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Abstract: Idiopathic pulmonary fibrosis (IPF) has attracted extensive attention for its unexplained progressive lung 
scarring, short median survival and its unresponsiveness to traditional therapies. Despite extensive studies, the 
mechanisms underlying IPF pathoetiologies, however, remain poorly understood. Recent advances delineated a 
potential function of endoplasmic reticulum (ER) stress in meeting the need of fibrotic response, which pinpointed 
a critical role for the unfolded protein response (UPR) pathways in IPF pathogenesis. In this review, we highlight the 
effect of ER stress and the activation of UPR on the survival, differentiation, function and proliferation of major pro-
fibrotic cells in lung tissues during the course of IPF, and discuss the feasibility whether targeting UPR components 
could be an orientation for developing effective therapeutic strategies against this devastating disorder in clinical 
settings.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a disease 
associated with severe lung dysfunction by 
affecting gas exchange that often bears fatal 
consequences [1]. The survival median range 
for the affected patients is about three years 
after the initial diagnosis [2]. The incidence of 
IPF has been recognized with a profound 
increase in elderly patients (50-70 years old), 
particularly in those with a history of cigarette 
smoking [3, 4]. There is evidence that males 
are more vulnerable to IPF than females [1, 5]. 
Despite past extensive studies, the mechanis- 
ms underlying IPF, however, remained enigma- 
tic.

The endoplasmic reticulum (ER) is a special 
organelle in eukaryotic cells characterized by 
an interconnected network of flattened sacs or 
tubes encased in membranes. In general, ER is 
responsible for the correct folding and trans-
port of synthesized proteins in vesicles to the 
Golgi apparatus. However, factors like calcium 

depletion, redox homeostatic alteration, nutri-
ent deprivation and environmental insults (e.g., 
viral infection) can affect the folding processes 
of synthesized proteins, leading to an increase 
of unfolded proteins, a state of ER stress that 
triggers the activation of the unfolded protein 
response (UPR) [6]. To date, ER stress and UPR 
signaling have been recognized implicated in 
the pathogenesis of many complex disorders 
such as diabetes and neurodegenerative dis-
eases. However its involvement in diseases 
associated with fibrotic remodeling of internal 
organs including heart, kidneys, liver, gastroin-
testinal tract and lungs is just recently emerg-
ing [6-11]. We, therefore, in this review, will dis-
cuss with focus on its impact on major profibrot-
ic cells that contribute to the pathogenesis of 
pulmonary fibrosis. Our purpose is to deepen 
and expand our understanding of the mecha-
nisms underlying the initiation and progression 
of IPF, thereby developing better therapeutic 
strategies against this devastating disorder in 
clinical settings.

http://www.ajtr.org
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Figure 1. Overview of fibrogenesis in IPF. In the early phase of fibrogenesis, epithelial and/or endothelial damage 
caused by a variety of irritants can initiate an anti-fibrinolytic coagulation cascade, temporarily plugging the dam-
aged vessel with platelets and fibrin-rich clots to quickly restore homeostasis. Meanwhile, thrombin and the injured 
epithelium can directly evoke fibroblast activation and promote fibroblast differentiation into collagen-producing 
myofibroblasts. After a short period of time, clot-forming responses rapidly progress into a phase, in which many 
inflammatory cells such as macrophages, neutrophils, and lymphocytes are recruited into the injured site, where 
they secretecopious amount of cytokines to eliminate the inciting factor whilst activating the resident quiescent 
fibroblasts into myofibroblasts. However, once an imbalance in cytokine production coupled with dysregulated cellu-
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The initiation and progression of IPF

