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Abstract
Clostridium	difficile 	 (C.	difficile )	 is	a	 spore-forming,	
toxin-producing,	gram-positive	anaerobic	bacterium	that	
is	 the	principal	etiologic	agent	of	antibiotic-associated	
diarrhea.	Infection	with	C.	difficile 	(CDI)	is	characterized	
by	diarrhea	 in	clinical	syndromes	that	vary	 from	self-
limited	 to	mild	or	severe.	Since	 its	 initial	 recognition	
as	 the	causative	agent	of	pseudomembranous	colitis,		
C.	difficile 	has	spread	around	the	world.	CDI	 is	one	of	
the	most	common	healthcare-associated	infections	and	
a	significant	cause	of	morbidity	and	mortality	among	
older	 adult	 hospitalized	patients.	Due	 to	extensive	
antibiotic	usage,	 the	number	of	CDIs	has	 increased.	
Diagnosis	of	CDI	is	often	difficult	and	has	a	substantial	
impact	on	the	management	of	patients	with	the	disease,	
mainly	with	 regards	 to	antibiotic	management.	The	
diagnosis	of	CDI	is	primarily	based	on	the	clinical	signs	
and	symptoms	and	 is	only	 confirmed	by	 laboratory	
testing.	Despite	the	high	burden	of	CDI	and	the	incre-
asing	interest	in	the	disease,	episodes	of	CDI	are	often	
misdiagnosed.	The	reasons	for	misdiagnosis	are	the	lack	
of	clinical	suspicion	or	 the	use	of	 inappropriate	tests.	
The	proper	diagnosis	of	CDI	reduces	transmission,	prev-
ents	inadequate	or	unnecessary	treatments,	and	assures	
best	antibiotic	treatment.	We	review	the	options	for	the	
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laboratory	diagnosis	of	CDI	within	the	settings	of	 the	
most	accepted	guidelines	for	CDI	diagnosis,	treatment,	
and	prevention	of	CDI.
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Core tip: This	work	 is	a	review	of	 the	strategies	 that	
may	be	used	 for	 laboratory	 diagnosis	 of	 infection	
with	Clostridium	difficile .	 First,	we	provide	general	
recommendations	 for	 testing	 of	 samples	 taking	 in	
account	 the	guidelines	of	 the	Society	 for	Healthcare	
Epidemiology	of	America/Infectious	Diseases	Society	of	
America	and	the	American	College	of	Gastroenterology.	
We	reviewed	diverse	methods	of	diagnosis	 including,	
culture,	 toxigenic	culture,	cell	cytotoxic	neutralization	
assay and	the	use	of	enzyme	immuno	assays.	Finally,	
we	present	an	overview	of	 singleplex	and	multiplex	
nucleic	acid	amplification	tests.
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INTRODUCTION
Clostridium difficile (C. difficile) is a Gram-positive 
and strictly anaerobic bacterium that may exist in 
a vegetative form that is very sensitive to oxygen. 
During stress, C. difficile produces spores that enable 
the microbe to survive harsh conditions for prolonged 
periods of time and facilitate its dissemination in the 
environment[1]. Upon ingestion, the spores resist the 
low pH of the stomach and reach the anaerobic envi-
ronment of the gut. When the intestinal microbiote 
is altered because of antibiotic treatment, especially 
broad-spectrum antibiotics, the spores germinate. 
Next, C. difficile develops into its vegetative form, pro-
liferates, and colonizes the gut[2]. C. difficile infection 
(CDI) is the principal cause of antibiotic-associated 
diarrhea. Diarrhea because of CDI may be self-limited, 
mild, or severe, and is one of the symptoms of a vari-
ety of clinical syndromes due to CDI. Complications of 
CDI are pseudomembranous colitis, fulminant colitis, 
and toxic megacolon[3].

CDI is an intestinal disease mediated by potent 
cytotoxic enzymes that damage the intestinal 
mucosa[4,5]. These cytotoxic enzymes, toxin A (TcdA) 
and toxin B (TcdB)[6,7], alter cytoskeletal actin, which 
leads to diminished transepithelial resistance, fluid 

accumulation, and destruction of the intestinal epithe-
lium[5,8]. C. difficile toxins also induce the release of pro-
inflammatory cytokines from enterocytes, mast cells, 
and macrophages[9]. The genome of toxigenic strains of  
C. difficle has a pathogenicity locus (PaLoc) of 19.6 kb 
that contains the tcdA and tcdB genes. Other PaLoc 
genes are tcdR and tcdC; the former encodes a posi-
tive regulator and the latter a negative regulator of the 
expression of the A and B toxins. Yet another PaLoc 
gene is tcdE, which encodes a holin-like protein that 
may be involved in the secretion of toxins[10]. Besides, 
some strains produce the C. difficile binary toxin (CDT), 
which is composed of an enzymatic component, CdtA, 
and a binding component, CdtB. These components 
are codified by cdtA and cdtB genes, which are located 
in the CDT locus (CdtLoc). CDT may potentiate the 
toxicity of TcdA and TcdB and lead to a more serious 
illness and could, therefore, be considered another 
virulence factor[11,12].

The vast majority of diarrhea cases are not related 
to a particular pathogen. From all the stool samples 
submitted to the laboratory for testing of C. difficile 
toxins, only 10% to 25% are positive[13]; most com-
monly in cases of antibiotic-associated diarrhea. Other 
pathogens that may cause antibiotic-associated diar-
rhea are: Staphylococcus aureus, Clostridium perfrin-
gens, Salmonella species, and Klebsiella oxytoca[14]. 
The clinical suspicion of CDI is the presentation of 
diarrhea after administration of antibiotics shortly 
after the beginning of treatment and up to 8 wk after 
treatment initiation[13]. In mild to moderate disease, 
diarrhea is the main symptom and passing of watery 
stools with foul odor is characteristic. The presence of 
hematochezia is rare. Moderate to severe disease is 
usually accompanied by systemic symptoms such as 
abdominal cramps, fever (up to 40 ℃), leukocytosis 
(up to 50000 cells/mm3), and hypoalbuminemia (< 2.5 
mg/dL)[13,15]. Colitis is characterized by fever, cramps, 
leukocytosis, and the presence of leukocytes in feces. 
Furthermore, a thickened colon wall is observed 
with computed tomography and in half of the cases 
pseudomembranes can be seen with endoscopy[13]. 
When pseudomembranes are found, a diagnostic 
of CDI can be made, as antibiotic-associated diar-
rhea due to other pathogens tends to have normal 
endoscopy findings[16]. In severe cases, CDI may 
progress to toxic megacolon with the risk of colon wall 
perforation[15]. The diagnosis of toxic megacolon is 
accomplished through radiological evidence of colonic 
dilatation, commonly involving the ascending or trans-
verse colon[17]. According to the most commonly used 
criteria for the diagnosis of toxic megacolon[18], three 
of the following four criteria should be present: fever, 
tachycardia, leukocytosis, and anemia. Additionally, 
dehydration, electrolyte disturbance, and hypotension 
or changes in mental status (any of the criteria must 
be present)[17-19].

