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Abstract

With enhanced concerns of terrorist attacks, dual exposure to radiation and thermal combined 

injury (RCI) has become a real threat with devastating immunosuppression. NLRP12, a member of 

the NOD-like receptor family, is expressed in myeloid and bone marrow cells and has been 

implicated as a checkpoint regulator of inflammatory cytokines as well as an inflammasome 

activator. We show that NLRP12 has a profound impact on hematopoietic recovery during RCI by 

serving as a checkpoint of TNF signaling and preventing hematopoietic apoptosis. Using a mouse 

model of RCI, increased NLRP12 expression was detected in target tissues. Nlrp12−/− mice 

exhibited significantly greater mortality, inability to fight bacterial infection, heightened levels of 

pro-inflammatory cytokines, overt granulocyte/monocyte progenitor cell apoptosis and failure to 

reconstitute peripheral myeloid populations. Anti-TNF antibody administration improved 

peripheral immune recovery. These data suggest that NLRP12 is essential for survival after RCI by 

regulating myelopoiesis and immune reconstitution.
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Introduction

The hematopoietic system is capable of rapidly increasing myeloid cell production in 

response to tissue damage and is critical for wound healing and infection clearance (1–10). 

While the factors that initiate emergency myelopoiesis are not fully elucidated, it is 

generally accepted that emergency myelopoiesis is tightly coupled with cytokine and growth 
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factor production, namely TNF and IL-6, and is mediated by NF-κB and other immune 

regulatory transcription factors.

Rare mutations in Nlrp12, a nucleotide-binding leucine rich repeat and pyrin domain-

containing receptor (NLR, also known as NOD-like receptor) 12, have been associated with 

periodic fevers in humans although the association needs to be further studied. Nonsense and 

splice mutations within human-Nlrp12 have been shown to diminish suppression of NF-κB 

signaling (11), however some variants do not exhibit such activity but are associated with 

modestly enhanced or more rapid inflammasome activation (12). The different functions 

observed with NLRP12 may be consistent with NLRP12 exhibiting an inflammasome 

function in certain infections (13, 14) but not other infections or inflammatory conditions 

(15). While the pyrin-domain containing members of the NLR family have largely been 

studied in the context of the inflammasome (16), there is growing evidence that a few play 

an important role in regulating inflammatory signaling. Some NLR proteins have been 

shown to be positive regulators of NF-κB, while NLRP12 has been implicated as a negative 

regulator of both the canonical and non-canonical pathways of NF-κB (17–21). NLRP12-

mediated NF-κB suppression has been implicated in colonic inflammation and 

tumorigenesis (17) and osteoclast differentiation (22).

The cytokines that regulate hematopoietic stem cell (HSC) function, such as IFNα/β, IFNγ, 

IL-12, and TNF, are tightly controlled elements of cell expansion. Type I IFNs and TNF, 

induced by TLR signaling, can act upon myeloid progenitors to promote the expansion of 

granulocyte/monocyte progenitors (GMP), leading to systemic myeloid expansion (23). 

Alternatively, excessive TNF signaling reduces myelopoiesis by inducing caspase-3/

caspase-8-dependent progenitor cell apoptosis (24). Excessive TNF, TLR signaling, and 

deficiencies in negative regulation of NF-κB lead to apoptosis of HSCs and defects in 

myeloid progenitor function (23, 25).

We and others have shown that burn and radiation injuries lead to increased susceptibility to 

infection within survivors (4, 6, 26). This is a pressing clinical problem in the face of nuclear 

accidents and possible incorporation of nuclear materials within explosives. This 

susceptibility has been attributed to a loss of inflammatory regulation, incomplete immune 

restoration and a systemic anti-inflammatory response following sepsis and shock (27–29). 

Following a radiation-thermal combined injury (RCI), an immature monocyte population 

(iMo) rapidly expands and predominates the periphery (26). Using this model, we observed 

that TNF is significantly increased in RCI compared to burn, radiation, and sham alone (26).

