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Abstract

Outdoor air pollution penetrates buildings and contributes to total indoor exposures. We 

investigated the relationship of indoor to outdoor particulate matter in inner-city school 

classrooms.

The School Inner City Asthma Study investigates the effect of classroom-based environmental 

exposures on students with asthma in the northeast United States. Mixed-effects linear models 

were used to determine the relationships between indoor PM2.5 and BC and their corresponding 

outdoor concentrations, and to develop a model for predicting exposures to these pollutants. The 

indoor-outdoor sulfur ratio was used as an infiltration factor of outdoor fine particles.

Weeklong concentrations of PM2.5 and BC in 199 samples from 136 classrooms (30 school 

buildings) were compared to those measured at a central monitoring site averaged over the same 

timeframe. Mixed effects regression models found significant random intercept and slope effects, 

which indicate that: 1) there are important PM2.5 sources in classrooms; 2) the penetration of 

outdoor PM2.5 particles varies by school, and 3) the site-specific outside PM2.5 levels (inferred by 

the models) differ from those observed at the central monitor site. Similar results were found for 

BC except for lack of indoor sources. The fitted predictions from the sulfur-adjusted models were 

moderately predictive of observed indoor pollutant levels (Out of sample correlations: PM2.5: r2 = 

0.68, BC; r2 = 0.61).
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Our results suggest that PM2.5 has important classroom sources, which vary by school. 

Furthermore, using these mixed effects models, classroom exposures can be accurately predicted 

for dates when central site measures are available but indoor measures are not available.
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Introduction

Personal exposure to ambient and in-home air pollution is directly linked to adverse 

outcomes across a wide range of ages and health conditions (1, 2) including childhood 

asthma (3, 4). Outdoor pollutants penetrate the home environment and contribute to the 

overall personal exposure and asthma morbidity(5, 6); however, home characteristics, 

heating and cooking (7), and other personal activities(8) contribute to the overall burden of 

respirable pollutants.

Over the past 2 decades, attention has been directed to inhalant pollutants in primary schools 

across diverse locations, internationally(9-26). Particulate matter (measured as PM10 or 

PM2.5, predominately) has consistently found to be elevated indoor compared to outdoor, 

with few exceptions(27). In many studies, levels greatly surpassed indoor air quality (IAQ) 

reference thresholds(28, 29). The differences in locations by urbanization, ambient climate, 

ventilation system, and school characteristics likely contribute to diverse findings in 

comparing indoor to outdoor pollutants across studies. However, there is a lack of U.S. 

based school studies.

The school classroom environment is an important source of exposures to pollutants for 

children. While workplace micro-environments have been extensively studied for adults, less 

is known about the personal exposures in schools and classrooms – the child's occupational 

environment. In part, this is due to the challenges of deploying sampling equipment in 

school classrooms while school is in session. For children in urban United States, the school 

classroom presents a unique set of circumstances and exposures to those found in homes. 

Exposure to traffic-related pollutants may be intensified as schools are frequently located 

centrally within the community for easy access to traffic routes and have specific periods of 

drop-off and pick-up during which large numbers of buses and cars may idle next to the 

building(30). The buildings tend to be older and may suffer from poor maintenance and 

ventilation (31, 32). Additionally, there are fewer indoor pollutant emissions, as most 

schools have no active cooking and prohibit tobacco smoke on the premises. Few studies 

have evaluated the extent of poor indoor air quality in schools (9, 31).

Because most school classrooms lack indoor sources of combustion, it is reasonable to 

hypothesize that indoor pollutant concentrations are highly correlated to the outdoor 

pollution measures. In this analysis, we aim to 1) describe the relationship between indoor 

and outdoor levels of particulate matter ≤2.5 μm (PM2.5) and black carbon (BC) in inner city 

school classrooms attended by children with asthma in the School Inner City Asthma Study, 
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and 2) develop a model for predicting classroom PM2.5 and BC utilizing the sulfur tracer 

method and measurements from the local central monitor. We further compared this method 

with satellite predictions for classroom measures.

