies. The Bland-Altman approach 

consists of plotting the mean of differences between observer measurements of a given CT 

marker against the average of measurement pairs from the observers; limits of agreement on 

the plot can be used to identify systematic differences in observers across the range of 

measurement values, or instances of increased variation (i.e. lower precision) between 

observers. These limits are determined by mean difference, standard deviation of the 

differences and sample size. CP has the most advantages of the methods described (Table 2) 

for all stages of reliability assessment, but requires a priori identification of an acceptable 

threshold for the paired difference in observer scores.

Given the breadth of available reliability indices for CT markers, it is recommended that 

researchers report estimates for their selected reliability index and descriptive statistics for 

each type of CT marker, both overall and stratified by age and lung disease severity. The 
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additional estimates can be used to calculate other reliability indices, such as CP, enabling 

‘apples-to-apples’ comparisons of reliability estimates across CF studies and populations.

3.3 Acquiring baseline CT measurement

Baseline CT collection in clinical trials is necessary for assessing randomization, safety and 

quality of procedure/protocol adherence. Even in modified protocols described previously, 

young children (aged below 5 years) will not have the same participant performance in CT 

studies at baseline as they do in follow-up. It is recommended that the mean and variability 

of baseline CT data be examined prior to inclusion in efficacy analyses. The coefficient of 

variation, which is the SD divided by the mean in the sample, can be used to examine the 

quality of baseline data. A large value for this ratio would imply that the baseline data may 

not be reliable to assess efficacy; however, these data could still be used for phenotyping the 

patient and checking randomization. These issues do not exist for child participants who are 

5 years of age or older; change scores or other longitudinal variables have been validated in 

previous CF studies(3, 5, 19) and can be used in efficacy analyses.

As an individual grows, the sensitivity of a given CT marker will increase, due to airway 

development, improved ability to perform protocol steps (e.g. breath holds) and other 

factors. Growth introduces subtle changes related to the CT scanner performance that have 

not been thoroughly explored in CF studies. Discarding any baseline data is undesirable 

from a statistical standpoint. Depending on the coefficient of variation, it may be appropriate 

to include data from very young cohorts by adjusting for growth using established metrics. 

This could possibly be achieved using metrics as covariates or by performing a calibration 

analysis. The effectiveness of these approaches to salvage baseline CT data is unknown but 

could be investigated with the advent of young CF cohorts with imaging data.

4 Modeling CT Markers as Clinical Endpoints

4.1 Model Assumptions

The collection of CT marker data on an individual subject will consist of overall and region-

specific scores. We will need to assume that the outcome variable, given a treatment and 

possibly other exposure variables, forms a model that follows some type of statistical 

distribution. Most often, we assume a (multivariate) normal distribution. Distributions of CT 

markers and modeling assumptions should be assessed and reported in clinical studies. A 

normal distribution may be reasonable for CT markers observed at later stages of disease 

severity, but it is plausible in early-stage CF to encounter subjects whose CT markers are 

long-tailed (e.g. log-normal) or have zero values (e.g., bronchiectasis). Zeroes may be 

indicative of minimal or absent structural lung disease, an outcome that may be of interest 

itself. The data may appear “clumped” at zero, as there could be a proportion of subjects 

who at a young age have not experienced an insult in addition to their CFTR dysfunction 

resulting in bronchiectasis or other structural lung changes at a young age. Examples of such 

additional insults can be viral infection or acquisition of Pseudomonas aeruginosa. The 

remaining subjects who have developed structural lung disease will have continuous values 

for CT markers. The resulting data forms a skewed distribution that may not be well 
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approximated with a symmetric, bell-shaped curve like the normal distribution. Data of this 

nature are sometimes referred to as zero-inflated or semicontinuous data(45).

Examples of non-normally distributed data have been recently encountered in the Australian 

Respiratory Early Surveillance Team for CF (AREST CF) cohort (Figure 2). PRAGMA-CF 

markers for disease and bronchiectasis, obtained with permission from the previously 

published cohort data(9), have substantial lack of fit under the normal assumption. The mean 

and SD are both overestimated for % disease and % bronchiectasis. The fit to the % disease 

data is improved by accounting for the skewness using a lognormal distribution. Special care 

is required to fit the % bronchiectasis data, as roughly 42% of the data are zeroes. Min and 

Agresti reviewed and discussed practical strategies to combat zero-inflated and semi-

continuous data(45), which can be extended for longitudinal studies through use of random 

effects(46). Assuming a normal distribution in either scenario could yield biased estimates 

and misleading results about the extent of structural lung disease in the cohort being studied, 

and about the effects of treatment or associations with other exposure variables. Approaches 

to model CT markers and their relationships with covariates using alternative distributions 

should be considered for CT as well as for MRI marker data analysis.

