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Abstract
Helicobacter pylori (H. pylori ), discovered in 1982, is a 
microaerophilic, spiral-shaped gram-negative bacterium 
that is able to colonize the human stomach. Nearly half 
of the world’s population is infected by this pathogen. 
Its ability to induce gastritis, peptic ulcers, gastric cancer 
and mucosa-associated lymphoid tissue lymphoma 
has been confirmed. The susceptibility of an individual  
to these clinical outcomes is multifactorial and depends 
on H. pylori virulence, environmental factors, the genetic 
susceptibility of the host and the reactivity of the host 
immune system. Despite the host immune response, 
H. pylori infection can be difficult to eradicate. H. pylori   
is categorized as a group Ⅰ carcinogen since this 
bacterium is responsible for the highest rate of cancer-
related deaths worldwide. Early detection of cancer can 
be lifesaving. The 5-year survival rate for gastric cancer 
patients diagnosed in the early stages is nearly 90%.  
Gastric cancer is asymptomatic in the early stages 
but always progresses over time and begins to cause 
symptoms when untreated. In 97% of stomach cancer 
cases, cancer cells metastasize to other organs. H. pylori   
infection is responsible for nearly 60% of the intestinal-
type gastric cancer cases but also influences the 
development of diffuse gastric cancer. The host genetic 
susceptibility depends on polymorphisms of genes 
involved in H. pylori -related inflammation and the cytokine 
response of gastric epithelial and immune cells. H. pylori   
strains differ in their ability to induce a deleterious 
inflammatory response. H. pylori -driven cytokines 
accelerate the inflammatory response and promote 
malignancy. Chronic H. pylori  infection induces genetic 
instability in gastric epithelial cells and affects the DNA 
damage repair systems. Therefore, H. pylori  infection 
should always be considered a pro-cancerous factor.
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Core tip: In 1994 Helicobacter pylori (H. pylori ) was 
classified by the International Agency for Research of 
Cancer as a class I human carcinogen for gastric cancer. 
Nearly 60% of the intestinal type gastric cancers are 
associated with H. pylori  infections. Cancer risk rises 
if strain possess virulence factors: CagA, VacA and 
BabA. These bacteria promotes gastric carcinogenesis 
by increased DNA damage, impairment of repair pro
cesses, induction of mitochondrial DNA and genomic 
mutations. Nearly 98% of mucosa associated lymphoid 
tissue lymphomas are H. pylori  dependent. We discuss 
correlation between H. pylori  and gastric cancer in the 
light of bacterial and host genetic variability.
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BIOGRAPHY
With a master degree on biology, microbiology as 
specialty, upon her PhD on Immunology in 1991, 
Magdalena Chmiela (Figure 1) was nominated in 2005 
on the position of permanent Professor (medical 
microbiology, immunology) at the Faculty of Biology 
and Environmental Protection, University of Lodz, 
Poland. She is currently head of the Department of 
Immunology and Infectious Biology at the Institute of 
Microbiology, Biotechnology and Immunology. For more 
than 30 years her research concerns the immunology 
of infectious diseases including: immune processes reg-
ulating host-pathogen interactions, bacterial virulence 
factors that determine the course of infections, the use 
of microorganisms in the design and manufacture of 
biological components for potential therapeutic use, 
prevention and diagnostic. With particular attention she 
leads research on Helicobacter pylori (H. pylori) infec-
tions, which are responsible for gastric and duodenal 
ulcers and even stomach cancers. Work on this subject 
she began in 1992, being a member of the research 
team at the Department of Medical Microbiology Lund 
University in Sweden. She also conducts research 
about Campylobacter sp. With her experience she pub-
lished numerous papers, review articles, coordinated 
and participated in a number of research projects and 
evaluated them as an expert. She is a member of the 
Scientific Council of the Institute of Medical Biology, 

Polish Academy of Sciences; editorial board member 
of the World Journal of Gastroenterol (2014-2017); 
member of American Society for Microbiology and 
Polish Society for Microbiology. She shares her profes-
sional activity between research work and academic 
professor activity.

INTRODUCTION
The stomach is considered a hostile environment 
for microorganisms. The acidic pH and peristaltic 
movements of the stomach prevent colonization by 
pathogens. In 1982, Barry Marshall and Robin Warren 
revolutionized the concept of gastroduodenal diseases 
by the discovery of H. pylori and by proving that these 
gram-negative bacteria cause infections in humans 
due to colonization of the stomach. If the pathogen 
is not eradicated by the immune system of the host, 
it stimulates the development of chronic inflamma-
tion. The pathogen is a major agent in gastritis and 
peptic ulcers (PU), which were previously thought to 
be caused by stress and diet. Now it is known that  
H. pylori is also involved in the development of gastric 
cancer (GC).

The aim of this review is to present a brief over-
view of how H. pylori infection impacts tumorigenesis. 
Gastric adenocarcinoma has the second highest 
mortality rate in the world. Nearly half of the world’s 
population is infected by H. pylori. Various structural 
components and soluble factors of H. pylori enable 
these microbes to colonize the stomach and induce an 
inflammatory response. Close contact with an infected 
person facilitates transmission of the pathogen by an 
oral-oral or oral-fecal route. Clinical outcomes that are 
linked with H. pylori infection include chronic inflam-
mation of the gastric mucosa, gastric and duodenal 
ulcers (DUs) and GC. Although a correlation between 
the pathogen and carcinogenesis has been estab
lished, more studies are needed to understand specific 
mechanisms, the diversity of infectious agents, and 
the genetic susceptibility and immune profile of the 
host.
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Figure 1  Magdalena Chmiela, 
PhD, Professor, Department 
of Immunology and Infectious 
Biology, University of Lodz, 
Faculty of Biology and Environ­
mental Protection, Lodz 90-237, 
Poland.



MICROBIOLOGICAL ASPECTS OF  
H. pylori
Primary bacteriological features
H. pylori is considered the most prevalent human 
pathogen, and its evolution appears to have been very 
effective since the bacterium has developed several 
strategies to cause infection[1]. H. pylori had escaped 
the attention of researchers until Barry Marshall and 
Robin Warren published data on the curved bacterium 
that colonizes the human stomach[2]. Substantial alter
ations have been made concerning the disease causa-
tion after intensive studies on H. pylori[3]. This patho-
genic microorganism was first named Campylobacter 
pyloridis. It was only after facing important genotypic 
and phenotypic dissimilarities with other bacteria in 
the Campylobacter genus that a decision was made to 
create a new genus: Helicobacter. It is now commonly 
accepted that this gram-negative, microaerophilic, flag-
ellated microorganism induces chronic active gastritis 
(asymptomatic or symptomatic), peptic ulcer disease 
and duodenal ulcers in humans; it is also related to 
GC[4,5].