Ever since C. difficile was recognized as the caus-
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ative agent of pseudomembranous colitis, the number 
of CDI cases has increased worldwide. Recently, 
Lessa et al[20] estimated that the number of CDI in 
the United States was 453000, from which 29000 
died within 30 d after diagnosis. The healthcare costs 
related to CDI were estimated to be $ 4.8 billion for 
acute care facilities alone[20]. Since the year 2000, 
both the number and severity of CDI have increased 
due to the emergence of a more virulent strain with a 
higher antimicrobial resistance[21]. After strain typing 
by pulsed-field gel electrophoresis (PFGE), restriction 
endonuclease analysis, and ribotyping, this strain 
was denominated BI/North American PFGE type 1 
(NAP1)/027[21]. So far, all BI/NAP1/027 isolates are 
positive for binary toxin CDT and have an 18-base pair 
deletion in tcdC that is associated with an increased 
production of toxins A and B; a single base pair dele-
tion at position 117 of tcdC has also been related to 
higher toxin expression[3]. Concerning antimicrobial 
resistance, BI/NAP1/027 are resistant to fluoroqui-
nolones, which provides a selective advantage to this 
strain[21]. This strain is disseminated worldwide; the 
above is evidenced by reports from America, Europe, 
Asia, and Oceania[22].

One of the key points when treating CDI is to 
discontinue unnecessary therapy with antibiotics; thus 
allowing the gut microbiota to recover. The Clinical 
Practice Guidelines for C. difficile Infection in Adults of 
the Society for Healthcare Epidemiology of America 
(SHEA) and the Infectious Diseases Society of America 
(IDSA), the Guidelines for Diagnosis, Treatment, and 
Prevention of C. difficile Infections of the American 
College of Gastroenterology (ACG) and the Guidance 
Document for Clostridium difficile of the European 
Society of Clinical Microbiology and Infectious Diseases 
(ESCMID) recommend the use of metronidazole when 
treating an initial episode of mild to moderate CDI. 
The dosage is 500 mg orally, 3 times per day for 10 to 
14 d. In case of severe initial CDI, vancomycin (125 
mg orally, 4 times per day for 10 to 14 d) should be 
administered[23-25]. A combination of oral vancomycin 
(500 mg 4 times per day) and intravenous metro-
nidazole (500 mg every 8 h) are indicated for the 
treatment of severe, complicated CDI according to 
the SHEA/IDSA and ESCMID guidelines[23,25]. On the 
other hand, the ACG recommends a dosage of 125 
mg of vancomycin. When treating a first episode of 
recurrence, the regimen should be the same as an 
initial case, according to the severity of the infection. 
If there is a second episode of recurrence, a pulsed 
regimen of vancomycin is recommended. Fidaxomicin 
is narrow spectrum macrocyclic antibiotic, approved 
by the American Food and Drug Administration (FDA), 
that selectively eradicates C. difficile with a minimum 
effect on the intestinal microbiota. The relapse rate of 
fidaxomicin is lower than the one of vancomycin[26-28].

Despite the high burden of CDI and the increased 
interest in the disease, episodes of CDI are often 
misdiagnosed. A study from Spain revealed that two 

out of three CDI cases were either undiagnosed or 
misdiagnosed[29]. The main explanation may be the 
lack of clinical suspicion, particularly in community 
cases with patients who do not meet the risk criteria 
(age > 65 years or previous hospitalization). Besides, 
an inadequate test may yield false-negative results[30]. 
Furthermore, the interpretation of laboratory data 
is complicated, as the presence of C. difficile in stool 
does not mean CDI; the other way round, the absence 
of C. difficile toxins does not rule out the possibility of 
CDI. To interpret laboratory results, the techniques 
that were applied must be considered. A correct diag-
nosis of CDI is important because it has a substantial 
impact on case managment, mainly with regards to 
antibiotic regimens. The diagnosis of CDI is primarily 
based on the clinical signs and symptoms and is only 
confirmed by laboratory testing[31]. Misdiagnosis has 
two main consequences: first, patients may be under-
treated or overtreated; second, the delay of proper 
infection control allows for further dissemination[32].

The following is a review of the strategies that may 
be used for laboratory diagnosis of CDI. To date, the 
Clinical Practice Guidelines of the SHEA/IDSA provide 
one of the most widely acceptable guidelines for the 
diagnosis and clinical management of CDI cases[23]. 
Also, the Guidelines of the ACG focus on the recom-
mendations for the diagnosis and management of 
patients with CDI as well as for the prevention and 
control of outbreaks[24]. The above documents provide 
useful recommendations on which this review is based.

GeNeRaL ReCOMMeNDaTIONs
Recommended samples
Both the Clinical Practice Guidelines of the SHEA/IDSA 
and the Guidelines of the ACG state that C. difficile 
testing is recommended only for stool samples from 
patients with diarrhea (Table 1), which is defined as 
the evacuation of loose stools, three or more times in 
24 h or less[23,24]. The ESCMID recommends testing 
only stools of Bristol score 5 to 7[25]. The Bristol scale is 
a graded visual scale, composed of seven grades which 
range from stools with a form of separate hard lumps 
(score 1) to watery stools (score 7)[33]. To correlate the 
Bristol scale with C. difficile detection, stool samples 
with Bristol scale ≥ 5 were tested for C. difficile with 
an enzyme immunoassay (EIA) for glutamate dehy-
drogenase (GDH) and toxins A/B followed by a molec-
ular assay for indeterminate results[34]. Detection of  
C. difficile was more frequent in semiformed stools 
(Bristol 5 or 6) than in watery stools (Bristol 7). Bristol 
5 stool specimens accounted for the highest rate of 
positive testing. Therefore, Bristol 5 stool specimens 
should not be discarded. Further study is required 
to verify whether specimen with lower Bristol scores 
should be tested. There was no association between 
the Bristol score and the rates of hospital-onset CDI, 
severe CDI, and complications of CDI[34].

Commonly, perirectal swabs are not accepted for 
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C. difficile testing, except for selected cases, such 
as patients with ileus[23,24]. Ileus is characterized by 
a lack of bowel movements that causes a blockage 
of the intestines. For patients with ileus, an accurate 
sampling technique is the perirectal swab[35]. Some 
patients with CDI develop fever and abdominal pain 
but not diarrhea. These patients may develop severe 
complications, like fulminant colitis and intestinal 
perforations[36].

