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Abstract Cancer treatment is becoming more and more

individually based as a result of the large inter-individual

differences that exist in treatment outcome and toxicity

when patients are treated using population-based drug

doses. Polymorphisms in genes encoding drug-metaboliz-

ing enzymes and transporters can significantly influence

uptake, metabolism, and elimination of anticancer drugs.

As a result, the altered pharmacokinetics can greatly

influence drug efficacy and toxicity. Pharmacogenetic

screening and/or drug-specific phenotyping of cancer

patients eligible for treatment with chemotherapeutic

drugs, prior to the start of anticancer treatment, can identify

patients with tumors that are likely to be responsive or

resistant to the proposed drugs. Similarly, the identification

of patients with an increased risk of developing toxicity

would allow either dose adaptation or the application of

other targeted therapies. This review focuses on the role of

genetic polymorphisms significantly altering the pharma-

cokinetics of anticancer drugs. Polymorphisms in DPYD,

TPMT, and UGT1A1 have been described that have a major

impact on the pharmacokinetics of 5-fluorouracil, mer-

captopurine, and irinotecan, respectively. For other drugs,

however, the association of polymorphisms with pharma-

cokinetics is less clear. To date, the influence of genetic

variations on the pharmacokinetics of the increasingly used

monoclonal antibodies has hardly been investigated. Some

studies indicate that genes encoding the Fcc-receptor
family are of interest, but more research is needed to

establish if screening before the start of therapy is benefi-

cial. Considering the profound impact of polymorphisms in

drug transporters and drug-metabolizing enzymes on the

pharmacokinetics of chemotherapeutic drugs and hence,

their toxicity and efficacy, pharmacogenetic and pharma-

cokinetic profiling should become the standard of care.

Key Points

Genetic mutations in genes can affect the

pharmacokinetics of drugs.

Altered metabolism of drugs can result in a

decreased therapeutic response and increased

toxicity.

Personalized medicine requires detailed analyses of

the patient’s genome and phenotypic consequences.

1 Introduction

Cancer treatment is becoming more and more individually

based as a result of the large inter-individual differences in

treatment outcome and toxicity. Factors responsible for

inter-individual variability in pharmacokinetics and phar-

macodynamics include drug–drug interactions, ethnicity,

age, renal and liver function, comorbidities, nutritional

status, smoking, and alcohol consumption. However,
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genetic factors may have an even greater impact on drug

efficacy and toxicity [1]. In oncology, genetic variations

can be found either in the tumor genome as somatic

mutations, influencing the choice of chemotherapeutic

treatment or as germline mutations, potentially altering

individual drug pharmacology [2].

Pharmacogenetics is the study of the inherited basis of

inter-individual differences in the efficacy and toxicity of

drugs. Pharmacogenetic screening and/or drug-specific

phenotyping of cancer patients eligible for treatment with

chemotherapeutic drugs, prior to the start of anticancer

treatment, can identify patients with tumors that are likely

to be responsive or resistant to the proposed drugs. Patients

with an unfavorable clinical or genetic make-up would be

candidates for alternative treatment modalities. Similarly,

the identification of patients with an increased risk of

developing toxicity would allow either dose adaptation or

the application of other targeted therapies. Polymorphisms

in the human genome, affecting either expression or

functionality of enzymes and transporters involved in the

distribution and metabolism of anticancer drugs, can

influence drug efficacy and toxicity and thereby the treat-

ment outcome of patients.

The metabolism of xenobiotics is often divided into

three phases: modification (phase I), conjugation (phase II),

and elimination (most often in urine or bile). Phase I drug-

metabolizing enzymes, especially members of the cyto-

chrome P450 (CYP) family, are responsible for oxidation,

reduction, and hydrolysis of drugs [3]. Phase II drug-me-

tabolizing enzymes, such as glutathione S-transferases

(GSTs) and uridine diphosphate glucuronosyltransferases

(UGTs), mainly inactivate or activate drugs by conjugation

reactions [4]. Polymorphisms in these enzymes have fre-

quently been described to influence the pharmacokinetics

of several anticancer drugs. Genes encoding key enzymes

in the anabolic and catabolic pathway of purine and

pyrimidine analogs, such as thiopurine S-methyltransferase

(TPMT) and dihydropyrimidine dehydrogenase (DPD), are

known to contain many polymorphisms and functional

mutations affecting the enzymatic activity [5, 6]. Poly-

morphisms in genes encoding drug efflux transporters, such

as P-glycoprotein (P-gp) and breast cancer resistance pro-

tein (BCRP), can greatly influence gastrointestinal uptake

and excretion of anticancer drugs [7]. Monoclonal anti-

bodies (mAbs) are increasingly being used in the treatment

of cancer. However, limited information is known about

the influence of genetic variations on the pharmacokinetics

of mAbs [8].