Virulence factors
The colonization of epithelial cells of the stomach by 
H. pylori begins with the binding of these bacteria 
with epithelial cell receptors. Then the bacteria escape 
of host defense mechanisms, induce inflammatory 
responses, which allow acquisition of nutrients for suc-
cessful replication[6]. Majour H. pylori adhesins belong 
to the family of proteins localized in outer membrain of 
bacterial cells. The blood group antigen-binding adhe-
sin A (BabA) and sialic acid binding adhesin (SabA) 
are the most important adhesisns of H. pylori[7-11]. Also 
other OMPs, such as HopZ and OipA play a role of 
adhesins. It has been shown that OipA induces more 
intensive inflammatory response due to neutrophil 
infiltration and promotes the development of duodenal 
ulcer and gastric cancer[7]. Urease elevates the acidic 
pH of the stomach and unipolar flagella facilitate 
penetration of mucus[3]. The ability to glycosylate host 
cholesterol is crucial for the virulence and antibiotic 
resistance of H. pylori[12]. H. pylori lipopolysaccharide 
(LPS), due to its structural features, induces a poor 
immune response and helps the bacteria develop 
into a chronic infection[13-18]. H. pylori LPS may carry 
various human Lewis (Le)-like antigens, which may 
play a role in autoimmunity. Specifically, LeX deter-
minants in O antigen of H. pylori LPS may facilitate 
the adherence of bacterial cells to gastric epithelium. 
This process involves the binding of gastric receptor 
β-galactoside-binding lectin (galectin-3)[19-21]. The  
H. pylori outer membrane vesicles are an alternative 
vehicle for the distribution of bacterial virulence fac-
tors and antigens[22,23]. The major virulence factors of  
H. pylori are encoded by genes within the pathogenic-
ity island (PAI). The cytotoxin-associated gene A 

(CagA) protein is one of the most important H. pylori 
virulence factors. CagA is encoded by the cagA gene 
and translocated to the host gastric epithelial cells 
through a type Ⅳ secretion system[24-28]. A correlation 
between the presence of CagA in H. pylori strains and 
more severe inflammatory responses and a higher risk 
of gastric cancer has been shown[26-29]. Other virulence 
proteins include vacuolating cytotoxin A (VacA), BabA 
and SabA[9,10,30,31]. VacA induces vacuolation of gastric 
epithelial cells as well as cell apoptosis and disrupts the 
gastric epithelial barrier function[28]. BabA and SabA 
are adhesins, and SabA is essential for nonopsonic 
activation of human neutrophils[9,7]. BabA interacts 
with the Leb blood group antigen on epithelial cells, 
and the babA2 gene is associated with DU and GC[10]. 
SabA is known to bind sialyl-dimeric-Lex[8], as well as 
sialylated Lea[9]. Malignant transformation is linked with 
pronounced expression of Lea, sialylated Lea and sialyl-
dimeric-Lex, however, knowledge about the role of 
SabA in tumorigenesis is still limited[9].

Immune system evasion strategies
Blaser (1993) proposed a model in which both the host 
and the parasite adapt to downregulate the inflam-
matory response to promote survival and to continue 
colonization of the niche[32-34]. Pathogen-associated 
molecular patterns (PAMPs) are various molecules of 
pathogenic microorganisms that in normal conditions 
are recognized by pattern recognition receptors (PRRs) 
resulting in triggering of the inflammatory response. 
H. pylori possess several mechanisms that prevent 
their recognition via Toll-like receptors (TLRs): (1) 
changing and rearranging LPS and flagellin; and (2) 
molecular mimicry between human Lewis and ABO 
blood group antigens and bacterial compounds, which 
confuses immune cells and prevents recognition of the 
pathogen[21,35,36]. It has been shown that the H. pylori 
flagellin is not detected by specific PRRs, and it does 
not stimulate the production of interleukin (IL)-8. As a 
result, chemotaxis of immune cells to the site of infec-
tion and phagocytosis of H. pylori are diminished[37].

Prevention of phagocytic killing has been dem-
onstrated to be more efficient due to delayed 
polymerization of actin and inhibition of phagosome 
and phagolysosome formation[28,38]. The primary host 
immune response mechanisms, such as phagocy
tosis and natural killer (NK) cell activity, have been 
found to be downregulated by H. pylori LPS[17,18,39,40]. 
Adaptive immunity is also targeted by H. pylori com-
pounds[1,15,41,42]. They affect antigen presentation by 
inducing macrophage apoptosis and by diminishing 
dendritic cell (DC) and macrophage maturation[18,43]. 
The expression of programmed death 1 ligand-1 
(B7-H1 integrin) on gastric epithelial cells modu-
lates T cell trafficking during H. pylori infection. The 
function of B7-H1 is to inhibit effector T lympho-
cytes and stimulate DCs to increase secretion of the 
anti-inflammatory cytokine IL-10. B7-H1, by join-

1523 March 7, 2017|Volume 23|Issue 9|WJG|www.wjgnet.com

Chmiela M et al.  H. pylori  and gastric carcinogenesis



ing programmed cell death receptor 1 on the surface 
of T cells, inhibits proliferation and differentiation 
of naïve T lymphocytes and promotes the activity 
of regulatory cells, which downregulates effector T 
lymphocytes. Regulatory T cells, which possess the 
ability to suppress anti-tumor and anti-infectious 
responses are identified on the basis of cluster differ-
entiation (CD) markers and forkhead box P3 (FOXP3) 
as CD4(+)CD25(high) and FOXP3-positive. Enarsson 
et al[44] studied regulatory T lymphocytes in stom-
ach tissue in H. pylori positive patients in terms of 
their activity and the expression of homing recep-
tors. The increased number of regulatory T cells has 
been detected in gastric tissue of patients with gastric 
tumor vs non-tumor patients. Regulatory T lympho-
cytes suppressed H. pylori-induced T cell proliferation 
and interferon (IFN)-γ production. Furthermore, these 
regulatory T lymphocytes expressed increased levels 
of l-selectin and C-C chemokine receptor 4, than the 
cells lacking regulatory function. These receptors may 
be involved in the infiltration of regulatory lympho-
cytes specific to H. pylori antigens present in gastric 
tissue in H. pylori infected individuals. However, 
low activity of T regulatory cells may promote the 
maintenance of the infection and potentially the 
propagation of tumor cells[45]. The suppression of the 
activity of memory T lymphocytes, which enables a 
chronic infection, has been confirmed by other study 
groups[45-48]. The role of regulatory T lymphocytes 
can be related to the inhibition of the inflammatory 
response driven by IL-17 delivered by T helper (Th) 
17 lymphocytes[49-52].

Different studies have shown that humoral response 
against H. pylori is less essential in the defense 
against this pathogen.The study on mice lacking B 
lymphocytes showed that gastritis, which developed 
in animals immunized with prophylactic vaccine was 
not related to B-cells. The response was similar to 
that of non immunized mice[53,54]. It can be concluded 
that antibody responses may not promote protection. 
However, a correlation between high levels of serum 
anti-H. pylori IgG and IgA and the development of 
gastritis, duodenal ulcers and gastric cancer has been 
shown[1].

PATHOGENIC ACTIVITY OF H. pylori IN 
THE HOST ORGANISM
Epidemiology
There is an inverse association between socioeco
nomic status and the rate of infection[54]. Analyses 
have been conducted to test whether animals or 
water can be sources of H. pylori infection. Only a few 
of the animal case studies showed positive results, 
leading to the conclusion that the infection cycle 
might include humans, the environment and animals. 
However, the water case studies failed to support the 
hypothesis that water is an environmental reservoir 
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of H. pylori[55]. The principal method of spreading  
H. pylori infection is intrapersonal transmission. This 
has been confirmed by the high percentage of infec-
tions that are spread between close relatives, especially 
between a mother and her children[56].