Patients to evaluate
The Clinical Practice Guidelines of the SHEA/IDSA 
recommend no testing of asymptomatic patients[23] 
(Table 1) because asymptomatic colonization with a 
toxigenic strain of C. difficile is common. But even 
samples from patients with persistent diarrhea may 
yield false-positive CDI results; for example, alternate 
etiology was reported to be the cause of the symp-
toms in 25% of a cohort of 117 cases that had been 
diagnosed with recurrent CDI[37]. Particularly, highly 
sensitive molecular assays may yield false-positive 
results. Positive CDI tests for asymptomatic patients 
are common. The carriage rates of toxigenic C. difficile 
strains are similar between open populations (6.6%)[38] 
and hospitalized ones (8%)[39]. Hospitalized popula-
tions tend to be at an increased risk of developing CDI 
due to antibiotic treatment and prolonged exposure 
because of long stays at healthcare facilities[40]. The 
environment and skin of asymptomatic carriers have 
higher percentages of spores and represent a perma-
nent source of contamination and spreading of spores 
to other patients and setting surfaces. The continual 
washing of hands of both personnel and patients is a 
universal preventing measure[41].

The carriage rate of C. difficile is high among 
infants (0 to 3 years of age). Among 85 healthy infants 
at day nurseries, the carriage of C. difficile was 45%, 
and the frequency of toxigenic strains was 13%[42]. 
One-year follow-up studies among newborns revealed 
that 74% to 100% had CDI-positive stool, often in the 
neonatal period[42] In a study that followed 10 infants, 
81/111 samples (73%) were positive for C. difficile and 
21 (26%) had toxigenic strains[42]. Another study that 
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followed 42 infants found that 106/288 stool samples 
(37%) were CDI positive[43]. Most strains (71%) were 
toxin producers. Interestingly, six infants evacuated 
loose stools during the study, but only three of them 
could be linked to C. difficile. Furthermore, carriage of 
C. difficile was similar in infants suffering from loose 
stools than children with normal stools.

A point to consider when testing specimens from 
infants is the difficulty to differentiate a diarrheal stool 
from a normal stool, since infant stool may not be fully 
formed. When comparing infant cases (age ≤ 12 mo) 
with CDI-positive diarrheal stool with cases with CDI-
negative diarrheal stool no differences in clinical symp-
toms were found. However, in both groups, alternative 
causes of diarrhea were found[44]. Rather than looking 
for C. difficile, the authors suggested looking for other 
causes, especially viral ones, of diarrhea in infants.

Retesting of samples
Neither the Clinical Practice Guidelines of the SHEA/
IDSA nor the Guidelines of the ACG recommend 
retesting (Table 1). This recommendation is especially 
valid for molecular methods. Several studies have 
demonstrated that repeated testing for C. difficile does 
not improve detection nor change the result. Repeated 
testing, particularly with molecular tests, only incre-
ases healthcare costs and the probability of false-
positive results. After having implemented a new policy 
that alerted physicians about the consequences and 
disadvantages of a C. difficile PCR test within 7 d of 
an initial test, a healthcare institute saw the requests 
for CDI retesting reduced by 91%[45]. Among the 135 
retests that were performed, 122 were repeaters 
after a negative initial test, and only 4 of them turned 
positive upon repeating the test. Even lower positive 
conversion rates (0.05%-1%) have been reported by 
others after repeating PCR assays on 4213 samples 
with negative results in a previous test[46]. Thus, an 
initial test with a negative test result does not justify 
retesting unless there is a founded suspicion of a false-
negative result.

Retesting to monitor response to treatment also 
remains controversial. Although a negative conver-
sion rate of 67.6% 14 d after a positive Cepheid Xpert 
C. difficile test has been reported[47], cases that were 
clinically cured remained positive when testing for 
toxins[48].

DIaGNOsTIC TesTs
Culture
A stool culture is essential to prepare isolates for 
molecular typing, which is required for epidemiologic 
studies. The SHEA/IDSA guidelines recommend 
toxigenic culture (TC) as the standard to which other 
methods should be compared. The first step is to 
recover C. difficile spores. Stool samples are either 
heated to 80 ℃ or mixed with an equal volume of 

Table 1  General recommendations for Clostridium difficile 
testing

Recommendation Ref.

C. difficile testing is recommended only for stool samples 
from patients with diarrhea

[23,24]

The testing of asymptomatic patients is not recommended [23]
Perirectal swabs are not accepted for C. difficile testing unless 
the patient has developed ileus

[23,24]

Repeated testing of C. difficile does not improve detection 
and does not change the result

[23,24]

Retesting, as a proof of cure, remains controversial [23,24]

C. difficile: Clostridium difficile.
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absolute ethanol and incubated at room temperature. 
This way vegetative cells and contaminating microbes 
are eliminated while spores are recovered[49]. Next, 
the sample is inoculated into a differential and selec-
tive medium that allows the spores to germinate. A 
well-known medium to recover C. difficile from stool 
specimens is cycloserine-cefoxitin-fructose-agar 
(CCFA)[50]. Cycloserine and cefoxitin are present at 
concentrations that inhibit the growth of most Gram-
negative and Gram-positive bacteria, without affecting 
the growth of C. difficile. Fructose is an important 
nutrient and neutral red is added as a pH indicator. 
A 48-h solid culture of C. difficile in CCFA presents 
flat, grayish, and shiny colonies with spreading edges 
and a typical horse manure smell. Under ultraviolet 
light, the colonies appear yellow-green fluorescent. 
Under the microscope, cells of C. difficile are Gram-
positive and possess subterminal to terminal spores. 
Identification of C. difficile colonies may be based on 
colony morphology, Gram staining, and odor; confir-
mation of species may be assessed trough biochemi-
cal systems for the identification of anaerobes.

To improve both the recovery and identification of 
C. difficile cultures, the original CCFA formulation has 
been modified. The addition of biliary salts, particularly 
sodium taurocholate, promotes germination[51] and 
the inclusion of egg yolk allows to verify lecithinase 
and lipase activity of isolates[50,52]. Furthermore, 
enrichment broths have been formulated to recover 
small amounts of spores and allow them to germi-
nate. When comparing two broths, a cycloserine-
cefoxitin fructose broth proved to be more sensitive 
than a cycloserine-cefoxitin mannitol broth that had 
been supplemented with taurocholate and lysozyme, 
(CCMB-TAL), but CCMB-TAL yielded better recovery 
rates when cultures were semi-quantified[49].

Furthermore, chromogenic media have been devel-
oped. For example, C. difficile grown on ChromID C. 
difficile agar (bioMérieux, France) yields black colonies 
that often can be observed after 24 h of incubation[53]. 
However, lengthening the incubation from 24 to 48 
h increased the sensitivity significantly from 53% to 
100% (P < 0.001)[54]. ChromID C. difficile agar yields 
a higher 24-h recovery (sensitivity, 92%) than CCFA 
(sensitivity, 22%)[55]. Likewise, ChromID C. difficile 
agar, which had a sensitivity of 100% and a recovery 
of 94%, outperformed CCFA supplemented with 
sodium taurocholate, which had a sensitivity of 87% 
and a recovery of 82%[56]. Yet another study confirmed 
that ChromID C. difficile agar performs best when 
compared to CCFA, cycloserine-cefoxitin-egg-yolk agar 
and tryptone soy agar with sheep blood[49].