Materials and Methods

The School Inner City Asthma Study (ClinicalTrials.gov:NCT01756391) is a five-year 

prospective study evaluating the effects of the indoor environment of school classrooms on 

asthma morbidity for children with asthma attending public school. Detailed methods have 

been published previously (33). Briefly, children with asthma enrolled in the public school 

were recruited each summer prior to start of school and followed for the length of a school 

year with quarterly symptom assessments and biannual lung function testing. Informed 

consent/assent was obtained for all subjects. The enrolled subject's school classroom was 

assessed twice per year (fall and spring) for allergen, mold and endotoxin levels. Indoor 

levels of nitrogen dioxide and fine particulate matter were measured in a subset of these 

subjects’ classrooms. Additionally, school/classroom inspections and other relevant data 

were collected, such as cafeteria cooking operations, fuel type, and relation of classroom 

location to street/driveway. This study was approved by the investigational review board at 

Boston Children's Hospital

Particle sampling and chemical analysis

Weeklong indoor PM2.5 samples were collected using a personal exposure monitor (PEM) in 

school classrooms in 1 or 2 seasons during the academic school years between 2008 – 2013. 

PEM includes an inertial impactor designed specifically for personal or indoor sampling. 

PEM collects PM2.5 on Teflon filters at a low flow rate of 1.8 L/min. In addition, concurrent 

daily PM2.5 samples were collected at the central monitoring supersite, which is located 

within 10 km of the schools. Details on outdoor PM2.5 measurement at the central site have 

been previously described by Kang et al. (34). While the central site is part of the urban 

community, it is located approximately 20 m above ground level and is not adjacent to local 

highways.

Teflon filters, including blank filters, were weighed on an electronic microbalance (MT-5 

Mettler Toledo, Columbus, OH) prior to and after field measurements, after being 

equilibrated for a period of 48 hours in a particle-free room of controlled temperature 

(22±1.5°C) and relative humidity (40±5%). Following gravimetric measurement, Teflon 

filters were analyzed for indoor BC concentrations by measuring filter blackness using a 

smoke stain reflectometer (model EEL M43D, Diffusion Systems Ltd., United Kingdom). 

We assumed a factor of 1.0 for converting the absorption coefficient to BC mass, and then 

divided by each sampled volume to calculate indoor BC concentration. On the other hand, 

outdoor BC concentrations were measured using a single (λ=880 nm) channel aethalometer 

(model AE-16, Magee Scientific, Berkeley, CA). Two different BC methods were compared 

to establish a linear relationship (R2=0.72, Slope= 0.95). Sulfur concentration in both the 

indoor and outdoor PM2.5 samples was determined using X-Ray Fluorescence (XRF) 

spectroscopy (model Epsilon 5, PANalytical, The Netherlands) (35). Quality assurance and 
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control of XRF analysis was performed as previously described(36). All analyses were 

conducted at the Harvard T.H. Chan School of Public Health.

Sulfur Tracer Method for Determining Indoor PM2.5 of Outdoor Origin

Particle concentrations depend on particle infiltration, exfiltration, emission and deposition. 

Assuming no indoor sources of sulfur, the indoor penetration of PM2.5 emitted from outdoor 

sources can be approximated by the sulfur tracer method (37, 38). Accordingly, the indoor to 

outdoor sulfur ratio (SIN/SOUT) was calculated for each school classroom and classroom 

sampling period to approximate the infiltration fraction of fine particles.

Satellite predictions

Satellite-based exposure assessment of PM2.5 was assessed by a hybrid approach(39, 40). 

This hybrid approach combined simulation outputs from chemical transport model, land-use 

terms, satellite measurements and meteorological fields into a neural network. The neural 

network was trained with monitoring PM2.5 data from EPA Air Quality System (AQS) and 

made prediction of PM2.5 at 1 km×1 km grid cell on a daily basis. Ten-fold cross-validation 

demonstrated that predicted PM2.5 correlated well with monitoring data. Individual exposure 

levels were ascertained by matching schools geocoded location to the nearest 1 km×1 km 

grid cell. Estimates of ambient Black Carbon (BC) concentrations were generated using a 

validated nu-SVR (Support Vector Regression) prediction model trained with 24,709 

observations and 408 monitors throughout the region. Ten-fold cross validation showed good 

correlation between observed and predicted concentrations. Daily predictions at each school 

from 2000 to 2011 were made by extracting temporal and spatial predictors at each location 

and for each date.