Clinical complications
The clinical aspects of H. pylori infection vary from 
gastritis and peptic ulcers to gastric cancer. It has been 
suggested that the pathogen might also be associated 
with several extragastric diseases. Shortly after initial 
infection of the host, acute gastritis develops that 
is related to hypochlorhydria and to the loss of acid 
secretion. Acute gastritis does not last long, but in the 
majority of subjects, the immune response is unable 
to eradicate the infection, and as a consequence, 
chronic gastritis is induced. According to various 
studies, half of the world’s population may suffer from 
chronic gastritis, which can be manifested in one of 
three forms: (1) antral-predominant; (2) corpus-
predominant; and (3) diffuse. These pathologies lead 
to different consequences, which they favorably induce. 
Specifically, antral-predominant gastritis promotes 
duodenal ulcers whereas corpus-predominant gastritis 
promotes gastric ulcers, which may lead to metaplasia 
and adenocarcinoma; and diffuse gastritis is related 
to reduced acid secretion in the stomach[57-59]. In 
general H. pylori infections are responsible for 95% 
of duodenal ulcer cases and 85% of gastric ulcers. 
Nonsteroidal anti-inflammatory drugs are responsible 
for the cases that are not related to pathogen-induced 
inflammation[3]. Extragastric diseases potentially 
related to H. pylori include idiopathic thrombocytopenic 
purpura and iron deficiency anemia[60-66]. The influence 
of pathogen-induced inflammation has also been con-
sidered in several dermatological disorders, diabetes 
and cardiovascular, and pulmonary disease[67-76]. The 
connection between H. pylori-induced inflammation 
and cardiovascular disease was reported in 1994 by 
Mendall et al[77], and this work was then followed by 
many other studies[78-86]. However, the association 
between H. pylori infection and extragastric disease 
remains unclear. Therefore, the recommendation 
for H. pylori treatment is irrelevant[3]. According to 
recent data, H. pylori infection might facilitate the 
onset of hepatic encephalopathy[87]. The theory of  
H. pylori influence in diabetes is very recent. Speci
fically, CagA+ strains are thought to enhance the 
risk of diabetic complications[88-92]. There is no doubt 
about the beneficial effect of the infection against 
endoscopic gastroesophageal reflux disease[93-95]. 
However, H. pylori infection may potentially prevent 
the development of adenocarcinoma of esophagus[96]. 
Based on a case-control study, infection with H. pylori, 
particularly the CagA+ strain, has been found to be 
inversely associated with Barrett’s esophagus[97].  
H. pylori infection likely has a beneficial role in matura-
tion of the immune system in the early stages of life 
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and prevents asthma development in the future[98-103]. 
The most dangerous clinical aspects of H. pylori are 
gastric cancer[29,48,104-108] and mucosa-associated 
lymphoid tissue (MALT) lymphoma[109-111]. The role 
of H. pylori in destruction of epithelial cell nuclei 
and mitochondrial DNA has been confirmed. This 
mutagenic effect is in part related to downregula
tion of the expression, as well as the activity, of DNA 
repair pathways. Machado et al[112] demonstrated 
that infection of gastric adenocarcinoma cells with  
H. pylori induced mutations in mitochondrial DNA 
and decreased the DNA content. The increased 
frequency of mutations in mitochondrial DNA was 
related to diminished effectiveness of DNA repair 
mechanisms. They showed that apurinic/apyrimidinic 
(AP) endonuclease-1 and Y-box-binding protein 1 
mitochondrial base excision repair and mismatch 
repair systems are involved in DNA repair during  
H. pylori infection[112].

ROLE OF H. pylori IN TUMORIGENESIS
From carcinogenesis to gastric cancer
Accumulation of numerous mutations in DNA of gas-
tric epithelial cells, resulting in activation of oncogens 
or inactivation of tumor suppressor genes promotes 
the development of gastric cancer[113,114].

Nearly 120 years ago, the first gastrectomy was 
performed to treat gastric cancer. Since then, tumor 
resection in the stomach has been the standard 
method of treatment. On average, only 15%-20% 
of patients live up to 5 years after resection. Patients 
diagnosed in the early stages of gastric cancer have a 
5-year survival of nearly 90%[115,116]. Cancer in early 
stages can be surgically curable because of its local 
development. The advancement of gastric cancer is 
directly proportional to the involvement of regional 
and non-regional lymphoid nodes, as well as organ 
metastasis. If the cancer is scattered throughout the 
body, surgical methods that treat local cancer are not 
effective. In these cases, implementation of additional 
cytostatic and hormonal treatment is necessary. 
Approximately 97% of gastric cancer cases are linked 
with metastasis. Sarcomas and non-Hodgkin’s lym-
phoma rarely occur. Every year, 670000 new cancer 
cases are registered around the world. Gastric cancer 
is two-times more frequent in men than in women. 
It usually occurs between the ages of 50 and 70, but 
lately, it is increasingly being detected in young people. 
Gastric cancer grows by contiguous extension (direct 
infiltration) to other organs, such as the pancreas, 
liver, transverse colon, duodenum and esophagus, as 
well as through the peritoneum to the recto-uterine 
Douglas pouch. Metastatic cancer spreads through the 
ovaries and lymphatic or blood vessels[115-117].

In 1965, Lauren described two histologically different 
stomach adenocarcinomas - diffuse and intestinal[118]. 
The diffuse type is considered an endemic cancer 

type. Diffuse adenocarcinoma affects mostly women 
and younger populations. The typical development 
area of the endemic type is the proximal portion of 
the stomach. It often coexists with the A blood group, 
which suggests a possible genetic basis for tumor 
formation. The intestinal type is related to preneo-
plastic changes, such as chronic atrophic gastritis and 
intestinal metaplasia of mucous membranes. This 
type concerns tumors in the peripheral part of the 
stomach. Intestinal adenocarcinoma is an epidemic 
type of cancer because it occurs in regions with a 
high risk of gastric cancer morbidity. It affects mostly 
men and older populations[116,118].

Gastric cancer as a consequence of H. pylori infection
The discovery of H. pylori confirmed that the etiology 
of chronic gastritis and the “precancerous cascade” 
resulting in cancer formation is associated with  
H. pylori infection[119]. Now, it is commonly accepted 
that H. pylori is a gastric cancer carcinogen since in 
1994, H. pylori has been included by the International 
Agency for Research on Cancer to class Ⅰ carcino
gens[120]. Nearly 60% of intestinal-type gastric 
cancers are associated with such infections[121,122]. 
Over years, patients develop acute and then atrophic 
gastritis, followed by intestinal metaplasia, dysplasia 
and carcinoma. H. pylori infection also stimulates 
the development of diffuse type adenocarcinoma by 
causing pangastritis and rugal hyperplastic gastri-
tis[123]. Cancer risk rises if virulence factors, such as 
CagA, VacA and BabA, are present in the H. pylori 
strain[28,29,124]. However, infection with H. pylori CagA+ 
strains may potentially diminish the risk of adenocar-
cinoma of esophagus and gastric cardia[125]. There is 
an increasing interest on the role H. pylori oipA posi-
tive strains in the pathogenesis of gastric ulcer and 
cancer. When oipA is present, the functional “on” sta-
tus of this gene was associated with increased risk of 
these diseases compared with gastritis and functional 
dyspepsia controls[7].

Environmental factors also stimulate the initiation 
of atrophic changes and decrease the secretion of 
hydrochloric acid. Elevated pH of the gastric juice 
facilitates bacterial colonization, causing further dam-
age to epithelial cells. In addition, nitrates in foods 
are precursors of nitrosamines, which cause intestinal 
metaplasia and dysplasia (abnormal epithelial dif-
ferentiation, in the form of improper development of 
the cells with the loss of ability to differentiate)[126,127].