Toxigenic culture
TC is a two-step reference method for the diagnosis 
of CDI. In step one, C. difficile strains are isolated 
and grown on a selective medium, and in step two, 
colonies are tested for toxin production on a variety of 

cell lines. The grown isolates are re-cultured in broth, 
and the supernatant is filtered and added to a cell line 
culture. The cytopathic effect (CPE) is evaluated and 
neutralized by antitoxin. This procedure may take a 
few days to accomplish, which makes it an impractical 
option for routine diagnosis[57]. Alternatively, testing of 
toxin production may be performed using an EIA[58,59].

The main concern about TC is the possibility of 
recovering non-toxigenic strains (strains that are 
not capable of produce toxins A and/or B). Another 
possibility is, though recovering a toxigenic strain, it 
may not be producing toxins, thus not causing clinical 
symptoms. When evaluating the clinical significance 
of TC and the citotoxicity assay on 169 samples that 
met CDI criteria, it was found that cases positive for 
both assays were more severe than cases that were 
positive for TC only. On the other hand, if only the 
cytotoxicity assay had been performed, one-third of 
the cases would have been missed[60]. The latter is an 
argument in favor of TC for CDI diagnosis.

Cell Cytotoxic Neutralization Assay
The Cell Cytotoxic Neutralization Assay (CCNA) has 
been considered the gold standard for the diagnosis 
of CDI. In this assay, the filtrate of a recently obtained 
stool sample is inoculated onto various sensitive 
cell lines to evaluate the CPE of C. difficile toxins, 
particularly TcdB[57]. CPE is observed as cell rounding; 
some strains may induce protrusions in the cell lines, 
a phenomenon known as “sordellii-like” CPE[61,62]. If 
the CPE can be reversed by an antitoxin, the test is 
positive for the C. difficile toxin[57]. The assay must be 
performed in fresh stools, since sample freezing or a 
delay in its processing may result in loss of activity of 
toxins and false negative test results[63].

Diverse cell lines have been used for the detec-
tion of toxins: African green monkey kidney, McCoy, 
MRC-5, primary rhesus monkey kidney, and Vero 
cells. Among these cell lines, Vero cells and McCoy 
cells were a 100% concordant with respect to the 
detection of toxins[64]. When maintaining a cell line is 
impossible or non-desirable, there are cost-effective 
commercial assays available. A CCNA executed with 
Hs27 HFF ReadyCells is not only easy-to-use but also 
outperforms the EIA and TC in both sensitivity and 
specificity; 90.8% vs 78.6% in sensitivity and 98.3% 
vs 97.8% in specificity, respectively[65].

Glutamate dehydrogenase assay
C. difficile produces and secretes GDH; this enzyme 
allows the bacterium to manage oxidative stress 
derived from the immune response by inactivating 
hydrogen peroxide through the production of 
α-ketoglutarate[66]. Although GDH screening of stool 
specimens for the diagnosis of CDI diagnosis is com-
mon[67], its value is limited to being a preliminary test, 
since both toxigenic and non-toxigenic strains produce 
GDH[68]. GDH is highly conserved among C. difficile 
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strains; no differences in reactivity were found among 
168 C. difficile isolates belonging to 77 different ribo-
types using three different assays carried out by two 
different groups[68]. As the GDH assay may be positive 
for C. difficile strains that do not produce toxins, a 
positive GDH assay needs a confirmatory test (CCNA, 
EIA, a molecular test, or TC)[23,35,67].

GDH has been incorporated, as an initial test, into 
multistep algorithms (ACG guidelines). Recently, there 
has been a tendency towards a two-step algorithm, 
where in the absence of detection of toxin by EIA, 
clinical evaluation should also be applied to determine 
true CDI or colonization. This has recently been recom-
mended by ESCMID[69].

The C. Diff Quik Chek Complete assay is a rapid 
membrane EIA that combines the detection of both 
GDH and the toxins A and B[70]. With TC as a refer-
ence, the C. Diff Quik Chek Complete had a sensitivity 
of 63.6% and a specificity of 98%[70]. Both assays 
proved to be highly sensitive (range: 97.6% to 100%) 
and accurate (88% true positive or true negative). 
Discrepant results were resolved with the Xpert C. diff 
assay[71]. The algorithm allowed to rule out C. difficile 
without additional tests when GDH is negative and to 
confirm CDI when both GDH and toxin A/B results are 
positive. Another GDH test, the automated Vidas C. 
difficile GDH assay (bioMérieux, Marcy l’Etoile, France), 
has a 95% agreement with the C. Diff Quik Chek assay 
(Quik Chek-60, Techlab, United States)[72]. In case of 
discrepant results, molecular tests are recommended 
by various authors, because CCNA and TC are expen-
sive and time-consuming[35,73]. A two-step algorithm 
(step 1, GDH and toxin detection by EIA; step 2, loop-
mediated isothermal amplification) yielded a sensitivity 
of 81%, a specificity and positive predictive value (PPV) 
of 100%, and a negative predictive value (NPV) of 
96%[74]. Even though the sensitivity was lower than 
in other studies, the PPVs and NPVs supported the 
practice of reporting the specimen as positive without 
further testing. A more complex algorithm increased 
the CDI detection rate from 8% to 19%; initial posi-
tive GDH testing (VIDAS C. difficile; bioMérieux) was 
confirmed by toxin testing (VIDAS C. difficile Toxin 
A&B; bioMérieux). In case a toxin EIA did not confirm a 
positive GDH, additional tests [nucleic acid amplification 
test (NAAT), CCNA, or TC] were executed on positive 
GDH samples. A positive confirmatory test is consid-
ered CDI-positive sample[75].

Apart from providing improved diagnostic perfor-
mance, multistep algorithms are the most cost effective 
for various reasons: (1) because they avoid unneces-
sary or inadequate treatment and its consequences[76]; 
and (2) an initial screening with a cheap GDH test 
allows rapid identification of negative samples, limiting 
the use of more expensive NAAT tests to only those 
samples that were positive for GDH[77].

Detection of toxins by enzyme immunoassays
One of the first strategies for the diagnosis of CDI was 

the detection of toxins with a specific EIA. Several 
EIA-based kits are commercially available in different 
formats, such as: lateral flow immunoassay, also 
known as immunochromatography or strip tests; and 
solid-phase assays, for example micro-wells[15]. EIA-
based confirmation of CDI is practical, fast, and cheap, 
but it is also one of the least consistent methods (sen-
sitivity range: 63% to 94%, specificity range: 75% to 
100%)[23]. According to the SHEA and IDSA guidelines, 
toxin detection by EIA is less sensitive than detection 
by CCNA; thus, EIA should not be used alone for the 
diagnosis of CDI to avoid a false-negative result[23]. A 
two-step or three-step algorithm that combines GDH 
screening with EIA improves CDI diagnosis[23,24].