In general, a wound-healing response is con-
sisted of three distinct stages: injury, inflamma-
tion and repair. In the current paradigm for IPF 
pathogenesis, pulmonary fibrosis progresses 
as a final pathological outcome of aberrant 
wound healing responses to persistent lung 
injury (Figure 1), as it is characterized by the 
excessive extracellular matrix (ECM) deposition 
in the lungs [12-15]. In the early stage, events 
such as ER stress, and molecular mediators 
such as excessive transforming growth factor β 
(TGF-β) activation and a variety of chemokines 
release, induce epithelial cell dysfunction or 
apoptosis, which then activate resident fibro-
blasts to proliferate for injury repair. Epithelial-
to-mesenchymal transition (EMT) along with 
fibrocyte recruitment and differentiation is also 
considered as a pivotal feature relevant to pul-
monary fibrotic remodeling [16-20]. Epithelial 
death would also recruit inflammatory cells 
such as macrophages, which then produce 
cytokines or chemokines to generate a micro-
environment in favor of fibrosis for injury repair. 
As this process continues, abnormal quantities 
of matrix components would be produced, 
which then trigger an excessive deposition of 
scars in the lung tissues [18, 21]. Furthermore, 
the pathologically remodeled matrix or epigen-
etic changes within fibroblasts may lead to a 
feed-forward loop of mesenchymal cell activa-
tion and progressive fibrosis [22, 23]. Collec- 
tively, persistent irritants contribute to a cas-
cade of abnormal regulatory mechanisms to 
cause vast pulmonary epithelial apoptosis, 
continuous fibroblast activation and increased 
myofibroblast differentiation, which then lead 
to excessive ECM deposition and distort lung 
tissue architecture, ultimately, resulting in pul-
monary fibrosis and respiratory failure.

ER stress and the unfolded protein response 
(UPR)

As mentioned above, ER is a organelle respon-
sible for proper folding of membrane and 
secreted proteins, lipid biosynthesis, glycogen 
production and storage, as well as intracellular 
calcium homeostasis [24, 25]. Under physiolog-
ical condition, the nascent proteins enter ER 
lumen where they undergo a chaperone-based 

folding, together with intricate polypetide modi-
fications, including N-linked glycosylation, disul-
fide bond formation, proline cis-trans isomeri-
zation and so on [26-28]. The proper function 
of proteins requires correct folding and post-
translation modification, which is assisted in 
part by chaperone proteins such as calnexin, 
calreticulin (CRT), the Hsp70 family member 
immunoglobulin heavy-chain-binding protein 
(BiP, also named as glucose regulated protein 
78, GRP78). However, disturbances in redox 
regulation, glucose deprivation, viral infection 
or calcium metabolism are proved to bring 
about aggregation of unfolded or misfolded 
proteins along with ER stress [29-31]. Upon the 
initiation of ER stress cascade, unfolded pro-
tein response (UPR), integrated stress response 
(ISR) and ER-associated degradation (ERAD) 
are activated, which are aimed to halt protein 
translation, improve protein folding, sustain cel-
lular homeostasis, and avoid cell death from 
accumulation of unfolded or misfolded proteins 
[32-35]. Nevertheless, growth arrest and cell 
death through apoptosis would occur once the 
disruption is overwhelming that these objec-
tives could not be achieved within a certain 
time span [36, 37].

Generally, the UPR pathways are governed by 
the coordinated action of three ER transmem-
brane stress sensors: PKR-like ER kinase 
(PERK; also known as EIF2ZAK3), activating 
transcription factor 6α (ATF6α) and inositol-
requiring enzyme 1α (IRE1α; also known as 
ERN1) [25, 38]. PERK and IRE-1 share similar 
ER luminal domain structures and a cytosolic 
Ser/Thr kinase domain, and are activated by 
autophosphorylation. In contrast, ATF6α con-
tains a cytosolic cyclic AMP response element-
binding protein (CREB)-ATF basic leucine zipper 
domain, and is activated by proteases [39]. 
Under unstressed homeostatic conditions, 
these three proteins maintain each in an inac-
tive state through binding to the molecular 
chaperone BiP (GRP78) [40]. Once aberrant 
proteins accumulated in ER, more available BiP 
is in demand to dissociate from the ER stress 
sensors to interact with the exposed hydropho-
bic regions of these proteins [41, 42], thereby 
releasing the stress sensors to activate the 
cascade of events designed to protect the cell 
from ER stress (Figure 2).