Machado et al[128] have proposed three possible 
mechanisms of initiation of gastric cancer in response 
to H. pylori infection: damage of epithelial cell DNA 
combined with downregulation of repair processes, 
mitochondrial DNA mutations, and appearance of tran-
sient mutator phenotype. Park et al[129] showed that 
after eradication of H. pylori the expression of proteins 
consisting DNA mismatch repair (MMR) system was 
increased. This proved that gastric inflammation due 
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to H. pylori infection impairs MMR[129]. Kim et al[130] 
co-cultured gastric cell lines with H. pylori and the 
proteins (MutS and MutL) of DNA MMR, and exam-
ined quantitatively RNA levels. RNA of both proteins 
was reduced after exposure to H. pylori. Kidane  
et al[131] showed that damage of epithelial cell DNA 
due to oxidative stress, which increases during  
H. pylori infection is under control of base excision 
repair system and its effectiveness can be crucial 
for preventing genomic stability in response to  
H. pylori induced disorders. Toller et al[132] showed that  
H. pylori strains having the BabA adhesin are very 
effective in inducing double-strand breaks.

Biomarkers for detection of gastric cancer
Early detection of adenocarcinoma is essential. 
The 5-year survival rate for patients suffering from 
advanced stomach cancer is lower than 30%. 
Currently, endoscopic surveillance is the most appli-
cable method for cancer detection. However, endos-
copy has disadvantages, such as the invasiveness 
of the test and its high cost. It has been shown that 
appropriate biomarkers provide information about 
the diagnosis, prognosis and recurrence of cancer, as 
well as the optimal therapy[133]. Nevertheless, gastric 
cancer biomarkers such as pepsinogen, gastrin or  
H. pylori serology combined with pepsinogen (PG), 
do not indicate very precisely the state of the 
patient[134]. Pepsinogen is produced in the stomach 
as pepsinogen I (PGI) and pepsinogen II (PGII). 
The blood levels of PGI and PGI/PGII change dur-
ing atrophic gastritis due to destruction of gastric 
glands. A research study involving approximately 
300000 participants was performed in order to verify 
this observation. The results showed that out of 
600 patients with atrophic gastritis, one developed 
stomach cancer. A PGI/PGII ratio within the normal 
range was very accurate negative predictor of an 
unhealthy stomach[135,136]. Gastrin is also considered 
a biomarker for gastric atrophy, but the connection 
between the biomarker and the disease is com-
plex[137,138]. Gastrin is produced in the antrum of the 
stomach. In the case of antrum atrophic gastritis, 
the biomarker indicates a low gastrin level, but in 
the case of corpus atrophic gastritis, the gastrin 
level is increased. Generally, low and high levels of 
gastrin predict atrophic gastritis and gastric cancer, 
respectively. However, gastrin as a biomarker does 
not provide information about the cancer stage. 
Furthermore, combined tests for the detection of 
H. pylori and the PGI/PGII value also help to detect 
gastric cancer[139]. Patients with a seronegative  
H. pylori result and PG within the norm have very 
low rates of cancer susceptibility. The risk rises in 
cases of H. pylori seropositivity and low PGI/PGII 
values, suggesting the presence of gastric atrophy. 
However, negative H. pylori testing accompanied by 
low PGI/PGII indicates the manifestation of autoim-

mune metaplastic atrophic gastritis. This condition 
is linked with advanced grades of metaplasia in the 
stomach[54,134].

A novel group of biomarkers is microRNAs (miR-
NAs), which are nucleotides that modulate the expres-
sion of genes. miRNAs influence cell proliferation and 
differentiation and may act as oncogenes. Cancer-
related miRNAs have been found in the blood stream 
and can be detected noninvasively. Levels of miRNAs 
in healthy patients provide information about cancer 
susceptibility. However, in patients with gastric cancer, 
the levels of the biomarkers are associated with 
cancer stage, metastasis, recurrence and resistance 
to treatment. The inconsistent outcomes from several 
studies on miRNAs note the necessity for more tests 
on this biomarker[133,134].

Other cancers potentially related to H. pylori
H. pylori infection is linked to MALT lymphoma[109-111]. 
Nearly 98% of MALT lymphomas are H. pylori 
dependent because prolonged infection with the 
pathogen leads to proliferation of the lymphoid tissue. 
Eradication of H. pylori infection used as a cure for  
H. pylori-positive MALT lymphoma was found to 
correlate with the remission in 60%-80% of MALT-
lymphoma cases[111,140]. The presence of H. pylori 
in the host elevates the risk of developing other 
lymphomas, such as diffuse large B cell lymphoma 
and ocular adnexal lymphoma[3]. Contradictory results 
leave unclear the influence of the pathogen and of 
eradication therapy on carcinogenesis. Several studies 
have shown that H. pylori infection is correlated with 
laryngeal squamous cell carcinoma[140-142]. CagA-
positive strains were found to cause a more severe 
condition and reduce the survival rate. However, not 
all cases confirm such an association[3]. Colorectal 
cancer development is also considered to be related to  
H. pylori infection[143-146]. High rates of mortality in 
specific regions from colorectal and stomach cancer, 
as well as high prevalence of the pathogen in critical 
colorectal adenomas point to H. pylori as a mutual risk 
factor. Some studies are in opposition to this theory 
because the pathomechanisms are not fully under-
stood. An association between H. pylori infection and 
hepatocellular carcinoma has been suggested[147,148]. 
Esmat et al[149] have suggested that the presence of 
CagA positive H. pylori strains in the liver may cause 
progression of hepatocellular carcinoma due to infec-
tion with hepatitis C virus (HCV). The link between  
H. pylori infection and hepatic carcinoma has been 
confirmed by detection of genetic material of these 
bacteria in hepatic tissue[150]. The possibility of corela-
tion between H. pylori infections and the development 
of pancreatic cancer has been suggested[151]. The 
role of gastric carriage of H. pylori CagA+ strains, in 
increasing a risk for gastric ulcer as well as gastric 
and pancreatic cancers was shown on the basis of 
seroprevalence of H. pylori by Stolzenberg-Solomon 
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et al[152]. Meta-analysis performed by Trikudanathan 
et al[153], suggested a reduced statistically significant 
association. In addition, other data support the 
hypothesis of a correlation between pancreatic cancer 
and H. pylori as well as the ABO genotype due to its 
role in gastric secretion and the secretory activity of 
the pancreas[154-156].

H. PYLORI DIVERSITY VS GASTRIC 
CANCER RISK
CagA variation
The course of H. pylori infection depends on complex 
interactions between the microbial agent and the host 
genetic background, as well as host immune profile. 
H. pylori is a diverse microorganism. Specific features 
of an individual strain can determine the severity of 
inflammation and its consequences, including the 
promotion of malignancy. This diversity refers to the 
most important virulence factors, such as CagA, VacA 
toxin and OMPs.

CagA induces in vitro, the ‘hummingbird’ pheno-
type of epithelial cells of the stomach with symptoms 
of cell elongation. These cellular changes are similar to 
epithelial-mesenchymal transition (EMT), which occurs 
during development of gastric cancer stem cells (CSC). 
H. pylori CagA promotes EMT phenotype, which was 
studied on the basis of both mesenchymal markers 
and CD 44 molecules associated with CSC[157]. The 
presence of CagA with phosphorylated Glu-Pro-Ile-
Ala-Tyr, called the EPIYA motif, in host cells induces 
changes in the cytoskeleton, modifications of intercel-
lular connections and deregulation of the expression 
of genes encoding transcription factors. EPIYA motifs 
in the C terminal region of CagA determine its interac-
tion with numerous host proteins. Multimeric, non-
phosphorylated CagA protein enhances the activity of 
phosphorylated CagA protein and contributes to the 
loss of cell polarity[11,28]. Within the EPIYA motif there 
is a phosphate acceptor tyrosine domain. This region 
is polymorphic since it contains different numbers 
of EPIYA motifs. Moreover, the diversity was also 
found in regions among EPIYA sequences. The length 
polymorphism at the 3’ end of the cagA gene results 
with increased phosphorylation of CagA protein, which 
enhance its biological activity and promotes more 
severe disease outcome[158]. Four EPIYA motifs have 
been described: -A, -B, -C, and -D. Their combination 
depends of geographic regions[159]. In general Western 
H. pylori strains possess EPIYA -A, -B, and -C whereas 
strains from East Asian region EPIYA -A, -B, and -D. 
The East Asian CagA-positive H. pylori strains are 
more closely associated with gastric cancer[160].