The inconsistent sensitivity of EIAs may be due to 
several factors, such as: antigenic variation among 
the toxins of different circulating strains, inadequate 
storage and transportation of samples, freeze-thaw 
cycles, and inter-laboratory technical variance, among 
others[15]. Some of the early developed EIAs accounted 
only for the detection of toxin A; however, there are 
reports of strains that do not produce toxin A[78-80]. 
Also, some assays detect both toxins A and B plus the 
detection of GDH[81].

Using TC and CCNA as reference, six commercially 
available EIAs and three lateral-flow assays for the 
detection of C. difficile toxins A and B have been com-
pared. The sensitivities ranged from 60% to 81.6%, 
whereas the specificities ranged from 91.4% to 99.4%. 
PPVs and NPVs were diverse and depended on whether 
the samples originated from a low-prevalence environ-
ment (community) or a high-prevalence environment 
(hospital setting). Though PPVs were low for both 
settings, the PPV was higher in the high-prevalence 
setting, independent from the gold standard chosen as 
a reference. NPVs were high for both settings (above 
95%), regardless of the reference chosen[82]. In a 
two-step algorithm, the initial screening with GDH 
detection (C.Diff Chek-60, TechLab/Wampole) yielded 
a sensitivity of 93.4% and a specificity of 96.6% 
(reference assay: TC). Next, only positive specimens 
were confirmed with a rapid toxin A/B assay (Tox A/B 
Quik Chek, TechLab/Wampole, Blacksburg, VA), which 
yielded a specificity and a PPV of 97.1% and 96.5%, 
respectively. Compared to TC, the sensitivity of the 
EIA-based toxin assay was low (52.9%)[83].

Nucleic acid amplification tests
Nowadays, many infections are diagnosed via mole-
cular tests. The new generation of NAATs amplify and 
detect pathogen-specific DNA or RNA sequences. 
Advantages of NAATs include high sensitivity, high 
specificity, and speed. Because no viable cells are 
needed, sampling, handling, transportation, and stor-
age aspects are simplified. Furthermore, no culture 
is required. The role of NAAT in the diagnosis process 
for CDI may be supportive[84], part of a two or three-
step algorithm according to ESCMID guidelines (Figure 
1)[23], or as a stand-alone test in cases of documented 
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diarrhea[24].
Despite the evident advantages, important issues 

to be considered before introducing CDI NAATs in the 
clinical laboratory are: the requirement of trained per-
sonnel and higher costs, and the probability of false-
positive results because of the high sensitivity of the 
test and the detection of strains that do not produce 
toxins. Especially in stool samples from diarrhea cases 
due to other pathogens, false-positive results may 
not be recognized as such because of concomitant 
asymptomatic C. difficile carriage. Stool samples that 

were positive for both NAAT and toxin test had more 
bacteria and toxins than stool samples that were only 
NAAT positive[85]. The latter is an argument against the 
use of NAAT as a stand-alone test.

Single-plex NAATs: The FDA of the United States of 
America has cleared a set of commercially available 
single-plex NAATs. Table 2 summarizes the sensitivities 
and specificities of these tests, which often is over 
90% or even close to 100%; these values depend on 
the test that was used as a reference test, which was 
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Table 2  Sensitivity and specificity of nucleic acid amplification test assays for the detection of Clostridium difficile

Assay Sensitivity Specificity Ref.

Cepheid Xpert C. difficile      90%-100%  92.9%-98.6% [87,89,91]
IMDx C. difficile for Abbott m2000 Assay    62.1%-92.8% 99.4%-100% [92,93]
BD Max Cdiff Assay    81.6%-96.9%     95%-95.8% [92,93]
Portrait Toxigenic C. difficile Assay 98.2% 92.8% [95]
Quidel Lyra Direct C. difficile Assay    82.1%-85.7%   96.9%-98.3% [96]
Verigene C. difficile nucleic acid  test    95.2%-98.7%   87.5%-99.4% [97,128]
Simplexa C. difficile Universal Direct real time PCR    87%-98% 100% [99,128]
AmpliVue C. difficile assay    91%-96%    89%-100% [99,100]
Illumigene C. difficile assay 93.3%-100% 95.1%-100% [95,101]
BD GeneOhm Cdiff assay    89.6%-97.4%  96.7%-98.5% [95,103]
ProGastro Cd assay 77.93%-100%  93.4%-99.2% [103,104]

C. difficile: Clostridium difficile.

Figure 1  Multistep algorithm for the laboratory diagnosis of Clostridium difficile infection based on the European Society of Clinical Microbiology and 
Infectious Diseases guidance document. GDH: Glutamate dehydrogenase; EIA: Enzyme immunoassay; NAAT: Nucleic acid amplification test; TC: Toxigenic 
culture.
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often TC.

Cepheid Xpert® C. difficile and Xpert C. difficile/
Epi: The Cepheid Xpert® C. difficile (Sunnyvale, CA) 
is a real-time PCR assay that detects the tcdB gene 
and thus allows CDI diagnosis, but without strain 
specification[86]. The multiplex RT-PCR assay Xpert  
C. difficile/Epi not only detects the tcdB gene but also 
the binary toxin genes (cdtA and cdtB), and a single-
nucleotide deletion of the tcdC. Therefore, the Xpert 
C. difficile/Epi identifies ribotype 027[87]. Furthermore, 
Xpert C. difficile/Epi detects ribotype 033, a strain of 
veterinary importance that has been reported in cat-
tle, veal calves, piglets, horses, and soil from various 
geographical locations worldwide[88]. The binary toxins 
of ribotype 033 were correctly amplified in all isolates 
(n = 52) included in a study. However, since ribotype 
033 lacks the tcdA and tcdB genes, the GeneXpert 
Dx system reports that the sample is negative for 
CDI, and it is necessary to access the raw data in the 
instrument to obtain the amplification information[88]. 
Using TC as a reference, the sensitivity of the Cepheid 
Xpert C. difficile/Epi assay was 90%; its specificity, 
92.9%; its PPV 71.4%; and its NPV 97.9%[89].

The introduction of the Cepheid Xpert C. difficile 
assay in a tertiary hospital significantly increased the 
rate of detection of toxigenic C. difficile from 4.7% 
to 9.9%. The increase was mainly due to cases that 
yielded indeterminate results with the C. Diff Quik 
Chek, but were positive with the Xpert C. difficile 
assay[90].