lar recruitment occurs, a normal wound-healing response can switch into a pathological fibrotic reaction, ultimately 
resulting in pulmonary fibrosis. MAC = macrophages, BAS = basophils, NEU = neutrophils, MC = mast cells, EOS = 
eosinophils. 
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Figure 2. Schematic illustration of ER stress and the activation of three UPR pathways. Under stressed condition, 
BiP dissociates from the ER stress sensors owing to aggregation of unfold or misfolded proteins in ER lumen, which 
releases the stress sensors to initiate downstream signaling. Activated PERK undergoes autophosphorylation and 
dimerization and subsequently inhibits ribosome assembly by phosphorylating the α-subunit of eukaryotic transla-
tional initiation factor 2 (eIF2α). Once becomes phosphorylated, eIF2α not only suppresses protein translation, but 
also upregulates the expression of activating transcription factor 4 (ATF4), which would induce the transcription of 
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Although all three UPR pathway sensors are 
activated to alleviate ER stress and sustain the 
cellular homeostasis, cell death pathways such 
as caspase-4 (and its murine homolog caspa- 
se-12) and C/EBP homologous protein (CHOP), 
are activated by prolonged or overloaded ER 
stress [25, 43-45]. Caspase-4 is found in the 
ER membrane and activates cell death path-
ways through caspase-3 and caspase-9 [45]. 
CHOP, a major transcriptional factor for regula-
tion of cell death under ER stress, can be acti-
vated by all three UPR pathways [46, 47], re- 
sulting in the reduction of anti-apoptotic mito-
chondrial protein Bcl-2, which would favor a 
pro-apoptotic intention at mitochondria associ-
ated with mitochondrial damage, cytochrome c 
release and caspase 3 activation [48].

The implication of profibrotic cellular ER 
stress during the course of IPF

Lung parenchyma constitutes all sorts of cell 
types including alveolar epithelial cells, macro-
phages, (myo)fibroblasts, and so forth that con-
tributes to the progression of IPF. The past 
decade witnessed convincing potential links 
related to ER stress in these profibrotic cell 
types during the course of IPF [49]. In this sec-
tion, we seek to bring all evidence together sup-
porting the potential role of ER stress in those 
critical cells during the course of IPF develop-
ment and progression.

Alveolar epithelial cells (AECs)

The alveolar surface is covered by large flat 
type I alveolar epithelial cells (AECIs) and small 
fraction of type II alveolar epithelial cells 
(AECIIs). The former are the main cell type to 
mediate lung gas exchange function based on 
their location in approximation to the pulmo-
nary capillary endothelium, while the latter are 
responsible for the biosynthesis of pulmonary 
surfactant and for the maintenance of alveolar 
integrity due to its capability in cellular division 
[50-53]. Early reports suggest that ER stress-

induced epithelial cell dysfunction is perceived 
as a considerable aspect in the pathophysiolo-
gy of IPF.