Given that NLRP12, which is known to suppress a number of cytokines, is present in bone 

marrow and myeloid cells (1, 25), we tested NLRP12-mediated regulation of TNF signaling 

within the context of emergency myelopoiesis. Unexpectedly, we demonstrate that NLRP12-

deficient mice are vulnerable to RCI due to decreased myelopoiesis.
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Methods

Mice and Combined Irradiation and Burn Injury procedure

The Nlrp12−/−, Caspase1/11−/−, Asc−/− and IL-1Ra−/− mouse strains have been described 

(30–33). All experiments were conducted with female mice housed under SPF conditions 

that were age-matched and backcrossed for at least nine generations onto the C57BL/6 

background. All studies were conducted in accordance with the IACUC guidelines of the 

University of North Carolina at Chapel Hill and NIH Guidelines for the Care and Use of 

Laboratory Animals. Our model of RCI has been previously described (26); briefly, mice 

received a subcutaneous injection of morphine (3mg/kg body weight) for pain control 

immediately before burn injury. A full-thickness contact burn of 20% total body surface area 

(TBSA) was produced and within 1 hour, mice received a 5Gy (dose rate of 0.98 Gy/min) 

whole-body dose of ionizing radiation and were maintained on oral morphine (0.4mg/ml) for 

the duration of the experiment. Sham controls with 0% TBSA underwent all described 

interventions except for the burn and γ-irradiation exposure.

Quantitative RT-PCR

RNA was extracted from organ homogenates, suspended in TRIzol and isolated according to 

the manufacturer’s protocol (Life Technologies, Carlsbad, CA). qPCR was performed using 

the Verso 1-step RT-qPCR SYBR Green Fluorescein Kit (Thermo Fisher, San Jose, CA). 

The expression of mouse mRNA encoding NLRP12 and GAPDH was assessed using the 

SYBR kit and analyzed on an Applied Biosystems machine; results were normalized to 

expression of the gene encoding GAPDH and were quantified by the change-in-threshold 

method (ΔΔCT) using primers previously described (18).

Histology

Mouse femurs were extracted and muscle and connect tissue were removed and initially 

preserved in 10% formalin. Femurs were then decalcified with Immunocal, waterwashed, 

and paraffin infused. Following sectioning and processing, sections were then stained by 

hematoxylin and eosin. Samples were processed using ImageJ to determine area of cell loss 

within each femur.

Pseudomonas aeruginosa infection

A wildtype strain (PAK) of P. aeruginosa was obtained from M. Wolfgang (University of 

North Carolina, Chapel Hill, NC). 106 bacteria were then aerosolized intratracheally as 

described previously (26).

Serum Collection and Cytokine ELISA

Animals underwent a submandibular bleed and systemic cytokines were measured by single-

plex ELISA (eBioscience, CA, USA or Biolegend, CA, USA) according to the 

manufacturer’s instructions or by Cytokine Mouse 20-Plex Panel (Life Technologies, 

Carlsbad, CA) on Luminex Bead Array technology.
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Flow Cytometry

All fluorescence-conjugated FACS antibodies were purchased from BD Biosciences or 

Biolegend. Antibody panel used to identify neutrophils and macrophages are described in 

the figures. The antibody panel for monocyte and neutrophil analysis was comprised of 

CD11c-PerCPCy5.5, CD11b-PECy7, Ly6G-APC, Ly6G-PE, and F4/80-FITC. The antibody 

panel for progenitor analysis was comprised of CD3, CD8, NK1.1, CD19, CD45RA, 

TER-119 (Ly-76) as a lineage negative gate with all antibodies conjugated to FITC, CD127-

PE/CF594, Sca1-APC, cKit-BUV395, FcγR-BV605, CD34-Alexa647, and Annexin V-

Pacific Blue. In each case, a million cells per organ were used for flow cytometric analysis.

Intracellular Staining and Phospho-flow cytometry

Intracellular staining was performed using a BD Bioscience Cytofix/Cytoperm kit. 

Antibodies used were TNF-PE (BD Biosciences), phosphor-p65 S528 (BD Biosciences), 

phospho-IκBa S32/536-eFlour 660 (eBiosciences), phospho-p38 ST180/Y182-PE and 

phospho-IKKα/β S176/180-PE (Cell Signaling Technologies). In each case, a million cells 

per organ were used for flow cytometric analysis.