This review focuses on the role of genetic polymor-

phisms in altering the pharmacokinetics of anticancer

drugs. Table 1 provides an overview of the currently used

anticancer drugs, their metabolic pathways, and if a genetic

polymorphism significantly alters its pharmacokinet-

ics.Anaplastic lymphoma kinase

2 Cytochrome P450 (CYP)-Mediated Phase
I-Metabolizing Enzymes

Phase I reactions are catalyzed by CYP enzymes, a large

superfamily of membrane-bound proteins, located pre-

dominantly in the endoplasmatic reticulum. The CYP1,

CYP2, and CYP3 families are most frequently involved in

drug metabolism (Table 2). Several factors may cause

inter-individual variations in CYP450 activity: genetic

polymorphisms, changes in physiological conditions such

as age, sex, and disease, or environmental factors such as

smoking, drugs, and certain foods.

The phase I, polymorphic xenobiotic-metabolizing CYP

enzymes can be mainly divided into two classes: Class I,

composed of CYP1A1, CYP1A2, CYP2E1, and CYP3A4,

which are well conserved, do not have many clinically

important functional polymorphisms, and are active in the

metabolism of precarcinogens and drugs. Class II, com-

posed of CYP2B6, CYP2C9, CYP2C19, and CYP2D6,

which are highly polymorphic and active in the metabolism

of drugs, but not of precarcinogens [9]. In this review, we

discuss all three CYP families, with a special focus on

Class II enzymes and their polymorphisms.

2.1 CYP1

In the CYP1 family, only one member, i.e., CYP1A2, has

been associated with altered cancer drug metabolism. The

CYP1A2 enzyme is involved in the metabolism of more

than 20 clinically used drugs and the enzyme accounts for

approximately 15 % of the total CYP450 amount in the

human liver [10]. In lung cancer patients, the CYP1A2*1M

variant has been associated with higher maximum plasma

concentration values after the intake of 150 mg of erlotinib,

suggesting reduced enzyme activity. The impact on drug

efficacy and toxicity is so far unknown [11].

2.2 CYP2

The most important polymorphic enzymes in cancer drug

metabolism are members of the CYP2 family, i.e.,

CYP2A6, CYP2B6, CYP2C9, CYP2C19, and CYP2D6.

The CYP2A6 enzyme is involved in the activation of the

5-fluorouracil (5-FU) prodrug tegafur. In a set of 45 Chi-

nese livers with 20 polymorphic variants, the CYP2A6*4

allele was mainly responsible for decreased in vitro

microsomal formation of 5-FU from tegafur, whereas the

CYP2A6*1B variant was associated with increased in vitro

5-FU formation [12]. In 23 Asian patients treated with
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Table 1 Overview of the currently used anticancer drugs, their metabolic pathways, and if genetic polymorphisms significantly alter their

pharmacokinetics

Anti-cancer drug Target Metabolizing enzymes Transporters/receptors Polymorphism-altering

pharmacokinetics

Alkylating agents

Bendamustine DNA CYP1A2 No, mainly non-

enzymatic

Busulfan DNA CYP2C9, CYP2B6, GSTs Yes [159, 160]

Carmustine DNA Unknown

Chlorambucil DNA GSTs Yes [161]

Cyclophosphamide DNA CYP3A4, CYP3A5, CYP2B6,
CYP2C19, GSTs

Yes [32, 162]

Dacarbazine DNA CYP1A1, CYP1A2, CYP2E1 Unknown

Estramustine DNA Unknown

Hydroxycarbamide DNA Unknown

Ifosfamide DNA CYP2A6, CYP2B1, CYP2B6,
CYP2C8, CYP2C9, CYP2C19,
CYP3A4, CYP3A5, GSTs

Yes [9, 162]

Lomustine DNA Unknown

Mechlorethamine DNA Unknown

Melphalan DNA LAT1, LAT2 No [163]

Temozolomide DNA No, mainly non-

enzymatic

Procarbazine DNA CYP2B6, CYP1A4, CYP3A5 Unknown

Thiotepa DNA CYP3A4,CYP3A5 CYP2B6 Yes [9]

Treosulfan DNA No, mainly non-

enzymatic [160]

Antimetabolites

Azacitidine DNA/RNA CDA Yes [164]

Capecitabine DNA/RNA DPD Yes [70]

Cladribine DNA/RNA dCK Unknown

Clofarabine DNA/RNA dCK Yes [92, 93]

Cytarabine DNA/RNA dCK MDR1 Yes [86]

Decitabine DNA/RNA CDA, dCK Yes [90, 95]

Fludarabine DNA/RNA dCK Yes [91]

Fluorouracil DNA/RNA DPD, GSTs Yes [49]