Vaziri et al[161] studied the influence of EPIYA motifs 
on the transcriptions of genes related to gastric cancer 
by using transfected gastric cancer AGS cell line with 
a eucaryotic vector carrying the cagA gene: ABC and 
ABCCC types. They found that the CagA oncoprotein 

of ABCCC type can induce intestinal metaplasia, 
IL-8 production by epithelial cells, dysfunction of Crk 
adaptor proteins, and anti-apoptotic and carcinogenic 
effects more intensively than the CagA protein of the 
ABC type.

The association between the number of EPIYA-C 
regions and increased CagA tyrosine phosphorylation, 
protein tyrosine phosphatase (SHP)-2 binding activity, 
cytoskeletal alterations, IL-8 expression in gastric 
mucosa, development of the hummingbird cell phe-
notype and severe disease frequency was found[162].

Western and East Asian CagA proteins differ in 
sequence among the EPIYA motifs. The FPLKRHD
KVDDLSKV sequence, which is present in Western 
type CagA in East-Asian type CagA is substituted 
by KIASAGKGVGGFSGA sequence. This amino acid 
sequence variation is supposed to be responsible for 
the higher frequency of gastric cancer in Japan as 
compared to the Western coutries[162]. Jones et al[159] 
verified that the East Asian EPIYA phenotype is closely 
related with disease development. Phosphorylated 
CagA regions are primarily EPIYA-C and -D sites, which 
are required for binding to SHP-2 and its activation[159].

Chattopadhyay et al[158] have suggested that in 
India, the infections related to different structures of 
CagA can be multiple. In this case the disease course 
is not determined by a particular type of CagA. They 
concluded that the risk of developing the disease is 
also associated with polymorphism of genes encod-
ing other H. pylori proteins, as well as with the host 
genotype[158].

Research on a group of 436 Brazilian patients by 
Batista et al[163] showed that H. pylori strains in this 
region are the Western type and that there is a tight 
correlation between the number of EPIYA-C segments 
and increased risk of gastric carcinoma but not duo-
denal ulcers[163] similarly as in Caucasian population 
from Italy and American patients in Texas[164,165].

Regardless of the C/D type, most CagA molecules 
include single A- and B- tyrosine phosphorylation 
motifs (TPMs) that do not undergo simultaneous 
tyrosine phosphorylation[166]. Phosphorylated A- or 
B-TPMs have host interaction partners distinct from 
C- or D-TPMs and from each other, suggesting unique 
signaling functions. Zhang et al[166] showed that in the 
Western population, also, the polymorphism of the 
EPIYA-B motifs influences the frequency of disease 
development, suggesting that a single nucleotide 
polymorphism in a major bacterial interactive com
pound could promote a disease outcome. In this 
study, the CagA B-TPM sequences showed the highest 
variability. The EPIYA motif was present in 72.6% of 
B-TPMs. However, other EPIYA-like motifs have been 
identified (EPIYT, ESIYT, ESIYA, GSIYD). The analysis 
carried out by Zhang et al[166] demonstrated that the 
association of EPIYT segments with gastric cancer is 
lower than the EPIYA motifs.

The correlation, which was found between EPIYA 
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motifs and the level of IL-8 as well as a strength of 
inflammatory response in gastic mucosa may depend 
on the geographical region[167]. Fajardo et al[162] and 
Reyes-Leon et al[167] did not show correlation between 
the number of EPIYA-C motifs and IL-8 induction in 
the Columbian as well as Mexican population whereas 
Argent et al[168] obtained an opposite results for English 
population. Interestingly, Mexican and Columbian  
H. pylori strains share common predominant polymor-
phisms (ABC and ABCC). Hatakeyama has suggested 
that CagA is involved in gastric carcinogenic processes 
through a hit-and-run mechanism, in which pro-
oncogenic activities of CagA are successively taken 
over by a series of genetic and/or epigenetic altera-
tions compiled in cancer-predisposing cells during long-
lasting infection with cagA+ H. pylori[29].

VacA variants
VacA is a polymorphic toxin with pore forming activity 
and there are different allels of vacA gene within  
H. pylori strains. VacA is composed of four regions, 
which are further subdivided. The signal (s) region, 
which includes the N-terminus and a signal sequence 
is classified as s1 or s2[169]. The s region influences the 
formation of anion channel[170]. The mid (m) region, 
which affects host cell tropism, is classified as m1 
or m2[169,170]. The intermediate (i) region is classified 
as i1, i2, or i3[169]. This region determines the vacu-
olating and cancerogenic activity of VacA toxin[171]. 
The d region means the deletion of 81 bp between 
the i- and m-regions. Without deletion it is classified 
as d1 or d2 if a 69 to 89 base pair deletion is pres-
ent[169,171]. VacA virulence depends on the combination 
of individual parts. The vacA s1/m1 alleles determine 
high cytotoxic activity of VacA. By comparison the 
s1/m2 and s2/m2 genotypes are not cytotoxic. The 
s1/m1 profile is strongly correlated with the outcome 
of duodenal ulcers, peptic ulcer disease, progression of 
preneoplastic lesions, and gastric cancer[169,170]. Ogiwara  
et al[172] showed that the risk of gastric cancer in 
Western countries is related to the s1, m1, i1, and d1 
polymorphisms, which are potentially linked with an 
increased neutrophil infiltration and gastric mucosal 
atrophy[171]. However, in other studies such a correla-
tion was not found in East Asian countries[171,172].

It was found that i1 variants of the VacA protein 
have stronger vacuolating activity than i2 variants. 
Moreover, the i1 region is considered a better predictor 
of disease severity than the s1 and m1 variants in 
Western strains. The i region may contain A, B, and C 
polymorphic domains. The VacA toxicity depends on B 
and C part[170].

OMPs
Genes encoding OMPs consist 4% of H. pylori genome. 
Many H. pylori OMPs belong to OMP family 1, which 
contains various H. pylori outer membrane proteins 
(Hop) and Hop-related proteins (Hor). H. pylori OMPs 

are crucial for adaptation of the pathogen to the host. 
They play a role in bacterial movement and adhesion 
to gastric tissue[7]. Adhesins with known binding 
specificity include BabA (HopS), which binds Lewisb, 
a fucosylated blood-group antigen that is present in 
gastric tissue[31] and SabA (HopP), which is a sialic 
acid-binding adhesin associated with higher coloniza-
tion density in humans[173]. The alpAB locus has been 
shown to encode the outer membrane adhesins AlpA 
and AlpB, which bind laminin[174]. The HorB protein 
is another adhesin, however, its ligand has not been 
identified[175].

The best-characterized OMP of H. pylori is BabA, 
which is encoded by the babA2 gene[176]. Research car-
ried out by Torres et al[176] on a group of 130 H. pylori 
isolates from dyspeptic Cuban patients showed that 
the presence of a ‘triple positive’ genotype (vacAs1, 
cagA and babA2) (56.2% isolates) is correlated with 
the appearance of peptic ulcers, intestinal metaplasia 
and gastric cancer. Infection with these strains was 
found to be associated with a higher degree of inflam-
mation and gastroduodenal lesions[176].