TNF-Depletion

Immediately following combined irradiation and burn injury, mice were given 25mg/kg of 

rat IgG1, kappa anti-mouse TNF, clone MP6-XT3 or ratIgG1 isotype control (eBioscience, 

CA, USA) intraperitoneally dissolved in PBS (Sigma, CA, USA).

Statistical Analysis

Analysis was carried out with Prism 7.0 for Windows. All data are presented as the mean +/

− standard error of the mean (SEM). Complex data sets were analyzed by analysis of 

variance (ANOVA) with a Tukey-Kramer post-test HSD for multiple comparisons. Single 

data points were assessed by the Student’s two-tailed t test. For the CFU assays, we set the 

CFU at 100 if they fell below the theoretical limit of detection (101) for the assay; i.e treated 

as “0” regardless of their absolute values and did not include in the statistical analysis. The 

product limit method of Kaplan-Meier was utilized for generating the survival curves, which 

were compared using the log rank test. A p value less than 0.05 was considered statistically 

significant for all data sets.

Results

NLRP12 limits morbidity and mortality following RCI

Previous work has implicated NLRP12 in suppression of canonical and non-canonical NF-

κB, a key driver of inflammatory cytokine signaling (14, 15, 17, 18, 21, 34). We therefore 

investigated whether NLRP12 was acting to limit excessive inflammatory signaling and 

consequently promote peripheral immune reconstitution in our model of emergency 

myelopoiesis.

Wild type and Nlrp12−/− mice received a 20% TBSA burn and were irradiated with 5-Gy of 

γ-irradiation within an hour of burn injury. In wild type mice, we observed elevated 

NLRP12 expression in spleen, bone marrow and lung tissues early (3, 7, and 14 days post-

Linz et al. Page 4

J Immunol. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



injury) after RCI (Figure 1A) compared to burn or radiation alone and sham controls. 

Mortality among NLRP12-deficient mice was significantly elevated following RCI, but not 

following burn or radiation alone (Figure 1B). While RCI-wild type animals lost weight 

initially, they were able to return to a baseline weight by seven days after injury and exceed 

their baseline weight by 14 days post injury; RCI-Nrlp12−/− animals lost more weight and 

did not fully recover weight in comparison to wild type animals (Figure 1C). These data 

suggest that NLRP12 protected against morbidity after RCI.

Splenic and pulmonary immune repopulation is impaired following RCI in Nlrp12−/− mice

During events that induce enhanced myelopoiesis and inflammation, specifically RCI, we 

have shown that immature monocytes with high granularity comprise the majority of the 

peripheral immune system (26). We examined the splenic compartment in the Nlrp12−/− 
mice after RCI. NLRP12 deficiency resulted in a significant decrease in the total number of 

splenocytes by 14 days post-injury (Figure 2A). Using flow cytometry, with representative 

staining in Figure 2B, we observed a decreased number of splenic neutrophils (CD11b+ 

Ly6Cint Ly6G+ F4/80−) and immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) 

post-injury in Nlrp12−/− mice (Figure 2C). We also investigated the contribution of 

NLRP12 to the repopulation of lung immune cells (common sites of opportunistic infection 

in burn patients) after RCI. Nlrp12−/− mice displayed a reduced ability to repopulate the 

lung after RCI. This inability was characterized by a decrease in total CD45+ leukocytes and 

by the absence of the immature monocyte accumulation normally observed following RCI at 

two weeks post-injury (Figure 3A–B). There were no differences in macrophage (CD11b+ 

Ly6C+Ly6GloF4/80hi) accumulation in Nlrp12−/− mice when compared to wild type (Figure 

S1A). The total number of pulmonary macrophages, B and T cells were similar in Nlrp12−/
− and wild type mice (Figure S1B–D). These data implicate a role for NLRP12 in regulating 

emergency hematopoiesis following RCI.