Gemcitabine DNA/RNA CDA, dCK Yes [87–89]

Mercaptopurine DNA/RNA TPMT Yes [72, 73]

Methotrexate DNA/RNA MTHFR SLC, MDR1 Yes [71, 81–84]

Nelarabine DNA/RNA Unknown

Pemetrexed DNA/RNA Unknown

Tegafur DNA/RNA DPD, CYP2A6, CYP2C8, CYP1A2 Yes [57]

Tioguanine DNA/RNA TPMT Yes [165]

Anti-mitotic cytostatics

Cabazitaxel Microtubule CYP3A4 Unknown

Docetaxel Microtubule CYP1B1, CYP2B6, CYP3A4,

CYP3A5

MDR1, BCRP Yes [98, 105]

Paclitaxel Microtubule CYP2C8, CYP3A4, CYP3A5 MDR1, BCRP Yes [98, 105]

Vinblastine Microtubule CYP3A4,CYP3A5, GSTs Unknown

Vincristine Microtubule CYP3A4,CYP3A5, GSTs MDR1 No [166]

Vinorelbine Microtubule CYP2D6, CYP2E1,

CYP3A4,CYP3A5, GSTs

Unknown
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Table 1 continued

Anti-cancer drug Target Metabolizing enzymes Transporters/receptors Polymorphism-altering

pharmacokinetics

Anti-tumor antibacterials

Bleomycin DNA/RNA BLMH, GSTs Yes [167]

Dactinomycin DNA/RNA GSTs MDR1 No [168]

Daunorubicin DNA GSTs MDR1 No [108]

Doxorubicin DNA CYP2B6, CYP3A4, CYP3A5,

CYP2D6, GSTs, UGTs

MDR1, BCRP Yes [106]

Epirubicin DNA UGTs MDR1, SLC No [107]

Idarubicin DNA CYP2D6, CYP2C9, GSTs MDR1 Unknown

Mitomycin DNA GSTs Unknown

Mitoxantrone DNA CYP1B1, CYP3A4, CYP3A5, GSTs MDR1 Unknown

Topoisomerase inhibitors

Etoposide Topoisomerase CYP1A2, CYP2E1, CYP3A4,

CYP3A5, GSTs, UGTs

MDR1 Yes [98]

Irinotecan Topoisomerase CYP3A4, CYP3A5, UGTs MDR1, BCRP Yes [169]

Teniposide Topoisomerase CYP3A4, CYP3A5, UGTs Unknown

Topotecan Topoisomerase CYP3A4, CYP3A5, UGTs BCRP No [170]

Anti-hormones

Abiraterone Androgen receptor Unknown

Anastrozole Aromatase CYP3A4, CYP3A5, CYP2C8,

CYP19A1, UGTs
Yes [171]

Bicalutamide Androgen receptor UGTs MDR1, BCRP Yes [113]

Enzalutamide Androgen receptor CYP2C8, CYP3A4, CYP3A5 Unknown

Exemestane Aromatase CYP3A4, CYP3A5, CYP4A11,

CYP1A2, CYP19A1, UGTs
Yes [172]

Flutamide Aromatase CYP1A2 No [9]

Letrozole Aromatase CYP3A4, CYP3A5, CYP2A6,
CYP19A1

Yes [172]

Megestrol Estrogen receptor Unknown

Nilutamide Androgen receptor Unknown

Tamoxifen Estrogen receptor CYP2D6, CYP3A5, CYP3A4,
CYP2C9, CYP2C19, CYP1B1,

UGTs

Yes [173]

Fulvestrant Estrogen receptor CYP3A4, CYP3A5 No, mainly non-

enzymatic

Tyrosine kinase inhibitors

Afatinib EGFR No, mainly non-

enzymatic

Axitinib VEGF-R 1-3 CYP3A4, CYP1A2, CYP2C19, UGTs MDR1 No [125]

Bosutinib BCR-ABL/SRc CYP3A4 MDR1 No [115]

Crizotinib ALK CYP3A4, CYP3A5 Unknown

Dabrafenib BRAF CYP2C8, CYP3A4 Unknown

Dasatinib BCR-ABL CYP3A4 MDR1, BCRP No [115]

Erlotinib EGFR

Gefetinib EGFR CYP3A4, CYP3A5, CYP2D6 MDR1, BCRP No [28]

Imatinib BCR-ABL CYP3A4, CYP3A5, CYP2C8 MDR1, BCRP, SLC Yes [118, 119]

Lapatinib HER-2 CYP3A4, CYP3A5, CYP2C19,

CYP2C8

Unknown

Nilotinib BCR-ABL CYP3A4, CYP2C8 BCRP, SLC No [115]

Olaparib PARP CYP3A4 Unknown

Pazopanib Multi CYP3A4, CYP1A2, CYP2C8 Unknown
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irinotecan, oxaliplatin, and tegafur for metastatic gas-

trointestinal cancer, the CYP2A6*4, *7, and *9 variants

were associated with a lower metabolic ratio of tegafur

(area under the curve [AUC] ratio of 5-FU to tegafur) [13].