Statistical Analysis

The indoor to outdoor ratio of sulfur concentrations in PM2.5 was used as the infiltration 

ratio for each sampled classroom, as noted above.

Descriptive Model

To examine the relationship between the indoor and outdoor concentrations of PM2.5 and 

BC, linear mixed-effect models were deployed, which used indoor concentration as the 

dependent variable, the product outdoor concentration *sulfur ratio as the independent 

variable, and the random effects at the school level (intercept and slope with unstructured 

covariance). A random component was dropped from the model if its variance estimate was 

less than twice its standard error. Additional covariates to reflect time were considered such 

as year of study and a restricted cubic spline of days since October 1st.

for ith school and jth classroom measurement
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Predictions of indoor concentrations

To determine an infiltration factor for a given day, a model was developed to predict the 

sulfur ratio. The following parameters were considered as predictors: ambient temperature, 

cubic spline of days, school year sampled, random intercept for school, random slope for 

school, condition of the classroom ceiling, walls, and windows, the number of windows in 

the classroom, whether the windows open, whether the windows face the drop-off/pick-up 

area, and floor level of the classroom. The final model included ambient temperature, spline 

of days, and school random intercept. The predicted sulfur ratio for a given classroom 

sample was estimated with this final model using all data points except for the classroom 

sample being predicted. This predicted sulfur ratio multiplied by the outdoor concentration 

equals the concentration of indoor particles that are of outdoor origin, the outdoor source 

contribution. Subsequently, indoor concentration was predicted for a given classroom sample 

using the mixed effects model described above using all data points except for the classroom 

sample being predicted.

Step 1—Calculate sulfur ratio for jth classroom in ith school

Step 2—Model the sulfur ratio at ith school and jth classroom measurement from cubic 

spline of days since school started, temperature, and school specific intercepts.

Step 3—Estimate outdoor contribution of indoor on given day

Step 4—Predict indoor concentration from estimate of outdoor contribution of indoor and 

school specific intercepts and coefficients.

Satellite-based estimates of PM2.5 and BC were evaluated in the models described above by 

interchanging the term for central monitor site measurement with the temporally related 

satellite-based value at the school. Satellite-based model results were compared with the 

central site sulfur-adjusted model.

Results

In total, 199 samples of PM2.5 mass and elements including sulfur and 198 samples of BC 

obtained from 136 classrooms across 30 school buildings were compared with PM2.5, sulfur, 

and BC measured at the nearby central monitoring site. Figure 1 depicts the geographic 

relationship between schools and the central monitoring site. Notably, the central site is on 

the roof of a 6 story building and median distance from schools was 4974 m (range 1065 m 

– 11592 m). Table 1 displays selected key characteristics of the schools and classrooms 
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sampled in this analysis. The majority of schools included were built in the early part on the 

20th century. None of the schools have gas cooking in the building and all had recently 

serviced furnaces. The classrooms largely had windows that were able to be opened and 

about 1/3 faced the pick-up and drop-off area.

Table 2 demonstrates the distribution of indoor and outdoor concentrations measured. The 

sulfur indoor/outdoor ratio mean was 0.72 (standard deviation=0.14) and was normally 

distributed. Evaluation of the sulfur ratio variability over time demonstrated that it was 

relatively stable across schools and classrooms with a slight increase at the end of the school 

year (Figure 2). This reflects local seasonal trends in which there may have been increased 

air exchange rates due to opening of windows and doors in warmer weather, leading to 

greater infiltration of outside particles.

The final descriptive models predicting indoor PM2.5 and BC (table 3) included an outdoor 

source fixed effect and school-level random effects. Sampling year and a term for time from 

start of school did not strengthen the model and so they were not included in the final mixed 

effects model for PM2.5 or BC. There was significant variation in both school-level 

intercepts and outdoor PM2.5 slopes, and these random effects were negatively correlated. 

The mixed effect model for BC showed little variance in school-level intercepts (σ2=0.01, 

s.e.=0.01), so this random effect was removed from the model. The BC model showed 

significant variation in school-level outdoor BC slopes, and the fixed effect of outdoor BC 

showed a stronger average school effect compared to that seen in the PM2.5 model 

(coefficient=0.80 vs. 0.54). The predictions from these models were highly associated with 

the observed indoor pollutant levels (PM2.5: r2=0.80; BC: r2=0.75).