4.2 Differential recruitment and missing data in CT studies

In prospective CT studies, participation will depend upon the eagerness of the individual 

subject. If the study has an intervention arm, participation will generally be high for CF 

subjects, regardless of whether CT scans are part of the protocol. Subject retention may be 

complicated in longitudinal settings in which it is expected that a subset of participants 

could drop out, miss scans, or receive scans at times that are not commensurate with the 

protocol (creating mistimed measurements). The nature of missing data in CT studies can 

also include technical failures, protocol violations (e.g. inappropriate data storage or slice 

thickness), and subject noncompliance. At the very least, missing data can reduce efficiency, 

thereby limiting statistical power; at worst, missing data can seriously bias study findings. In 

CT studies, this could imply incorrect conclusions about structural lung disease progression 

over time, or limited ability to detect efficacy in CF therapeutic studies. Practical methods to 

limit missing data and address the potential bias via statistical analyses, accounting for the 

missing data mechanism, are available(47).

In retrospective CT analyses, caution should be applied when selecting individual scans for 

inclusion. It has been shown in US CF registry analyses that sicker patients tend to have 

more clinical encounters. Because these patients are sicker, they tend to have worse 

outcomes(48). Such issues are avoided when only routine clinical scans are included in the 

analysis. It is recommended to randomly select scans for inclusion, if the study is 

retrospective. In prospective studies, such as clinical trials, the impact of including 

clinically-indicated scans could be assessed through sensitivity analyses. Ignoring this 

source of sampling bias could produce misleading results about associations between 

treatment and progression of structural lung disease as measured by CT.
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4.3 CT marker selection and sample size for models

Several CT markers have been developed over the years and have varying levels of 

sensitivity (Table 1). CT marker variability depends upon the type of cohort being studied, 

the scan protocol and scoring algorithm. Minimizing these sources of variability, in turn, 

maximizes the precision with which treatment effects or associations can be examined using 

a particular CT marker. Bronchiectasis and trapped air can be established with great 

precision and are well validated as clinically relevant endpoints. Scoring of airway thickness 

is more system dependent. The recently objective AA method allows assessment of both 

bronchiectasis and airways wall thickness with great precision; however, this method is 

time-consuming and not yet automated. The less intensive PRAGMA-CF scoring system has 

been shown to correlate well with the AA method and thus is currently the best available 

method as shown in published work (18) and studies now under review

CT marker effect sizes have not been thoroughly described in the literature, although 

estimates may be gleaned from completed studies (Table 1). None of the current CT markers 

have a designated minimally important clinical difference, a threshold used to indicate the 

smallest change in outcome that a patient would still identify as clinically important. Percent 

reduction for a given CT marker has been proposed as a biologically plausible outcome for 

CF clinical studies(18). For example, a 30% reduction in trapped air would be considered 

clinically relevant. It is worth noting that whatever particular feature the CT marker is 

intended to measure also determines clinical meaning of the % reduction. For instance, 

extent of bronchiectasis is a monotonically increasing attribute of structural lung disease, 

whereas trapped air may be reversed, to some extent, over time.

Both the choice of CT marker and threshold indicating clinically meaningful % reduction 

will impact sample size required for an interventional study (Figures 2c–2d). Effect sizes 

were formulated based on mean PRAGMA % disease and % bronchiectasis in children aged 

0–5 in AREST CF cohort (9) and were calculated as a % difference between means of two 

hypothetical treatment arms, assuming a traditional two group clinical trial design (i.e. mean 

% disease in children aged 0–5 is 1.90, 30% reduction would imply that in the interventional 

trial arm mean % disease would be reduced to 1.33, 50% would reduce it to 0.95, etc.). 

Higher magnitudes of the relative difference in % disease (Figure 2c) and % bronchiectasis 

(Figure 2d) allow for lower sample size requirements per group. Given the relatively low 

numbers of CF participants, it is likely that only large magnitudes of relative difference will 

be detectable in interventional studies using scoring systems such as PRAGMA-CF. More 

sensitive outcome measures, such as the AA-ratio, have the potential to improve precision, 

thereby enabling detection of relative difference with lower sample sizes.