When the performance of the Xpert C. difficile Epi 
assay as a confirmatory test was compared to TC in a 
two-step algorithm with a GDH assay as a first step, 
there was a moderate agreement (kappa score 0.48) 
of 72.6%. The GDH-TC algorithm had a sensitivity of 
57% and specificity of 97%, whereas the sensitivity of 
the GDH-Xpert algorithm was 100% and its specificity 
97%. Furthermore, 42 out of 45 stool samples that 
were ribotype 027 positive were confirmed by PCR-
ribotyping and sequencing, indicating a good epidemic 
value of the assay[91].

IMDx C. difficile for Abbott m2000 assay: The 
IMDx C. difficile for Abbott m2000 assay (IMDx) is a 
real-time PCR that detects not only C. difficile tcdA and 
tcdB genes, but also the rare variant strains rare toxin 
A+B- and toxin B variant (tcdBv) gene, which occurs in 
A-B+ strains. Lysis of the sample, target amplification, 
and detection are performed in the m2000 RealTime 
System (Abbott Laboratories, Abbott Park, IL)[92].

In a prospective analysis of 111 stool specimens 
and a retrospective analysis of 88 stool samples, in 
which the IMDx was compared to another FDA-cleared 
NAAT (the GeneOhm Cdiff Assay), the sensitivity was 
strain dependent: 100% for NAP1 strains and 90.3% 
for non-NAP1 strain with a limit of detection of 2250 
colony-forming units[92]. However, when IMDx and 2 

other molecular assays were compared to TC, IMDx 
had the lowest sensitivity (62.1%) and the highest 
specificity (99.4%)[93].

BD Max Cdiff assay: The BD Max Cdiff assay detects 
and amplifies the tcdB gene in a real-time PCR assay 
performed on the BD Max System (BD Diagnostics, 
Sparks, MD). After the addition of the sample, this 
hands-free platform combines DNA extraction and 
amplification. To extract genetic material a 10-µL loop 
is immersed in the specimen; next, the loop content is 
dispersed in BD Max Sample Buffer. The DNA extrac-
tion utilizes magnetic beads, which are eluted before a 
lyophilized amplification mix is added. The results are 
reported only as positive or negative for C. difficile[92].

Compared to the GeneOhm Cdiff Assay, BD Max 
Cdiff Assay had a sensitivity of 96.9% and a specific-
ity of 95%[92]. In the same study, ribotyping was 
assessed, but there were no significant differences 
between the sensitivities and specificities of different 
ribotypes[94]. When the BD Max Cdiff Assay and 2 other 
molecular assays were compared to TC, the BD Max 
Cdiff Assay had a sensitivity of 81.6% and a specificity 
of 95.8%[93].

Portrait Toxigenic C. difficile assay: The Portrait 
Toxigenic C. difficile assay (Great Basin, West Valley 
City, UT) amplifies a 78-nucleotide fragment of the 
tcdB gene. The assay uses isothermal helicase-
dependent amplification, followed by detection with 
an immobilized capture probe on a sliding array. Each 
reaction mixture contains three controls: a sample pro-
cessing control, a hybridization control, and a detection 
control. Results for the specimen are reported only 
when the detection criteria for all controls are met[95].

A multicenter evaluation that included 49 stool 
specimens from 4 clinical sites compared the Portrait 
Toxigenic C. difficile Assay to TC on the same speci-
mens. The sensitivity ranged from 92.9% to 100%, 
with an overall sensitivity of 98.2%. The specificity 
ranged from 88.9% to 96.9%, with an overall speci-
ficity of 92.8%[95]. When comparing Portrait Toxigenic 
C. difficile Assay results with those from other FDA-
cleared tests, the concordance were as follows: 97.5% 
with Xpert C. difficile, 96.4% with GeneOhm Cdiff, and 
93.8% with Illumigene C. difficile[95].

Quidel Lyra Direct C. difficile assay: The Quidel 
Lyra Direct C. difficile assay (Quidel, San Diego, CA) 
uses qualitative real-time PCR technology. Specimens 
are tested in a standard TaqMan real-time PCR assay 
utilizing primers/probes that detect but do not distin-
guish the tcdA and tcdB genes. The Lyra assay may be 
performed on any of three open-platform, real-time 
thermocyclers: SmartCycler II (Cepheid, Sunnyvale, 
CA), ABI 7500 Fast DX (Applied Biosystems, Carlsbad, 
CA), and ABI QuantStudio DX (Applied Biosystems, 
Carlsbad, CA). The Lyra assay has a running time 
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of about 3 h[96]. Depending on the platform used, 
the sensitivity and specificity may differ; the ABI 
7500 instrument is the most sensitive and the ABI 
QuantStudio DX is the most specific. The overall 
sensitivity is 85.7% and the overall specificity is 98.3% 
when compared to toxigenic culture[96].

Verigene C. difficile nucleic acid test: The Verigene 
C. difficile nucleic acid test is a multiplex qualitative 
assay that amplifies DNA by PCR in a nanoparticle-
based microarray that targets the tcdA and tcdB  
genes and differentiates the hypervirulent strain 027/
NAP1/BI via the binary toxin genes and the base  
pair deletion at position 117 in the regulator tcdC 
gene[97]. The Verigene system contains two mod-
ules: the Verigene Processor SP performs nucleic 
acid extraction, PCR amplification, and hybridization 
of amplicons; The Verigene Reader scans the test  
cartridge, realizes the optical analysis, and generates 
the results[97].

When compared to TC, the Verigene assay has 
sensitivity of 98.7% and a specificity of 87.5%[97]. With 
regard to strain typing, the assay assigns correctly 
89.7% of hypervirulent strains compared with riboty-
ping[97]. When compared to fecal culture as a reference 
method, the Verigene C. difficile nucleic acid test was 
sensitive (96.7%), specific (97.4%), and accurate 
(97.1%)[98].

Simplexa C. difficile Universal Direct real-time 
PCR: This assay uses fluorescent bifunctional probes-
primers to amplify a tcdB fragment. Samples in Tris-
EDTA buffer are heat-treated; the lysate is used 
directly to perform the test. The system can accommo-
date a maximum of 94 samples and has an assay time 
of 91 min. When compared to another FDA-cleared 
assay, the Meridian Illumigene Asssay, the Simplexa  
C. difficile Assay had a sensitivity of 98% and a 
specificity of 100%; the concordance between the two 
systems was 98.7%[99].

AmpliVue C. difficile assay: The AmpliVue C. difficile 
assay uses helicase-dependent, isothermal amplifica-
tion of a highly conserved 83-bp fragment of the 
tcdA gene. The assay includes a disposable detection 
device that allows for visual evaluation of amplification 
results. The AmpliVue system can perform a maximum 
of 24 assays, and has a total running time of 73 min. 
The AmpliVue assay had a sensitivity of 96% and 
specificity of 100% when compared to the FDA-cleared 
assay Meridian Illumigene Assay[99]. Compared to TC, 
the sensitivity and specificity were 91% and 89%, 
respectively[100].