Figure 3 illustrates the random effects of school in the PM2.5 and BC models. The random 

intercept for each school reflects the pollutant levels generated within the school. The 

random slopes of each school represent variation in the relationship between the central site 

and the indoor environment concentrations, independent of what is accounted for by indoor 

generation, penetration of the school envelope, or variability in the regional pollutant 

measured at the central site. Therefore, the slopes capture the variation in the immediate 

outside pollutant levels influencing the indoor environment.

These analyses suggest the presence of PM2.5 sources within the schools, but not for BC. 

The variability in school-level slopes in the BC model indicates that the site-specific outside 

BC levels (not measured but inferred from the model) differ from those observed at the 

central monitor site.

The predicted sulfur ratio was modestly correlated to the observed one (r2=0.31). However, 

when it was included in models predicting indoor PM2.5 and BC, estimates were well 

correlated with the observed ones (PM2.5: out of sample r2=0.68; BC: out of sample r2 

=0.62). The relationship between the predictive model for PM2.5 and BC is shown in figure 

4.

Since satellite-based PM2.5 models were only available through 2012 and BC models 

through 2011, we analyzed156 and 102 matched classroom samples, respectively. Satellite 
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models produced similar estimates to the sulfur-adjusted central monitor site (table 3), 

though the out of sample predictions were less accurate (PM2.5 r2=0.57; BC r2=0.40).

Discussion

School and classroom exposures to particulate air pollution are likely to have significant 

health effects in children, since they spend the majority of their time in this environment. 

However, particle monitoring inside schools is challenging. Understanding the relationship 

between indoor and outdoor particulate matter is important to assess the origin of exposures. 

Both indoor generated and ambient PM elicit an inflammatory response in the respiratory 

system(41). Additionally, given the constraints of conducting large population studies in 

school classrooms, accurate predictions of indoor pollutants is critical to understanding their 

health effects.

Here we demonstrate the strong relationship between the measured indoor classroom levels 

of PM2.5 and BC with the corresponding outdoor levels, even with overall low levels of 

particulate concentrations compared with other studies of similar findings (9, 13, 16, 18). 

Moreover, mixed effects modeling allows for understanding the relative contributions of 

indoor sources, local outdoor sources near the schools and regional sources of particle 

pollution to classroom air pollution. Our study suggests that indoor sources of PM2.5 

significantly contribute to indoor levels in many schools despite the absence of smoking and 

cooking on premises. Previous studies suggest that re-suspension of particles already 

deposited on the floor by classroom activities (8, 9, 21, 42) is an important source, 

particularly in temperate climates where windows and doors are frequently closed(15). 

Others have shown that while the majority of indoor PM2.5 is generated outdoors, a 

significant portion may be due to organic compounds and calcium-rich particles from chalk 

and building deterioration (9, 43, 44), as well as textiles, and outdoor soil components(13). 

Moreover, the composition of the classroom PM2.5 has been found to be significantly 

different from that of outdoor particles (9) and may contain more toxic (17, 45) and 

biologically active products(41). Despite this, PM2.5 of outdoor origin has been shown to 

have greater association with health effects in children with asthma (46).

While levels of PM2.5 associated with indoor sources varied across schools, this variability 

was not explained by school characteristics such as building age, furnace, or structural 

conditions, similar to schools studies from Munich, Germany(16), Belgium(9), and 

France(23, 24) in which classroom and school characteristics were not found to associate 

with indoor/outdoor particle concentration ratios. In the current study, samples were 

collected when school was in session to investigate the effects of normal classroom activity; 

therefore, resuspension of fine particles is likely to be an important contributor to indoor fine 

particle levels, a dominant feature noted in the Primequal study of French schools(23, 24).

Indoor PM2.5 levels were influenced by both indoor-school and outdoor particle sources. 

Whereas, the PM2.5 in the urban area originates from different sources, BC is more specific 

to traffic-related particles and thus exhibits a greater spatial variability in the city landscape 

(34, 47, 48). Indoor BC had negligible indoor source emissions and its concentrations were 

correlated with those measured at the central monitor supersite. This finding is consistent 

with our assumptions that, in the absence of cooking and tobacco smoke on school grounds, 
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BC concentrations would be a direct reflection of traffic pollutants infiltrating the classroom. 