AEC apoptosis

Several lines of evidence convincingly show 
that AECs appear to be particularly sensitive to 
apoptosis following lung injury in IPF [54-56]. 
Increasing data support that apoptosis of AECs 
is considered as a key incident initiating and 
propagating pulmonary fibrosis in the lung 
parenchyma [57-59]. Indeed, ER stress in AECs 
can be induced by numerous stimuli, among 
which exon4 deletion and L188Q substitution 
of SFTPC as well as SFTPA2 are classically 
identified in IPF patients [46, 60-63], and AECs 
are more prone to apoptosis after bleomycin 
treatment. In 2008, studies conducted by Mulu- 
geta and colleagues for the first time provided 
evidence that a severe ER stress in AECIIs lin-
ing the areas of fibrosis was likely to underlie 
the execution of the intrinsic apoptosis path-
way in patients with IPF [64]. Intriguingly, her-
pesvirus proteins (CMV, EBV, and KSHV) could 
be also detected in the same AECs that show 
evidence of ER stress and UPR activation, 
implicating a potential role of herpesviruses in 
IPF progression through induction of this path-
way [65]. However, no typical IPF characteris-
tics can be noted under conditions that AECIIs 
only possess the L188Q substitution of SFTPC 
or treat with tunicamycinalone [66]. Other than 
the classical bleomycin-induced pulmonary 
fibrosis animal model, the murine model for 
amiodarone (AD)-induced lung fibrosis has also 
revealed that intratracheal aerosol administra-
tion of AD causes an interstitial fibrosis in 
C57Bl/6 mice accompanied by increased AEC 
apoptosis, lysosomal stress and ER stress [67]. 
Furthermore, treatment of A549 cells, a human 
lung adenocarcinoma epithelial cell line, with 
amosite asbestos fibers induces AEC ER stress 
as evidenced by the increased expression of ER 
stress-related proteins (IRE-1, spliced XBP1, 

protective genes DNA damage-inducible protein 34 (GADD34) as well as the pro-apoptotic gene encoding C/EBP 
homologous protein (CHOP). In general, CHOP is often produced in the terminal unfolded protein response (UPR) 
to induce apoptosis. After dissociating from BiP, ATF6α translocates to the Golgi apparatus, where it is cleaved by 
site 1 protease (S1P) and S2P into an NH2 terminal domain and a cytosolic fragment (ATF6p50). ATF6p50 is then 
transported into the nucleus and activates the transcription of several ER proteins such as X-box binding protein 1 
(XBP1), calreticulin, calnexin, disulfide isomerase and CHOP. Upon activation, IRE-1α dimerizes and cleaves XBP1 
into its spliced form, which then acts as a transcription factor of many stress proteins to enlarge the protein-folding 
capacity of ER, and to induce the expression of ER associated degradation (ERAD)-related proteins such as ER deg-
radation enhancing α-mannosidase-like protein (EDEM). 
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and CHOP), and similarly, ER Ca2+ release along 
with intrinsic apoptosis were manifested in rat 
primary-isolated AECIIs following the treatment 
[68].

As noted above, IPF is a hard-to-diagnose fatal 
interstitial lung disease with a poor response to 
traditional therapies, and therefore, early diag-
nostic biomarkers are urgently needed. There 
is evidence that circulating caspase-cleaved 
cytokeratin-18 (Cck-18), a cytoskeletal protein 
originally found in pseudostratified and simple 
epithelia [69], could serve as a marker of AEC 
apoptosis and UPR activation in IPF patients, 
and elevated circulating levels of Cck-18 in 
patients also portrays it as a useful IPF diag-
nostic biomarker [70]. More recently, studies 
revealed that ER stress-induced intrinsic apop-
tosis in human AECs is mediated by the genera-
tion of angiotensin (ANG) II, which can be atten-
uated by its counter regulatory antiapoptotic 
peptide ANG1-7 [71], implicating ANG1-7 possi-
bly held therapeutic potential for the treatment 
of ER stress-induced pulmonary fibrosis [72]. 
Similarly, inhibition of CaMKII [73] and inhibitor 
of synoviolin (LS-102) [74] have been found to 
provide protection against pulmonary fibrosis 
through suppressing ER stress and AEC apop-
tosis. Moreover, DNA damage in AECIIs caused 
by bleomycin or doxorubicin, and ER stress 
caused by tunicamycin, upregulate the expres-
sion of osteopontin (OPN) in AECIIs in an ERK-
dependent manner, indicating the probable 
function of OPN as a survival factor for AECIIs 
during the early stage of IPF [75]. As the mas-
sive target spots emerge, due to several critical 
shortages such as insufficiency in sample 
capacity and the lack of robust clinical trials, 
further studies are still required in order to con-
firm these therapeutic potentials.