Illumigene C. difficile assay: The Illumigene C. dif-
ficile assay uses loop-mediated isothermal DNA ampli-
fication technology to target a partial DNA conserved 
region of tcdA common to A+B+ and A-B- strains. 

The total time of analysis is 68 min and the maximum 
number of samples per run is 10[99]. When compared 
to TC, the sensitivity and specificity of the Illumigene 
assay were 100%[101].

BD GeneOhm Cdiff assay: The BD GeneOhm Cdiff 
assay (BD Diagnostics, San Diego, CA) amplifies the 
tcdB gene from stool samples with C. difficile, which is 
detected and analyzed with a SmartCycler instrument 
(Cepheid, Sunnyvale, CA)[102]. The performance of the 
BD GeneOhm Cdiff PCR assay has been compared 
to the Tox A/B II ELISA and a two-step method 
composed of the C. Diff Chek-60 GDH antigen assay 
followed by cytotoxin neutralization on 105 true posi-
tive samples. The detection rate was 66.7% for the 
Tox A/B II ELISA assay, 82.9% for the 2-step method, 
and 91.4% for the BD GeneOhm Cdiff PCR assay. The 
overall concordance between the BD GeneOhm Cdiff 
PCR assay and the Tox A/B II ELISA was 91.3%, while 
the concordance between the BD GeneOhm Cdiff and 
the two-step method was 93%. The BD GeneOhm 
Cdiff PCR and the two-step algorithm had similar 
performance but were more sensitive than Tox A/B II. 
Compared to the two-step algorithm, BD GeneOhm 
Cdiff PCR is faster but almost five times more expen-
sive; BD GeneOhm Cdiff PCR is also six times more 
expensive than the Tox A/B assay[102]. When compared 
to TC, BD GeneOhm Cdiff PCR has a sensitivity of 
89.6% and a specificity of 96.7%[103].

ProGastro Cd assay: ProGastro Cd assay (Prodesse, 
Waukesha, WI) is a Taqman real-time PCR assay that 
detects the tcdB gene. Amplification is performed on 
the Cepheid SmartCycler II (Sunnyvale, CA). Stool 
samples are processed to obtain genetic material using 
the NucliSENS easy MAG platform (bioMérieux, Inc., 
Durham, NC)[104].

There was a 95.7% agreement between TC and 
the ProGastro Cd assay. When comparted to TC, the 
ProGastro Cd assay had a sensitivity that ranged from 
77.3% to 100% and a specificity between 99.2% and 
93.4%[103,104]. A two-step algorithm, with the GDH-
based C. Diff Quik Chek Complete as step 1 and the 
ProGastro Cd assay as step 2, yielded an estimated 
sensitivity of 97.9% and a specificity of 95.4%.

Multiplex platforms: There are two types of mul-
tiplex platforms: the first type includes the so-called 
“syndromic” platforms, i.e., a platform to detect 
pathogens associated with a particular symptom. In 
this case, a variety of syndromic platforms test for 
the main causative agents of diarrhea, independently 
of the kind of microorganism (bacteria, viruses or 
protozoa). The second type are pathogen class specific 
multiplex molecular assays[105].

Currently, there are two FDA-cleared syndromic 
multiplex assays that include the dectection of C. 
difficile: Luminex xTAG GPP (Luminex Molecular 
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Diagnostics Inc., Toronto, Canada) and BioFire 
FilmArray GI Panel (BioFire Diagnostics, Salt Lake 
City, UT)[106]. In addition, there is a non-FDA cleared, 
but “Conformité Européene” (CE) marked multiplex 
assay, the Gastrofinder Smart 17 Fast (PathoFinder, 
Maastricht, The Netherlands)[105]. There are six 
additional commercially available platforms that include 
C. difficile among their targets, but none of these 
platforms are FDA cleared or CE marked[105].

Luminex xTAG pathogen panel: This assay simul-
taneously detects Salmonella sp., Shigella sp., Shiga 
toxin-producing E. coli (STEC) stx1/stx2, Vibrio 
cholerae, Yersinia enterocolitica, C. difficile toxin A/B, 
Campylobacter sp., E. coli O157, Enterotoxigenic  
E. coli (ETEC) LT/ST, adenovirus 40/41, rotavirus A, 
norovirus GI/GII, Giardia lamblia, Cryptosporidium sp. 
and Entamoeba histolytica[107]. The assay performs 
a multiplex reverse transcriptase PCR, using tagged 
and biotinylated primers. Amplicons are detected by 
hybridization to the pathogen-specific complementary 
antitag sequence coupled to specific beads and 
binding of the streptavidin-phycoerythrin reporter to 
the biotinylated primers[106,107].

The performance of the Luminex xTAG panel 
was evaluated with 185 stool samples from 176 
patients. In 11% of the samples, multiple pathogens, 
including ETEC, G. lamblia, norovirus, Shigella sp., 
Campylobacter sp., Salmonella sp., adenovirus, and 
C. difficile, were detected[107]. There was a 100% 
sensitivity, specificity, PPV, and NPV. Another study 
evaluated the assay with a total of 254 clinical speci-
mens[108]. Depending on the target organism, the 
sensitivity ranged from 90% to 100% with an overall 
sensitivity of 94.5% and a specificity of 99.1%. 
With respect to C. difficile, the sensitivity, specificity, 
PPV, and NPV were 91%, 100%, 100%, and 99%, 
respectively.

In a site-specific clinical evaluation, the Luminex 
xTAG Gastrointestinal assay showed a sensitivity of 
98.7% and a specificity of 99.8%. C. difficile, Salmonella 
spp., and Cryptosporidium spp. accounted for 67% 
of the targets detected. Specifically, C. difficile was 
detected in 23 samples, all of which were confirmed 
with the Cepheid Xpert C. difficile assay. Furthermore, 
the multiplex detection led to savings in the hospital 
ward as compared to traditional methods[109].

FilmArray GI panel: The FilmArray uses nested 
multiplex PCR that is executed in two stages. First, the 
FilmArray performs a reverse transcription PCR. Next 
the diluted products are combined with a fluorescent 
double-stranded DNA-binding dye. This solution is ali-
quoted into an array with wells that contain primers to 
amplify internal sequences of the first product, so that 
in each well an individually nested PCR is performed. 
Results are obtained after fluorescence analysis[106,110].

The assay detects Campylobacter (C. jejuni, C. coli 
and C. upsaliensis), C. difficile, Plesiomonas shigelloi-
des, Salmonella, Y. enterocolitica, Vibrio (V. parahae-
molyticus, V. vulnificus, and V.cholerae), E. coli O157, 
Enteroaggregative E. coli, Enteropathogenic E. coli, 
ETEC, STEC, Shigella/Enteroinvasive E. coli, Adenovirus 
F 40/41, Astrovirus, Norovirus GI/GII, Rotavirus 
A, Sapovirus (Ⅰ, Ⅱ, Ⅳ, and Ⅴ), Cryptosporidium, 
Cyclospora cayetanensis, E. histolytica and G. lamblia. 
For the identification of C. difficile, the FilmArray GI 
Panel targets both tcdA and tcdB[111].