Research on 167 H. pylori-positive patients 
conducted by Zambon et al[177] allowed patients to be 
divided to four groups (A, B, C and D) on the basis 
of bacterial genotypes: cagA(-), s2 m2, babA2(-); 
cagA(+), s1 m1, babA2(+); cagA(+), s1 m2, 
babA2(+); cagA(+), s1 m2, babA2(-), respectively, 
that differ in their ability to induce gastrointestinal 
diseases. H. pylori strains of group B induced the worst 
inflammatory response including intestinal metapla-
sia[177]. Moreover, a relationship between cagA and 
the s1 and m1 alleles of vacA and oipA was found. By 
comparison, H. pylori strains without cagA were usu-
ally babA2(-) and oipA(-) and they held the s2 and m2 
vacA alleles. This observation confirmed the role of the 
pathogenicity island as the main vehicle of virulence 
genes[177].

Another important Hop is HopH, encoded by the 
HP0638/hopH gene[178]. The hopH genotype has been 
foud related to H. pylori virulence markers including 
vacAs1, vacAm1, babA2, with the strongest association 
to cagA. The association of the hopH gene with gastric 
disorders could be due to promotion of increased 
bacterial adherence and colonization by the hopH. The 
expression of hopH has been found regulated by phase 
variation within a CT dinucleotide repeat motif[178].

Host genetic susceptibility and immune profile
The long lasting inflammation induced by H. pylori 
infection is followed by DNA damage, the impairement 
of repair processes and increased rate of mutations. 
These phenomena promote the development of  
H. pylori-related gastric carcinogenesis[128-132,179].

Pattern recognition receptors
Pathogens possess many conservative PAMPs. These 
structures, which are present in various groups of 
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microorganisms, have not changed during evolution 
and do not occur in human organisms.These com-
pounds are recognized by PRRs, which are deposited 
on immune cells as well as epithelial cells and vascular 
endothelium. TLRs and damage-associated molecular 
patterns (DAMPs) are representative PRRs[180,181].

Various groups of receptors are simultaneously 
engaged in recognition of H. pylori compounds and 
the development of gastric cancer. These are TLR2, 
TLR3, TLR4, TLR5, and TLR9; nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs), 
such as NOD1, NOD2, and NLRP3 (NLR family pyrin 
domain containing 3); dendritic cell-specific intercel-
lular grabbing non-integrin; retinoic acid-inducible 
gene (RIG)-I-like receptors (RIG-I); and melanoma 
differentiation associated protein 5. Polymorphisms in 
genes, which are involved in the signaling cascades 
via TLR, NLR, apoptosis-associated speck-like protein, 
and caspase recruitment domain containing protein 
8 (CARD8) can increase the risk of H. pylori infection 
and gastric cancer[182,183]. This can happen because 
the dysfunction of genes, which are involved in cell 
signaling pathways via the above receptors may sig-
nificantly modulate the host immune response during 
H. pylori infection[183].

TLR4
TLRs recognize various H. pylori PAMPs, including 
flagellin (TLR5) and unmethylated CpG motifs (TLR9) 
as well as LPS (TLR4/TLR2)[183].

The expression of TLR2, TLR4 and TLR5 increases 
during gastric dysplasia and especially a strong corre-
lation between TLR4 and gastric carcinoma has been 
suggested[184]. Additionally, Chochi et al[185] found that 
binding of H. pylori LPS to TLR4 resulted in increased 
growth of gastric adenocarcinoma. On this way also 
antitumor activity of human mononuclear cells was 
diminished.

In recent studies, much attention has been paid 
to the influence of TLR receptor polymorphisms on 
the development of diseases associated with H. pylori 
infection. Single nucleotide polymorphisms (SNPs) of 
the TLR4 receptor were connected with an increased 
risk of gastric carcinoma, including TLR4 rs4986790 
(Asp299Gly)[186,187], TLR4 rs4986791 (Thr399Ile)[187], 
TLR4 rs10116253, TLR4 rs10983755, TLR4 rs11536889 
(C3725G/C)[182], TLR4 rs1927911[183]. TLR4 Asp299Gly 
and Thr399Ile polymorphisms located in the encoding 
region have been considered the most important  
since they diminish the stability of the TLR4 extracel-
lular domain[182,187].

Another study conducted by Bagheri et al[186] on 
a group of 195 patients with H. pylori infection and 
241 H. pylori not-infected individuals confirmed that 
the increased frequency of TLR4 (Asp299Gly) G and 
DG alleles was related to chronic active gastritis. An 
A-G substitution at 896 bp was associated with a 
decreased response to LPS in vivo and in vitro and an 

increased risk of inflammatory disease. The results 
obtained by Castaño-Rodríguez et al[182] confirmed 
that in the Western population the TLR4 Asp299Gly 
G allele as well as the TLR4 rs11536889 C allele and 
the CC genotype increased the risk of gastric cancer 
or other inflammation-related cancers. These results 
indicate that there is a relationship between the TLR4 
rs11536889 polymorphism and increased incidence of 
cancer, which is consistent with the fact that the TLR4 
rs11536889 polymorphism is located in the center of 
the 2818-bp TLR4 3’UTR and, therefore, may affect 
mRNA stability. However, other studies of polymor-
phism investigated in Asian and Caucasian individuals 
have shown different risk associations with gastric 
cancer in an ethnic-specific manner[182].

TLR2
In H. pylori infection, much attention is also focused 
on TLR2. It has been shown[188] that H. pylori LPS 
as TLR2 ligand induces the secretion of chemokines 
by gastric epithelial cells due to acting on tribbles 3 
(TRIB3) protein, which is involved in the expression 
of the nuclear factor NF-κB. However, both TLR4 and 
TLR2 are engaged in the response of host immune 
cells against H. pylori, which effectiveness depends 
on the polymorphism of those receptors[183]. Meta-
analysis of TLR2 -196 to -174 deletion and risk of gas-
tric cancer conducted on 1364 gastric cancer patients 
and 2487 controls showed that there is an association 
between this polymorphism and risk of gastric cancer 
in the Japanese population. Polymorphism at this 
position decreases the induction of IL-8 secretion, thus 
impairing the response to H. pylori. Interestingly that 
correlation failed to be shown in the Chinese popula-
tion, which may indicate an ethnic consideration in the 
incidence of stomach cancer[182].

CD14
CD14 molecule and TLR4 both participate in the recog-
nition of LPS[189]. During H. pylori infection monocytes 
and macrophages have been shown to release IL-12 
in response to CD14 - dependent activation. This was 
correlated with the infiltration of gastric mucosa with T 
helper 1 lymphocytes and the maintenance of chronic 
inflammatory response[190].

Two SNPs identified in the promoter region of 
the CD14 gene: -260C/T (rs2569190 or CD14 -159) 
and -561C/T (rs5744455), have been suggested to 
increase the susceptibility to gastric cancer[182,191]. 
The CD14 -260 T allele had decreased affinity for 
the binding with DNA of transcription factors such as 
stimulatory proteins (SP) 1, SP2 and SP3 of which SP3 
downregulates the activation of the cells by SP1 and 
SP2. Thus, the SP3 to SP1 and SP2 ratio might play 
an important role in the regulation of CD14 transcrip-
tion[182,192,193]. Although an increased transcription activ-
ity of this allele has been demonstrated in monocytes 
with low levels of SP3 a direct correlation between 
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CD14 polymorphism and gastric cancer incidence still 
needs to be investigated[190].