Nlrp12−/− mice show decreased bone marrow and peripheral cell numbers following RCI

NLRP12 has been shown to be expressed constitutively in bone marrow cells (15, 18, 19, 

35). We hypothesized that reduced immune repopulation in the periphery of injured 

Nlrp12−/− mice was due to reduced cell generation and output by the bone marrow. To test 

this, we investigated the impact of NLRP12 deficiency on bone marrow populations after 

RCI. Nlrp12−/− mice had reduced total bone marrow cells compared to wild type mice after 

RCI. We also observed a decrease in total iMO and neutrophils (Figure 3C) within the bone 

marrow of Nlrp12−/− mice as early as seven days post injury compared to wild type mice. 

Additionally, we observe decreases in the total numbers of monocytes and neutrophils in the 

peripheral blood (Figure 3D). These data suggest that peripheral immune repopulation 

defects after RCI are likely attributed to decreased bone marrow cell numbers, which appear 

to be regulated by NLRP12.

Defects in myelopoiesis following RCI are not observed in inflammasome-deficient 
animals

NLRP12 is also found to form an inflammasome complex or regulate caspase-1 activity (14, 

17, 20) and regulates IL-1β processing by complexing with ASC during infection with 

Yersinia or malaria (14). To examine whether NLRP12 is important for inflammasome 
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activation following RCI, we assessed IL-1β levels after RCI in wild type or Nlrp12−/− 
mice. There were no detectable levels of IL-1β at any time point measured (Figure S2A). 

Due to inability to capture IL-1β levels in serum because of its high turnover, we examined 

the role of the inflammasome in RCI. We applied the RCI model to various mice strains 

lacking key components of genes encoding proteins that encode common shared 

components of the inflammasome. These include Caspase1/11−/− which lacks both 

canonical and noncanonical inflammasome caspases, Asc−/− which lacks the common 

adaptor shared by multiple inflammasome NLRs and AIM2, or Il1r−/− which lacks the IL-1 

receptor protein. Following RCI, Caspase1/11−/−, Asc−/− and Il1r−/− mice had a similar 

immune repopulation in the lung and spleen as wild type mice (Figure S2B–C). We also saw 

no significant differences in bone marrow populations in Caspase-1/11−/−, Asc−/− or Il1r−/− 

mice following RCI (Figure S2D). Additionally, injured Caspase-1/11−/−, Asc−/− or Il1r−/− 

animals did not show an increase in mortality compared to wild type (Figure S2E). Together, 

these results suggest that NLRP12 controls myelopoiesis in an inflammasome-independent 

pathway.

Nlrp12−/− mice display increased serum TNF, IL-6 and IL-12 cytokine and bone marrow 
TNF- receptor expression

Cytokines that are attenuated by NLRP12, in particular TNF, have been shown to enhance 

hematopoietic stem cell (HSC) expansion (2, 5, 10, 25). We therefore examined NLRP12-

dependent production of selected cytokines and their receptors after RCI. In wild type 

animals, serum TNF expression increased early following injury and declined over time 

(26). In sham-treated Nlrp12−/− animals, the TNF level was similar to sham wild type 

controls. However, during RCI in Nlrp12−/− animals, the TNF increased initially and was 

maintained over time – a significant elevation when compared to wild type mice (Figure 

4A). In addition, Nlrp12−/− bone marrow cells displayed increased TNFR expression (Figure 

4B) as well as CD40 and RANK (Figure 4C). Using intracellular straining, we observed that 

monocyte production of TNF after RCI is increased when compared to burn and radiation 

controls; however, in the absence of NLRP12, monocyte production of TNF is significantly 

elevated compared to wild type controls (Figure 4D). As well as TNF, other cytokines such 

as IL-6, IL-12, IFNα and IFNγ were increased in Nlrp12−/− mice compared to wild type 

mice but less so than TNF (Figure S3A). This elevation is potentially derived from the initial 

shock and the selective apoptotic environment induced by the absence of NLRP12 and 

necessary myelopoiesis. Heightened levels of IL-6 following trauma have been shown to be 

the major predictor of poor outcome (bacterial infection) following a traumatic injury (36). 