Black carbon, along with gaseous byproducts of traffic, has been shown to easily penetrate 

schools and classrooms in urban areas (43).

We found little variability in the infiltration of outdoor particles across the school year as 

measured by sulfur tracer method. The sulfur ratio was consistently less than unity across 

classrooms with few exceptions, indicative of the lack or absence of indoor sources emitting 

sulfur, which is consistent with findings from previous studies (37, 49). Building conditions, 

ventilation, and seasonal influences have been implicated in the penetration of sulfur to the 

indoor environment (50, 51). We found ambient temperature, time, and the school random 

intercept to be significant predictors of the sulfur ratio, confirming the importance of 

seasonal and school building envelope attributes in PM2.5. Specific classroom 

characteristics, including the physical condition, total number of windows, and number of 

windows facing a drop-off area, were not predictors of sulfur indoor/outdoor ratio.

Moreover, using the sulfur tracer method, we were able to capitalize on this close 

relationship of indoor to outdoor levels of PM2.5 and BC to predict PM2.5 and BC classroom 

levels on days when no particle samples were available. Our cross-validation model 

provided good estimates of predicted indoor concentrations (PM : out of sample r2
2.5 =0.68; 

BC: out of sample r2=0.62). These correspond to correlations between held out and modeled 

values of 0.79-0.82. Model performance was superior to those of indoor-home models due to 

the low contribution of the indoor sources (52). In a limited subgroup of schools based on 

available data, we found that satellite-based PM2.5 and BC estimates to be similar, though 

overall less accurate in predicting indoor levels than the central monitor-based approach. 

The similarities are not surprising as the satellite estimates rely, in part, on the central 

monitor measures for calibration. The limited number of samples in the satellite-based 

analysis may account for part of the increased variance found in these models.

Our data analysis and interpretation of the findings presented here may be limited because of 

the relatively small number of samples and classroom time-activity data collected for each 

indoor sampling period. Additionally, weekday and weekend periods may have been 

included in the same sampling period. While our findings clearly show strong indoor-

outdoor correlations for PM2.5 and BC, the predictive model would likely be enhanced by 

greater quantity of indoor measures and discrimination of classroom activities. This belies 

the difficulty in population-based sampling in the inner-city school classroom where 

considerations of space, interference with educational activities, and sampling cost limit 

access. Despite these difficulties, our models were able to predict indoor PM2.5 and BC with 

good accuracy. Finally, the lack of cooking, geographic characteristics, and local weather 

patterns affecting this school district may limit the generalizability of these findings to other 

school classroom based cohorts; however, the purpose here was to predict exposures within 

the classrooms measured at least once. The methodology may serve as a framework to 

determine the relative outdoor contributions to indoor pollution more generally.

Despite extensive study of the indoor and ambient pollution health effects at the home(53), 

few published studies have explored the health effects of classroom/school specific pollution 

in children with asthma(54-56). We demonstrate that outdoor PM2.5 and BC concentrations 
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can be used to predict indoor concentrations in the unique microenvironment of the school 

classroom. These models may contribute to more robust health effects analyses in future 

studies.
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Figure 1. 
Location of schools and central monitor
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Figure 2. Variation in sulfur ratio over time
Sulfur ratio for each classroom sampled plotted by days starting October 1st. Each point 

represents the observed ratio of classroom sulfur/outdoor sulfur.
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Figure 3. Random Effects of School on PM2.5 and Black Carbon
Left Panel: Plot of the predicted indoor PM2.5 levels by the outdoor source contribution. 

Each point represents a classroom measure; each line represents a school's linear prediction 

that incorporates its school-specific random intercept and random slope. Right Panel: Plot of 

the predicted indoor BC levels by the outdoor source contribution. Each point represents a 

classroom measure; each line represents a school's linear prediction that incorporates its 

school-specific random slope (random intercept not included due to little school-level 

variation).
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Figure 4. Out-of-sample correlations of predicted and measured PM2.5 and BC by classroom
Left panel: Plot of predicted versus out of sample observed classroom PM2.5. Right panel: 

Plot of predicted versus out of sample observed classroom BC.
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