Epithelial-to-mesenchymal transition (EMT)

EMT is defined as a process by which epithelial 
cells lose their cellular polarity and cell to cell 
adhesion, and then gradually convert to mes-
enchymal stem cells following activation by 
specific growth factors, of which TGF-β is the 
prototype [19]. Recently, EMT, in which AECs 
undergo transition to ECM-producing (myo)
fibroblasts, has received intense attention in 
the pathogenesis of IPF. The response to TGF-β 
in EMT during pulmonary fibrosis is mediated 
predominantly via Smad-dependent pathways, 
although non-Smad signaling pathways have 

also been discovered under certain conditions 
[76]. Upon TGF-β stimulation, the complex com-
posed of phosphorylated Smad2, Smad3 and 
Smad4 translocate into the nucleus, where it 
binds to transcriptional factors and modulate 
transcriptional responses. As a result, the 
inhibitory Smad, Smad7, can reverse fibrosis in 
renal and lens epithelia in a Smad-dependent 
manner [76-79]. In contrast, the mitogen-acti-
vated protein kinase (p38MAPK), Src family 
protein kinases, phosphatidylinositol 3’-OH 
kinase (PI3K/Akt), Rho/Rac, Wnt/β-catenin, as 
well as ERK have been suggested implicated in 
TGF-β-induced non-Smad-dependent EMT [76, 
80, 81]. However, the distinction between 
Smad-dependent and nondependent pathways 
is difficult due to their significant cross talk 
between each other.

There is emerging evidence that accumulation 
of mutant SP-C protein or thapsigargin- or tunic-
amycin-induced ER stress in A549 and RLE-
6TN cells contributes to pulmonary fibrosis 
through EMT at least in part dependent of 
Smad2/3 or Src-related pathways [82, 83]. It 
has also been noted that the IRE1/XBP1 path-
way promotes EMT by means of mediating snail 
expression in pulmonary fibrosis [84]. Further- 
more, Bax inhibitor-1 (Bl-1) [85], an anti-apopto-
sis protein capable of inhibiting Bax activation 
[86], phenylbutyric acid (PBA), a low molecular 
weight fatty acid [87], and melatonin, a potent 
antioxidant mainly secreted by pineal gland 
[88], are also found to inhibit ER stress and 
EMT during bleomycin-induced pulmonary 
fibrosis in mice. They regulate the Ca2+ dynamic 
status and the expression of calnexin, and 
thereby modulating NF-κB signaling, and atten-
uating the activation of ER stress-related pro-
teins. Collectively, ER stress is likely implicated 
in EMT during IPF development, additional stud-
ies, however, would be necessary to reach a 
conclusive remark. 

Macrophages

Macrophages are present in almost all tissues 
of the body and play a critical role in innate and 
adaptive immunity in response to the change of 
microenvironment [89]. Generally, pulmonary 
macrophages can be divided into alveolar mac-
rophages (AMs) that strategically distributed in 
the airways, and interstitial macrophages (IMs) 
that positioned in the lung parenchymal tissues 
[90, 91]. Macrophages that mainly produce 
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pro-inflammatory cytokines are called classi-
cally activated macrophages (M1), which can 
be activated either by IFN-γ or LPS [92], where-
as those activated by IL-4 or IL-13 associated 
with attenuation of inflammation and enhance-
ment of tissue repair are referred as alterna-
tively activated macrophages (M2) [93, 94]. 
During activated immune responses of IPF, dif-
ferent classes of macrophages with distinct 
functions are now recognized.