In a study that evaluated the BioFire FilmArray GI 
Panel, C. difficile was the most frequently detected 
pathogen (83 out of 378 samples, 22%). The sensi-
tivity of the BioFire FilmArray Gastrointestinal Panel 
to detect C. difficile was 95% and the specificity 99% 
using the Illumigene as a reference. In 91 episodes 
for which specific testing for C. difficile was ordered, 
42 episodes (46%) were C. difficile positive according 
to standard testing and 40 (44%) according to the 
FilmArray GI Panel in 40 (44%)[112].

In a multicenter evaluation, the BioFire FilmArray 
GI Panel detected C. difficile in 204 out of 832 positive 
samples, contrary to 165 positive samples detected by 
the comparator (PCR of toxin A and B genes), resulting 
in a positive percent agreement of 98.8% and nega-
tive percent agreement of 97.1%[111].

Non-FDA approved assays
There are seven non FDA-approved assays on the 
market that include C. difficile among their targets 
(Table 3). The majority of these assays, employ real-
time PCR technology. To our knowledge, only three of 
them have been evaluated regarding the sensitivity 
and specificity at detection C. difficile.

The RIDA® GENE CD PCR assay (R-Biopharm AG, 
Darmstadt, Germany), when compared to TC as a 
reference, had a sensitivity of 98.1%, a specificity 
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Table 3  Summary of non Food and Drug Administration-approved multiplex assays that detect Clostridium difficile

Assay Company Pathogens detected Technology Ref.

Gastrofinder Smart 17 Fast PathoFinder 9 bacteria, 4 viruses and 4 parasites Multiplex Real-time PCR [129]
EasyScreen Enteric assays Genetic Signature 7 bacteria, 8 viruses and 5 parasites 3base Technology [130]
RIDA®GENE R-BioPharma AG 11 bacteria, 4 viruses and 4 parasites Multiplex Real-time PCR [131]
FTD® Bacterial Gastroenteritis Fast-Track Diagnostics 9 bacteria, 5 viruses and 3 parasites Multiplex Real-time PCR [132]
CLART EnteroBac panel Genomica 19 bacteria Low-density microarray [133]
Faecal Bacteria AusDiagnostics 8 bacteria, 4 viruses and 3 parasites Multiplex Tandem PCR technology [134]
Seeplex Diarrhea ACE Seegene 10 bacteria and 4 viruses Dual priming oligonucleotide technology [135]
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of 100%, a PPV of 100%, and a NPV of 98.1%[113]. 
Ylisiurua et al[113] found that the RIDA® GENE CD PCR 
assay outperforms competing molecular C. difficile 
assays, such as GeneOhm™ Cdiff assay (Becton 
Dickinson) and Xpert® C. difficile test (Cepheid).

The EasyScreen Enteric Bacterial Detection Kit is 
a multiplex assay with calculated analytical sensitivi-
ties that range from 2.5 to 12.5 copies of targeted 
pathogen, free of cross-reactivity to non-target micro-
organisms. For C. difficile, the calculated sensitivity 
was 100% and the specificity 81.2%. The EasyScreen 
assay correctly identified all C. difficile-containing 
samples (12 out of 18), including the ribotype 027 and 
078 strains (1 of each)[114].

The Seeplex® Diarrhea ACE is another multiplex 
molecular assay that was compared to BD GeneOhm, 
with TC as a reference. There was a positivity rate of 
35.4% (86/243). The concordance rate between the 
BD GeneOhm and Seeplex® Diarrhea ACE assay was 
96% (234/243) with no significant differences between 
them. The sensitivity, specificity, PPV, and the NPV of 
the Seeplex® Diarrhea ACE assay were 90.0% (63/70), 
97.1% (168/173), 92.6% (38/43), and 96.0% 
(168/175), respectively[115].

bIOMaRKeRs
CDI is accompanied by intestinal inflammation. 
Inflammation biomarkers include cytokines, calprotec-
tin, and fecal lactoferrin[116]. These biomarkers are not 
disease specific, but may be indicators of severity[117]. 
For example, fecal lactoferrin has been evaluated 
in both infectious diarrhea and inflammatory bowel 
disease. Fecal lactoferrin, blood biomarkers, white 
blood cell count and low serum albumin level, were 
significantly associated with severe CDI and stool 
toxin[116]. Furthermore, age, Charlson co-morbidity 
index, intensive care treatment, increased peripheral 
white blood cell count, elevated lactoferrin, decreased 
albumin, and elevated creatinine were significantly 
associated with death within 100 d of CDI diagnosis[118].

Calprotectin is a protein found in the cytoplasm of 
neutrophils and can be detected in stool in cases of 
intestinal inflammation, such as in inflammatory bowel 
disease and infectious diarrhea[117,119]. A large propor-
tion of individuals with nosocomial diarrhea (diagnosed 
by PCR) have elevated levels of calprotectin[120]. High 
fecal levels of calprotectin have been associated with  
C. difficile strain 027[121] and complicated/recurrent CDI 
in a cohort of older adults[119]. Though elevated stool 
calprotectin has a low sensitivity as a diagnostic test 
(38.5%), its specificity for complicate or recurrent CDI 
was 91.9%, and thus provides valuable information for 
adequate treatment decision-making[119].

So far, there is no specific biomarker that detects 
CDI or any other pathogenic agent of clinically 
significant diarrhea. Anikst et al[122] suggests the imple-
mentation of measures to avoid unnecessary testing 
for C. difficile in order to diminish CDI overdiagnosis. 

The identification of such a biomarker, will be helpful to 
improve CDI diagnosis.

CONCLUsION
C. difficile has a worldwide distribution; its toxigenic 
strains are responsible for CDI. Despite increasing 
knowledge on risk factors that favor CDI and mea-
sures to reduce propagation, there is an increase in 
the prevalence of CDI in many countries[123-127]. One 
of the challenges at managing of CDI is the initial diag-
nosis of the disease. To date, there is no single test 
that accurately and rapidly diagnoses CDI. Multistep 
testing is recommended for a diagnosis with accept-
able sensitivity and specificity. The inclusion of NAATs 
in the diagnostic algorithm combines high sensitivity 
with a short turnaround time. However, test results 
should be interpreted with caution and should consider 
clinical suspicion, the presence of risk factors, and a 
correct interpretation of test results. A better under-
standing of the pathogenesis of C. difficile will help both 
physicians and laboratories to develop the best strategy 
to overcome current issues with CDI diagnosis.
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