Other cytokines and growth factors (IL-4, IL-10, and GM-CSF) were measured but showed 

no significant differences between wild type and Nlrp12−/− animals (Figure S3B).

IκBa activity is increased in CD34+ cells Nlrp12−/− animals after RCI

Both the canonical and non-canonical pathways of NFκB have been shown to be negatively 

regulated by NLRP12 (13, 17, 22). We therefore examined NLRP12-dependent activation of 

key regulators of each pathway. No changes were seen in phosphorylation levels in sham, 

burn, or radiation controls; however, RCI NLRP12-deficient animals showed greater levels 

of pIκBα as well as pp65 (Figure 4D). Increased phosphorylation is indicative of increased 

canonical NFκB signaling in the absence of NLRP12. However, pIKKα/β and the 
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downstream p38/MAPK showed no changes in activity when comparing wild type to 

Nlrp12−/− injured animals. Taken with the increased TNFR expression on bone marrow 

cells, these results suggest that NLRP12 is negatively regulating the canonical NFκB 

signaling cascade.

RCI of Nlrp12−/− animals leads to increased granulocyte/monocyte progenitor apoptosis

We observed that NLRP12 regulates reconstitution of granulocytic and monocytic bone 

marrow and peripheral cells in Nlrp12−/− mice following RCI. We therefore hypothesized 

that NLRP12 regulates bone marrow granulocyte/monocyte progenitors (GMP), the source 

of granulocytes and immature monocytes. To test this, we utilized flow cytometric analysis 

to evaluate the number of GMP (Lin− IL7R− Sca1− cKit+ FcγRhi CD34+) in Nlrp12−/− mice 

following RCI.

We detected a similar number of bone marrow GMP in Nlrp12−/− and wild type mice at 3 

days after injury. However, at 7 and 14 days after injury, wild type GMP expanded and 

increased in numbers while Nlrp12−/− GMP expansion was attenuated (Figure 5A). There 

were no measured differences in lymphoid lineage progenitors (Figure S4). We tested the 

hypothesis that the significant decrease in GMP in Nlrp12−/− mice is due to increased 

apoptosis. To distinguish apoptotic cells from necrotic cells, 7-AAD and Annexin V staining 

was performed. While sham control revealed no difference in WT and Nlrp12−/− mice, a 

significant percent of Nlrp12−/− GMP underwent apoptosis compared to wild type GMP 

during RCI. This increase in apoptosis was detected as early as 3-days post injury (Figure 

5B). Representative flow gating is shown in Figure 5C.

Increased apoptosis and decreased bone marrow cellularity was confirmed by histological 

staining. H&E femur sections were obtained at 14 days post injury. There were no 

histological changes from wild type to Nlrp12−/− mice in sham, burn, or radiation alone 

animals. However, RCI-Nlrp12−/− mice displayed medial patches of cell loss within the 

femurs, which was not present in RCI-wild type femurs (Figure 5D), and quantified by 

imaging analysis in Figure 5E. Collectively, our findings imply that NLRP12 prevents 

progenitor cell apoptosis, thus allowing myelopoiesis and peripheral immune cell 

reconstitution to occur in wild type animals.

Leukopenia can have complex etiologies in both inflammatory and non-inflammatory 

conditions, many of which involve alterations in HSC steady-state hematopoiesis (9, 10, 37). 

Our data show that NLRP12 limits TNF following RCI, resulting in expansion of myeloid 

precursors and monocyte populations throughout the periphery. Previous studies showed 

increased hematopoiesis following total body irradiation; however, our results are novel 

because we have shown that NLRP12 promotes hematopoiesis of specific lineages during 

RCI (1, 26).

Anti-TNF antibody administration prevents NLRP12-associated GMP apoptosis after 
combined injury

After observing significantly elevated levels of TNF and reduced myelopoiesis in injured 

Nlrp12−/− mice, we hypothesized that increased levels of TNF were leading to pathology 

through TNF-mediated apoptosis of immune progenitor cells as seen in other models of 
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excessive TNF(38). Specifically, we hypothesized that GMP were undergoing TNF-

mediated apoptosis with reduced peripheral neutrophil and inflammatory monocyte 

accumulation. To test this, wild type and Nlrp12−/− mice received a single administration of 

anti-TNF or isotype control antibody immediately following RCI.