Over past few years, our understanding of the 
mechanisms underlying pulmonary fibrosis has 
been further expanded by the discovery of ER 
stress in pulmonary macrophages [95]. It was 
initially noted that mesenchymal stem cells 
(MSCs) hold promise as a novel treatment in 
IPF through the secretion of stanniocalcin-1 
(STC1). Specifically, STC1 regulates oxidative 
and ER stress along with reduced TGF-β pro-
duction in pulmonary macrophages to attenu-
ate fibrosis in the lung [96]. Indeed, it has been 
well recognized that predominant infiltration of 
M2 macrophages in the areas of lung fibrosis 
acts as a vital regulator of fibrogenesis during 
IPF development and progression [97-99]. 
Similarly, the role of IL-4 and IL-13-mediated 
signaling in M2 macrophage polarization has 
been well established both in vitro and in vivo 
[100]. IL-4 receptor-α (IL-4Rα) signals through a 
JAK-STAT6 pathway to regulate the expression 
of numerous geneses sential for M2 polariza-
tion such as arginase 1 (Arg1), macrophage 
mannose receptor 1 (also known as Cd206), 
resistin-like-α (also known as Fizz1) and chitin-
ase 3-like 3 (also known as Ym1) [101, 102]. 
IL-4 may also induce the activation of phos-
phoinositide 3-kinase (PI3K), as evidenced by 
that phosphatidylinositol-3,4,5-trisphosphate, 
a product of PI3K, can be dephosphorylated by 
the phosphatase SHIP, and mice deficient in 
Ship manifest impaired M2 polarization [103]. 

Interestingly, recent evidence indicates that ER 
stress probably modulates the activation of M2 
macrophages [104]. During the past few years, 
our laboratory has been focused on the effect 
of ER stress on fibrogenesis. In a model of uni-
lateral ureteral obstruction (UUO)-induced renal 
fibrosis, we first noted that mice deficient in 
Chop were protected from UUO-induced renal 
fibrosis [105]. We demonstrated evidence that 
Chop deficiency provides protection for tubular 
cells against UUO-induced apoptosis and sec-
ondary necrosis along with attenuated Hmgb1 

passive release and active secretion. As a re- 
sult, loss of Chop repressed Hmgb1/TLR4/NF- 
κB signaling, thereby inhibiting UUO-induced 
IL-1β production. Subsequently, the IL-1β down-
stream Erk1/2 activity and its related c-Jun 
activity were reduced, which led to attenuated 
production of TGF-β1 along with repressed 
renal fibrosis following UUO insult. Consistent 
results were reported by Tanaka and colleagues 
[106]. We, therefore, next expanded our discov-
eries into the pathogenesis of IPF [107]. We 
first demonstrated evidence that pulmonary 
fibrosis manifests altered Chop expression and 
ER stress in both IPF patients and animals with 
bleomycin-induced pulmonary fibrosis. In con-
sistent with these observations, mice deficient 
in Chop were protected from bleomycin-induced 
lung injury and fibrosis. Specifically, loss of 
Chop significantly attenuated TGF-β production 
along with reduced M2 macrophage infiltration 
in the lung following bleomycin induction. Me- 
chanistic studies revealed that Chop deficiency 
suppressed M2 program in macrophages, whi- 
ch then attenuated TGF-β secretion. Loss of 
Chop enhanced the expression of SOCS1 and 
SOCS3, thereby inhibiting STAT6/PPARγ signal-
ing that is essential for macrophage M2 pro-
gram [107]. In sharp contrast to the above 
reported data, Ayauband colleagues held the 
viewpoint that Chop plays a role in bleomycin 
triggered macrophage apoptosis, which then 
protects Grp78+/- micefrom bleomycin-induced 
lung injury and fibrosis [108]. Nevertheless, no 
matter what point of view is more persuasive, 
both of which suggested the implication of ER 
stress in modulating macrophage polarization, 
which contributes to the pathogenesis of pul-
monary fibrosis.