NODs
The NOD-like receptors detect PAMPs localized 
intracellularly as well as cellular DAMPs released due 
to elevated stress conditions. These receptors are 
involved in the development of innate immunity, regu
lation of inflammatory response and programmed cell 
death. Among NODs the binding specificity of NOD1 
and NOD2 is different. NOD1 binds γ-D-glutamyl-
meso-diaminopimelic acid whereas NOD2 muramyl 
dipeptide[194,195].

During H. pylori infection NOD1 is engaged in the 
induction of NF-κB and activator protein 1 (AP-1), 
which are involved in cytokine synthesis and cell acti-
vation, thus triggering inflammatory response[190,196-198]. 
It has been shown that NOD1 regulates direct killing 
of H. pylori by antimicrobial peptides[199], enhances 
IFN-γ signaling in gastric epithelial cells during H. pylori 
infection, particularly with cag-PAI positive strains and 
exacerbates disease severity[198,200]. NOD2 induces 
pro-IL-1β and is necessary for the induction of NLRP 
containing protein 3 (scaffolidng proteins of inflam-
masomes) in H. pylori-infected dendritic cells[201].

Polymorphism among NOD receptors also has an 
impact on the rate of stomach cancer incidence. Wang 
et al[202], carried out a test on a group of 296 patients 
with gastric cancer and 160 healthy subjects in the 
Chinese population, which showed that the NOD1 
rs2907749 TT polymorphism reduced the likelihood 
of cancer of the stomach but NOD1 rs7789045 TT 
increased the incidence of stomach cancer (especially 
in the case of the NOD2 genotype rs7205423). An 
enhanced NOD1 expression was detected in H. pylori 
infected gastric mucosa. This might suggest that sig-
naling via NOD1 determines gastric inflammation[202]. 
In general there is no association between NOD1/
NOD2 mutations and gastritis as well as gastric ulcer. 
However, association between the R702W mutation in 
the NPD 2/CARD15 gene and gastric lymphoma has 
been found. The risk of gastric lymphoma is higher 
in those who carry allele T as compared to control 
individuals[200]. Companioni et al[203] have found a 
significant association between SNPs in CD14, NOD2 
and TLR4. This study revealed that genetic variation 
in NOD2 associates with nocardia gastric cancer while 
variation in CD14 is associated with cardia gastric 
cancer.

INFLAMMATION DRIVEN MALIGNANCY 
RISK
Cytokines
During H. pylori infection the immune and gastric 
epithelial cells respond by the secretion of cytokines  
(pro- and anti-inflammatory). The level of cytokines 
might depend on polymorphisms of the genes encod-

ing specific cytokines including tumor necrosis factor 
(TNF)-α, IL-1, IL-8 and Il-10[204]. Genetic polymor-
phisms have been considered as factors increasing 
cytokine levels and susceptibility for cancer develop-
ment due to hypochloridria[205].

IL-1
IL-1 (IL-1α and IL-1β), is a pro-inflammatory cytokine 
and IL-1 receptor antagonist (IL-1Ra) possess a 
natural anti-inflammatory activity. The initiation or 
the maintenance of inflammation depend on the bal-
ance between IL-1β and IL-1Ra[204]. IL-1β and IL-1RN 
gene polymorphisms increase risk of hypochloridria 
and gastric carcinoma. This is because the elevated 
levels of IL-1 initiate spontaneous inflammation, 
which then can be followed by dysplasia and gastric 
carcinoma through an activation of the IL-1/NF-κB 
pathway[206-208]. It has been shown that IL-1β signi
ficantly amplifies inflammatory response during  
H. pylori infections[204,205]. Ramis et al[204], investigated 
in the IL-1B gene three SNPs (C-T transition at -31 
position; C-T transitions at -511 and +3954 positions), 
associated with an enhanced secretion of IL-1β. In  
H. pylori infected patients there was a correlation 
between IL-1β level and the T/T genotype (-511 
position) as well as the C/C genotype (-31 position). 
In such patients an increased risk of gastritis but 
not peptic ulcer and gastric carcinoma has been 
found. This research group also proved that patients 
with the T/T genotype of IL-1B (-511 position) were 
more frequently infected with H. pylori cagA(+) 
strains. There was no correlation between IL-1B gene 
polymorphisms at position +3954 and increased 
prevalence of H. pylori infection as well as H. pylori-
derived diseases[204].

However, in the Costa Rican population two proin-
flammatory genotypes IL-1B+3954 T/C and IL-1RN*2/
L were foud related to gastric cancer cases[209]. Caleman 
Neto et al[210], have suggested that the IL-1B -31T/T 
polymorphism acts as a protective factor against  
H. pylori infection in the Brazilian population.

Contrary to previous studies, Al-Moundhri et al[211],  
has proven that the widely reported association bet
ween IL-1B -31/-511 polymorphism and gastric cancer 
was not established in the Omani Arab population, 
supporting the ethnic differences in the effect of IL-1B 
polymorphism on gastric cancer development.

IL-1RN
Il-1RN as an antagonist of the IL-1 receptor modu-
lates its activity. The most intensively studied IL-1RN 
polymorphism connected to gastric cancer outcome 
is a 86-bp variable number of tandem repeats poly-
morphism in the IL-1RN second intron (IL-1RN*2)[208]. 
The study carried out on the Brazilian Amazon popula-
tion by Melo Barbosa et al[205], showed that among 
patients with gastric ulcer and adenocarcinoma there 
was a higher frequency of allele 2 carriers (IL-1RN*2). 
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The IL-1Ra protein (encoded by the IL-1RN gene) 
competes with the IL-1 receptor to inhibit the action 
induced by IL-1β. The presence of the IL-1RN*2 vari-
ant is connected with the increased levels of IL-1β in 
the gastric mucosa and to hypochlorhidria in compari-
son to IL-1RN1/1 variant[205]. Research performed on a 
group of 118 gastric cancer patients and 245 healthy 
controls also supported the correlation between the 
presence of the IL-RN*2 allele and the increase in the 
gastric cancer ratio in the Arab population[211].

Tumor necrosis factor alpha
TNF-α is a cell signaling protein involved in systemic 
inflammation and acute phase reaction. This cytokine 
is produced by activated macrophages, CD4+ lympho-
cytes, NK cells, neutrophils, mast cells, eosinophils, 
and neurons. It takes part in the regulation of immune 
cell activity, fever induction, apoptotic cell death, 
cachexia, inflammation, inhibition of tumorigenesis 
and viral replication. It is also involved in the cytokine 
response during sepsis[212,213]. The elevated secre-
tion of TNF-α is observed in the gastric mucosa of  
H. pylori infected patients where this cytokine induces 
cell apoptosis[214]. The activity of TNF-α is regulated 
by soluble TNF receptors (sTNF-Rs), which potentially 
protect gastric epithelial cells colonized by H. pylori 
from apoptosis[214].

TNF-α activity and concentration can be influenced 
by SNPs (G to A transitions at -308A and -238 posi-
tions) in the promoter region of TNF-α  gene[215]. In 
the Korean population the transition at -308 position 
was related with a CagA(+) H. pylori infections and 
its severe consequences. The biallelic polymorphism 
at this position is associated with the development of 
gastric carcinoma in the Caucasian population[205].

The binding of AP-2 to -308 region was found by 
Yea et al[215] to be altered by the −308A allele. Due to 
this -308A polymorphism might lead to an increase in 
TNF-α gene expression[215].