We observed significantly fewer GMP in the Nlrp12−/− mice given the isotype control 

compared to wild type mice. However, Nlrp12−/− mice given the anti-TNF antibody had 

similar numbers of GMP compared to isotype and anti-TNF treated wild type mice (Figure 

6A). Additionally, the proportion of GMP actively undergoing apoptosis was higher in the 

Nlrp12−/− isotype treated animals compared to Nlrp12−/− mice treated with anti-TNF 

(Figure 6B). This is correlated with a decrease in the total CD45+ pulmonary cells as well as 

pulmonary iMO (Figure 6C). We also observed no differences in overall mortality/morbidity 

compared to wild type mice and a reversal of the RCI-dependent bone marrow apoptosis by 

histology (data not shown). These data indicate that in the absence of NLRP12, TNF 

mediates the enhanced bone marrow death during RCI and resultant incomplete restoration 

of the peripheral immune system.

Nlrp12−/− mice lack control of pulmonary infection following radiation-thermal combined 
injury

In a clinical setting, patients that are able to survive initial shock from a burn or radiation-

thermal-combined injury will often succumb to a pulmonary infection associated with the 

prolonged hospital stay (34). We sought to evaluate the role NLRP12 deficiency plays in a 

clinically relevant model of a lung infection following injury. Wild type and Nlrp12−/− 
animals were subjected to either sham, burn, or radiation only, and RCI. Mice were then 

sustained for two weeks in individual housing wherein they were infected intratracheally 

with 1×106 CFU of Pseudomonas aeruginosa (PAK).

RCI-Nlrp12−/− infected animals displayed a significant increase in mortality, with animals 

starting to succumb to infection after as few as 12 hours (Figure 7A), significantly earlier 

than all other control groups, even radiation injured controls. Lung and liver from infected 

animals that survived until 48 hours post infection were collected and plated to enumerate 

bacterial load locally and systemically. RCI-Nlrp12−/− mice lungs and liver showed a 10-

fold increase in bacteria compared to injured, wild type animals (Figure 7B). We 

consistently observed that every mouse became infected within the RCI injured Nlrp12−/− 
groups, unlike every other group that frequently contained mice that cleared the infection. 

These data suggest that NLRP12 plays a vital role in response to an infection insult 

following a traumatic injury.

We next sought to determine the immune response to infection following RCI. Nlrp12−/− 
mice showed a decrease in innate, pulmonary immune cell populations following RCI and 

infection (Figure 7C), leading us to conclude that NLRP12 results in increased 

hematopoietic recovery which is likely crucial to the effective control of infection after 

traumatic injury.
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Discussion

Our study demonstrates that NLRP12 suppresses TNF signaling in vivo during 

inflammation-induced emergency myelopoiesis. Most importantly, our research indicates a 

role for NLRP12 in hematopoietic progenitor cells by limiting TNF-induced apoptosis of 

these cells. TNF inflammation initiated by RCI without NLRP12 leads to the apoptosis of 

progenitor cells and a defective peripheral immune reconstitution, associated with increased 

mortality and inability to control an infectious challenge.

In addition to inhibiting inflammation, defects in NF-κB signaling lead to weakened 

hematopoiesis (25). There is no single mechanism that has been defined for immune 

suppression in the response to traumatic injury, but hematopoietic stem cell (HSC) 

expansion and immune repopulation have been shown to be important factors (2, 5, 10, 25, 

37).