5. Recommendations

With the number of imaging studies in CF and the advent of (semi) quantitative methods, 

there are several ways to improve the utility of CT and MRI markers. CT markers have been 

well validated in the literature, but their role in the randomized controlled trial setting still 

needs to be proven. MRI markers for studying CF lung disease progression are at an early 

stage; research to date indicates that this modality tends to overestimate the extent of early 

disease and underestimate advanced disease. Given the current findings on standardization 
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for each modality, CT and MRI markers may be feasible for Phase III and single center 

Phase II studies, respectively. There is now a CTN-TDN task force, composing guidelines 

that will further harmonize study protocol recommendations, complimenting existing efforts 

in the European Union that have been published (17) and are under review for CT. Similar 

efforts have recently been initiated for MRI. Furthermore, minimal barriers exist to 

implementing these standards for routine clinical scans. Clinical standardization at CTN-

TDN sites is expected to decrease bias inherent in the historical (less standardized) CT 

scanning and data collection methods, thereby enabling data pooling. Another strategy to 

minimize bias in MRI and CT studies is training and certification of observers. Additional 

standards for scoring systems should include randomized ordering, de-identification of 

scans, uniform lighting conditions, and well-defined analysis time. The advent of automated 

image analysis systems is also expected to decrease inherent bias in CT and MRI data 

processing.

Reproducibility is essential to elevate pre-processing and statistical analysis standards for 

imaging studies. Researchers should use online supplements to provide detailed data 

summaries, including formulas for pre-processing, aggregate calculations and statistical 

considerations, as in the recent study by Ramsey and colleagues (9). Accessing completed 

studies via data repositories could also streamline development of novel and robust imaging 

analysis methods. Such repositories could be leveraged to gain historical control data for 

examining novel therapies, similar to the use of CF patient registries to gain historical 

control data as comparisons of clinical trial findings. As reproducibility improves, annual 

reporting of summary statistics or trends in clinical data, such as lung function, BMI, and 

other markers reported by the US CF Foundation(49), could be expanded to include CT 

markers. With multiple modalities being used in parallel, efforts to use CT in conjunction 

with MRI and other markers can be considered to effectively monitor CF lung disease.

Although challenges with reliability, model assumptions and missing data are still at the 

forefront of imaging marker analysis, new challenges will emerge with more automated 

scoring systems, requiring development of spatial data models to understand detailed lung 

structure and consideration of multiple comparison adjustments as debated in the 

neuroimaging literature(50). Additional prospective longitudinal studies that include both 

imaging markers and functional outcomes will be helpful to examine associations between 

the two evolve over time, improving our understanding of both imaging markers and of the 

more traditionally used functional markers.
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Figure 1. Conceptual Model of Relationship between CT and Clinical Endpoints
Conceptual model adapted from Weintraub et al (35) reflects the uncertainty regarding the 

nature of the relationship between a given CT marker (surrogate), the clinical endpoint and 

other markers. The horizontal solid, black line represents the causal pathway of the CF 

disease process on which the clinical endpoint is situated (e.g., survival). The sloped, solid 

black line represents the CT marker in relation to the causal pathway. If these two lines 

intersect as indicated by the star, then the CT marker is a true surrogate. An intervention is 

likely applied downstream in the CF disease process, affecting the CT marker and/or the 

clinical endpoint, as noted by the dashed line with a downward arrow on each of the sloped 

and horizontal lines. It is also possible that another marker (e.g. FEV1%) affects the clinical 

endpoint independently of the CT marker as indicated by the gray line.
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Figure 2. CT Marker Distributions and Sample Size
PRAGMA data from AREST CF cohort (N=83 scans) in children less than 5 years of age. 

Histograms of % disease (a) and % bronchiectasis (b) with overlaying normal and lognormal 

distributions (solid and dashed curves, respectively); the “clump” of data in the leftmost 

vertical bar represents instances in which zero was the observed marker value; the sample 

mean (SD) for (a) and (b) were 1.90 (1.72) and 0.40 (1.14), respectively. Relative differences 

in % disease versus sample size (c) and in % bronchiectasis versus sample size (d); 

differences were based on mean and % reduction for each CT marker for two hypothetical 

treatment arms, assuming 80% power and type I error rate of 5%.
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