The latest results of meta-analysis obtained by Sun 
et al[216] demonstrate that TNF-α -308G/A and -1031 
T/C polymorphisms may be protective factors against 
H. pylori infection, whereas -863C/A substitution may 
be a risk factor, especially in Asian populations. The 
authors also showed that there was no significant 
association between -857C/T polymorphism and  
H. pylori infection while -863C/A significantly increased 
the risk of infection. Moreover, the -1031T/C polymor
phism decreased this risk for the Asian subgroup and 
hospitalized patients[216].

IL-10
IL-10 is a pleiotropic cytokine, which has the ability 
to suppress or stimulate anti-cancer properties of 
immune cells. This cytokine downregulates the pro-
duction of pro-inflammatory cytokines by inhibition of 
Th 1 lymphocytes and stimulation of B, as well as Th 
2, lymphocytes and thus downregulates the inflam-

matory response[212,213]. Since 2003 researchers have 
consistently reported associations between IL-10- 
592 A/C SNP and susceptibility to gastric cancer 
but with mixed or conflicting results[217]. A meta- 
analysis performed by Ni et al[218] indicated that in 
Asian populations the carriers of IL-10 -1082 GG-plus-
GA genotypes are more susceptible to all types of 
gastric cancer.

Kim et al[219] investigated three IL-10 promoter 
polymorphisms: -1082A/G, -819T/C, and -592 A/C 
probably related to elevated levels of IL-10. These 
polymorphisms were associated with an increased  
risk of intestinal-type noncardiac gastric cancer but 
only in H. pylori infected smokers[219].

Con et al[209] showed that the IL-10 -592 A/A or 
-592 C/A polymorphisms were associated with an 
increased risk of gastric cancer in the Costa Rican 
population. In the above study the IL-1β +3954 T/C, 
IL-1RN*2/L and IL-10: -592 C/A polymorphisms, 
in the patients infected with H. pylori vacA s1b/m1 
strains have been found to predispose them to gastric 
cancer. It means that synergistic effect of bacterial 
and host genotypes may influence the course and the 
consequences of H. pylori infection[209].

IL-8
During early phase of H. pylori infection a chemotactic 
IL-8 induces infiltration of granulocytes to the site of 
infection and induction of phagocytosis once they have 
arrived[204]. Activation of phagocytes in the inflam-
matory milieu may result in gastric barrier damage 
due to releasing of proteolytic enzymes and reactive 
oxygen radicals[220].

As in the case of other cytokine polymorphisms, 
IL-8 differentiation is also the subject of research. 
Caleman Neto et al[210] suggested that in Eastern 
populations the elevated production of IL-8 and the 
intensity of the inflammatory response depends on 
the presence of the A allele in the promoter region of 
the IL-8 gene (-251 position).

Ohyauchi et al[220] investigated a correlation bet
ween IL-8 polymorphism and gastroduodenal disease 
outcome during H. pylori infection in the Japanese 
population. Thy showed that in H. pylori infected 
patients the presence of IL-8 -251A allele was linked 
with the gastric ulcer, gastric atrophy and then cancer. 
This study confirmed that, in comparison to the IL-8 
-251T variant, IL-8 -251A transcription is activated in 
more active gastritis with strong neutrophil infiltration. 
These results have been confirmed by the study of 
Caleman Neto et al[210], performed with 60 patients, 
which showed that the IL-8 -251TT genotype could 
protect whereas the IL-8 -251TA genotype could 
promote the H. pylori infection.

Cyclooxygenase-2
Cyclooxygenase-2 (COX-2) catalyzes the conver-
sion of arachidonic acid to prostaglandins and its 
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production increases in response to growth factors, 
cytokines and mitogens. COX-2 is often undetectable 
in normal tissues, whereas in tumor tissue specimens 
its expression is higher[221,222]. Specifically, increased 
COX-2 expression is linked to the progression of 
gastric cancer and precancerous tissues by activating 
angiogenesis, inhibiting apoptosis, and accelerating 
invasion and metastasis[221]. In addition to cytokine 
polymorphisms, genetic differentiation of cyclooxy-
genase also plays an important role in the develop-
ment of H. pylori-associated gastric diseases[222]. 
Concerning the polymorphisms of promoter region of 
COX-2 (1195G/A and -765G/C), Li et al[222] showed 
that the increased risk of gastric cancer appears in 
the carriers of the COX-2-1195AA but not of the COX-
2-765G/C genotype.

Meta-analysis carried out by Zhao et al[221] showed 
that the -765G/C polymorphism (rs20417) in the 
promoter region of the COX-2 gene could be a risk 
factor for gastric cancer in Asians and Indians. This 
SNP affects the transcription and functional activity 
of COX-2. The COX-2-765G/C polymorphism was 
significantly associated with an increased risk of gastric 
cancer, regardless of H. pylori infection.

Polymorphisms involved in deregulation of T cell 
response
Gastric MALT lymphoma depends on the activation 
of specific T lymphocytes, which undergo regulation 
through different mechanisms. It depends on cytotoxic 
T-lymphocyte antigen (CTLA) 4 as well as CD28 and 
inducible costimulator (ICOS) genes[223-225]. Genotyping 
of CTLA 4 gene (49 A/G, -318 C/T, CT60 A/G), CD28 
gene (IVS3+ 17T/C), and ICOS gene (c.602 A/C and 
c.1624C/T) has been performed by Cheng et al[226] in 
the gastric MALT lymphoma patients with or without 
H. pylori infection and healthy individuals. The CTLA 
4 -318 C/T genotype was associated with a lower 
whereas the CTLA 4 49 G/G genotype with a higher 
risk of MALT lymphoma. In H. pylori-positive patients, 
the susceptibility to MALT lymphoma was four times 
higher in the case of the carriage of -318C -49G 
haplotype.

CONCLUSION
H. pylori has evolved during long cohabitation with 
humans. The colonization of the host stomach at a 
young age, persistence in this specific niche for its 
lifetime, subversion of the human immune system by 
hypoinflammatory LPS and molecular mimicry, and 
induction of gastritis and cancer development make 
H. pylori a complex pathogen. The clinical aspects of 
H. pylori depend on several conditions, such as the 
location of infection, the host susceptibility, the bacte-
rial strain and environmental factors. The virulence 
strategies of bacterial CagA-positive strains, as well 
as low socioeconomic status of the patient, influence 

the outcome of the infection. The highest prevalence 
rates of infection are reported in Asia and Africa. For 
years H. pylori infection might remain asymptomatic 
in spite of the developing condition. Medication for 
chronic gastritis or peptic ulcers involves antibiotic 
therapy. Sequential therapy is the most efficient treat-
ment to cure the infection. To prevent the occurrence 
of antibiotic resistance, only cases with clinical symp-
toms or asymptomatic patients in a risk group ought 
to be treated. Adequate results for H. pylori detection 
are provided by the non-invasive urea breath test 
and invasive nested PCR. Eradication of the infection 
typically leads to improved patient health, but it may 
allow the development of gastroesophageal disease 
and asthma. The intensity of the infection reflects the 
ability of H. pylori to induce extragastric diseases. 
Chronic atrophic gastritis is the precursor condition 
for ulceration and gastric malignancy. Classified as a 
group I carcinogen and causing nearly 670 thousand 
new cancer cases every year, H. pylori has become a 
threat to our lives. Specific biomarkers are crucial for 
early diagnosis of gastric cancer. Although H. pylori 
is one of the most studied pathogens of the upper 
gastrointestinal tract, many of its mechanisms of 
action are still not well understood.
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