We propose that NLRP12 suppression of immune signaling pathways leading to attenuated 

cytokines contributes to homeostatic proliferation of granulocytes and monocytes following 

induction of severe leukopenia. Moreover, this NLRP12-mediated suppression limits overt 

TNF-induced inflammation that could lead to HSC apoptosis by limiting canonical NFκB 

signaling. Our findings add to the studies that suggest that NLRP12 acts as a cellular 

rheostat to limit inflammation, and is emerging as a “checkpoint” or inhibitor (17, 22) of 

canonical NFκB signaling (17, 32, 39, 40). Although we demonstrate increased p-IkB and 

pp65 levels in CD34+ cells from NLRP12 deficient mice undergoing RCI, suggestive of 

increased canonical NFkB signaling, it does not rule out a role for the non-canonical 

pathway, which could be evaluated by measuring either NIK or p100 processing. NLRP12-

mediated NFκB suppression likely limits TNF and cellular death during inflammation and 

hematopoiesis. Our data in NLRP12-deficient mice shows compromised hematopoiesis due 

to enhanced TNF production, leading to flagrant HSC/GMP apoptosis. This lack of HSC 

function leads to global leukopenia and correlates with increased mortality compared to wild 

type mice.

We have evaluated reconstitution as best we can; for the clinical situation that we are most 

interested in, namely infection control after combined injury, we were interested in 

functional reconstitution which we demonstrate by control of Pseudomonas. The cellular 

reconstitution is not optimal, rather, we have uncovered a “last ditch” attempt by the 

organism to reconstitute albeit with immature monocytes and a gene which appears to 

control this response. These studies would be applicable in instances of increased 

myelopoiesis, TNF-driven inflammation, and induced apoptosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NLRP12 expression is increased after combined injury, and acts to limits mortality and 
weight loss
Wildtype C57BL/6 mice were subjected to sham, 5Gy of γ-irradiation, a 20% total body 

surface area burn or a combined injury (RCI). (A) mRNA was isolated from spleen, bone 

marrow, and whole lung at 3, 7, and 14 days post injury. Relative Nlrp12 - expression was 

determined by qRT-PCR. (n=6/timepoint). Wildtype C57BL/6 or Nlrp12−/− mice were 

subjected to sham, 5Gy of γ-irradiation, a 20% total body surface area burn or RCI. (B) 

Survival and (C) weight loss were quantified. Data represented as mean ± SEM, with 

statistical significance compared to sham defined as *, p<0.05, **, p<0.005 and ***, 

p<0.001 by Student’s t test, with experiments performed in triplicate.

Linz et al. Page 13

J Immunol. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. NLRP12 regulates peripheral immune repopulation after combined injury
Wildtype C57BL/6 or Nlrp12−/− mice were subjected to sham or combined radiation and 

burn injury (RCI). Spleens were harvested 3, 7 and 14 days post injury and the total number 

of (A) splenocytes, (C)neutrophils (CD11b+ Ly6Cint Ly6G+ F4/80−) and immature 

monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) were quantified by flow cytometry 

analysis, (B) representative flow cytometric gating from an RCI mouse after gating on 

CD45+ and F4/80 expression level). Data represented as mean ± SEM, with statistical 

significance defined as *, p<0.05 and **, p<0.005 by Student’s t test with n=10 mice per 

group, with experiments performed in triplicate.

Linz et al. Page 14

J Immunol. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. NLRP12 regulates pulmonary immune repopulation and bone marrow cell numbers 
after combined injury
Wildtype C57BL/6 or Nlrp12−/− mice were subjected to sham or combined radiation and 

burn injury (RCI). Lungs were harvested 14 days post injury and the total number of (A) 

CD45+ cells, (B) neutrophils (CD11b+ Ly6Cint Ly6G+ F4/80−) and immature monocytes 

(iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) were quantified by flow cytometry analysis. 

Wildtype C57BL/6 or Nlrp12−/− mice were subjected to sham or combined radiation and 

burn injury (RCI). Bone marrow from femurs and tibias and blood from a cheek bleed were 

harvested 3, 7 and 14 days post injury and the total number of (C) bone marrow cells, 

immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi), neutrophils (CD11b+ Ly6Cint 

Ly6G+ F4/80−) from the bone marrow and platelets (CD62P+TER119−), monocyte and 

neutrophils from blood were quantified by flow cytometry analysis. Data represented as 

mean ± SEM, with statistical significance defined *, p<0.05, **, p<0.005 and ***, p<0.001 

by Student’s t test with n=6 mice per group, with experiments performed in triplicate.