(Myo)fibroblasts

New discoveries in rodent model have revealed 
that mesenchymal fibroblasts are essential for 
forming vascular network, sensing damage, re- 
cruiting inflammatory cells, as well as remodel-
ing the extracellular matrix of body organs, 
which are beneficial by maintaining physiologi-
cal tissue homeostasis. However, injuries, infe- 
ctions and cellular damage trigger differentia-
tion of fibroblasts into activated myofibroblasts 
that drive pathological inflammation and exces-
sive extracellular matrix deposition, ultimately 
leading to tissue fibrosis with progressive scar-
ring [109]. 
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The pathologic hallmarks of IPF are the activa-
tion and proliferation of fibroblast-like cells and 
differentiation of myofibroblasts in the lung tis-
sues [110], which not only arise from lung resi-
dent fibroblasts, but also derive from circulat-
ing fibrocytes and bone marrow-derived pro-
genitor cells [111-113]. Fibroblast migration, 
proliferation, myofibroblast differentiation and 
ECM accumulation, are triggered by epithelial 
cell dysfunction and aberrant epithelial-mesen-
chymal signaling, and regulated by various 
cytokines, especially TGF-β [112]. Although 
advances have been made in understanding of 
the pathogenesis in (myo)fibroblasts during IPF, 
many crucial mechanisms underlying disease 
etiologies remain unclear.

In 2012, Baek and colleagues reported that 
altered GRP78 expression was noted not only 
in AECs but also in fibroblasts in lung tissues 
from IPF patients [114], implying ER stress may 
be also critical in fibroblastic differentiation 
over the evolvement of pulmonary fibrosis. 
Indeed, studies both in mouse and human 
fibroblasts revealed that TGF-β1 substantially 
facilitated the production of ER stress-associ-

ated proteins (GRP78, XBP-1, and ATF6α) along 
with high levels of α-SMA and collagen type I 
expression. In line with these crosslinks, the 
150-kDa oxygen-regulated protein (ORP150), 
one of ER chaperones, could promote bleomy-
cin-induced pulmonary fibrosis via augmenting 
pulmonary levels of TGF-β1 and myofibroblasts 
[115]. In support of this notion, mouse embry-
onic fibroblasts (MEFs) isolated from Crt-/- 
mouse and human IPF lung fibroblasts with 
knockdown of CRT by siRNA impaired TGF-β-
induced collagen trafficking and matrix assem-
bly in a Ca2+-dependent manner [116]. Together, 
those data establish a novel mechanism in 
which ER stress modulates fibroblast prolifera-
tion and myofibroblast differentiation contribut-
ing to the development of pulmonary fibrosis.

Summary and perspectives 

We reviewed recent studies relevant to major 
profibrotic cells in lung tissues and collected 
evidence that ER stress may act as a critical 
player during the initiation and progression of 
pulmonary fibrosis (Figure 3). Those studies 
demonstrated feasibility that targeting ER 

Figure 3. ER stress modulates the function and phenotype of profibrotic cells during the development of pulmonary 
fibrosis. This schematic paradigm demonstrates how ER stress modulates the function and phenotype of profibrotic 
cells contributing to IPF pathogenesis. It is believed that ER stress can drive alveolar epithelial cell apoptosis, 
epithelial-to-mesenchymal transition (EMT), macrophages polarization, and (myo)fibroblasts activation, by which it 
promotes pulmonary fibrosis.



The role of ER stress in profibrotic cellular responses during the course of IPF

730	 Am J Transl Res 2017;9(2):722-735

stress could be a viable therapeutic strategy 
against IPF in clinical settings. While these dis-
coveries are exciting, many questions remain 
unsolved regarding the exact mechanisms of 
ER stress and UPR pathway in IPF pathogene-
sis. However, the development of therapeutic 
agents that interfere with specific components 
of the UPR pathway would be useful tools to 
fully establish the role of ER stress in IPF pa- 
thoetiology, which would ultimately pave new 
therapeutic avenues for this devastating dis- 
order.
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