Linz et al. Page 15

J Immunol. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Nlrp12−/− animals have increased serum cytokine and bone marrow receptor 
expression following combined injury
Wildtype C57BL/6 or Nlrp12−/− mice were subjected to sham or combined radiation and 

burn injury (RCI). The concentration of (A) TNF was quantified using ELISA in serum 3, 7, 

and 14 days post injury. We also analyzed mean fluorescent intensity of (B) TNFR, CD40, 

and (C) RANK on bone marrow cells harvested at 14 days post injury using flow cytometry. 

(D) The percentage of TNF producing iMos was determined using intracellular staining and 

flow cytometry. (E) The level of phopso-IκBα, phospo-IKKα/β, phosphor-p65, and 

phospho-p38 was quantified using intracellular staining and flow cytometry. Data 

represented as mean ± SEM, with statistical significance defined as ** p<0.005 by Student’s 

t test with n=5 mice per group, with experiments performed in triplicate.
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Figure 5. Nlrp12−/− animals have increased granulocyte/monocyte progenitor apoptosis after 
combined injury
Wildtype C57BL/6 or Nlrp12−/− mice were subjected to sham or combined radiation and 

burn injury (RCI). Bone marrow was collected from wild type and Nlrp12−/− mice at 3, 7, 

and 14 days post RCI or sham treatment (n= 6/group). Using flow cytometric analysis, (A) 

the total number of bone marrow Granulocyte/Monocyte Progenitors (GMP, Lin− IL7R− 

Sca1− ckit+ FcγRhi CD34+) and (B) the percentage of GMP cells undergoing apoptosis was 

determined by positive Annexin V staining in the absence of 7-AAD− staining cells; 

representative flow staining from Nlrp12−/− mice is shown is shown in (C). Data 

represented as mean ± SEM, with statistical significance defined *, p<0.05, **, p<0.005 and 

***, p<0.001 by Student’s t test with n=5 mice per group. In separate experiments, wildtype 

C57BL/6 or Nlrp12−/− mice were subjected to sham, irradiation, burn or RCI. Femurs were 

collected 14 days post injury and H&E staining performed for histological analysis. (D) 

shows representative sections from each group, with areas of cell death marked by white 

arrow (white bar represents 25um;), (E) quantification of cell death area was performed 

using ImageJ, with experiments performed in triplicate.
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Figure 6. Anti-TNF antibody administration prevents NLRP12-associated GMP apoptosis after 
combined injury
Wild type and Nlrp12−/− C57/BL6 mice received a single administration of anti-TNF or 

isotype control antibody immediately following combined radiation and burn injury (RCI). 

We harvested bone marrow and lung from these mice 14 days after injury. We quantified (A) 

the total number of bone marrow Granulocyte/Monocyte Progenitors (GMP, Lin− IL7R− 

Sca1− ckit+ FcγRhi CD34+) and (B) the percentage of GMP cells undergoing apoptosis by 

7-AAD− Annexin V+ staining by flow cytometry. We measured (C) the total number of 

pulmonary CD45+ cells and immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) 

by flow cytometry analysis. Data represented as mean ± SEM, with statistical significance 

defined as *, p<0.05 by Student’s t test with n=5 mice per group, with experiments 

performed in triplicate.
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Figure 7. Nlrp12−/− mice lack control of pulmonary infection following combined injury
Wildtype C57BL/6 or Nlrp12−/− mice were subjected to sham or combined radiation and 

burn injury (RCI). Mice were inoculated 14 days post-injury intratracheally with 1×106 CFU 

of Pseudomonas aeruginosa (PAK). We quantified (A) survival, (B) bacterial load within 

lungs and liver by culture, and (C) number of splenic CD45+ cells, neutrophils (CD11b+ 

Ly6Cint Ly6G+ F4/80−) and immature monocytes (iMOs; CD11b+ Ly6C+ Ly6GhiF4/80hi) 

harvested two days after inoculation. Data represented as mean ± SEM, with statistical 

significance defined as *, p<0.05; **, p<0.05 by Student’s t test with n=6 mice per group (3 

for burn and radiation only), with experiments performed in triplicate.
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