The impact of CYP2A6 polymorphisms (*4A, *7, and

*9) on tegafur pharmacokinetics was studied in 58 Japa-

nese patients. Although the CYP2A6 genotype did not

affect the AUC of 5-FU, the clearance of tegafur was 58 %

Table 1 continued

Anti-cancer drug Target Metabolizing enzymes Transporters/receptors Polymorphism-altering

pharmacokinetics

Ponatinib BCR-ABL CYP3A4 No [115]

Regorafenib Multi CYP3A4, UGTs Unknown

Ruxolitinib JAK CYP3A4, CYP2C9 Unknown

Sorafenib Multi CYP3A4, UGTs BCRP Yes [126]

Sunitinib Multi CYP3A4, CYP3A5 MDR1, BCRP Yes [174]

Vandetanib Multi CYP3A4 Unknown

Vemurafenib BRAF CYP3A4 No, mainly non-

enzymatic

Biologicals

Bevacizumab VEGF Unknown

Brentuximab CD30 CYP3A4, CYP2D6 Unknown

Cetuximab EGFR FCGRT Yes [145–148]

Ipilimumab CTLA-4 Unknown

Nivolumab PD-1 Unknown

Ofatumumab CD20 Unknown

Panitumumab EGFR Unknown

Pembrolizumab PD-1 Unknown

Pertuzumab HER-2 Unknown

Rituximab CD20 FCGRT Yes [138–142]

Trastuzumab HER-2 FCGRT Yes [143, 144]

Immunomodulants

Lenalidomide Bone marrow No, mainly non-

enzymatic

Pomalidomide Bone marrow CYP1A2, CYP3A4, CYP2C19,

CYP2D6

Unknown

Thalidomide Bone marrow CYP2C19 Yes [175]

Non-categorized

Asparaginase (PEG) L-Asparagine No [71]

Bortezomib Proteasome CYP3A4, CYP2C19, CYP1A2 No [176]

Carboplatin DNA GSTs Yes [162]

Cisplatin DNA CYP2E1, CYP3A4, CYP3A5, GSTs Yes [177]

Oxaliplatin DNA GSTs Yes [98]

Temsirolimus mTOR CYP3A4 Unknown

Trabectedin DNA CYP3A4, (CYP2C19, CYP2C9,

CYP2D6, CYP2E1)

Unknown

The enzymes and transporters for which genetic polymorphisms are known to significantly alter the pharmacokinetics are indicated in bold

ALK anaplastic lymphoma kinase, BCR-ABL/SRc breakpoint cluster region protein-Abelson murine leukemia viral oncogene homolog/proto-

oncogene tyrosine-protein kinase src, BRAF serine/threonine-protein kinase B-Raf, CD20 cluster of differentiation 20, CD30 cluster of dif-

ferentiation 30, CTLA-4 cytotoxic T-lymphocyte-associated protein 4, CYP cytochrome P450, EGFR epidermal growth factor receptor, GSTs

glutathione, HER-2 human epidermal growth factor receptor 2, JAK janus kinase, mTOR mammalian target of rapamycin, multi various tyrosine

kinases, PARP Poly (ADP-ribose) polymerase, PD-1 Programmed cell death protein, S-transferases, UGT uridine diphosphate glucuronosyl-

transferase, VEGF vascular endothelial growth factor, VEGFR 1-3 vascular endothelial growth factor subtypes 1-3
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Table 2 Polymorphisms in phase I and phase II metabolic enzymes affecting pharmacokinetics of anticancer drugs

Drugs Gene Mutations dbSNP ID ESP MAF ExAC

MAF

PK parameters

African

American

European

American

Erlotinib CYP1A2 c.1042?43G[A rs2472304 0.13 0.56 0.46 Plasma concentrations [11]

Tegafur CYP2A6 CYP2A6*1A Increased 5-FU formation

[178]

CYP2A6*4A del Decreased 5-FU formation

[178]

CYP2A6*4A-H del CL, AUC [13, 14]

CYP2A6*7

(c.1412T[C)

rs5031016 nr 9 9 10-4 1.1 9 10-2 CL, AUC [13, 14]

CYP2A6*9

(c.-48T[G)

rs28399433 0.08 0.06 0.10 CL, AUC [13, 14, 178]

Cyclofosfamide CYP2B6 CYP2B6*6 CL [15–18, 32]

(c.516G[T) rs3745274 0.37 0.25 0.27

(c.785A[G) rs2279343 nr nr 0.06

Busulfan CYP2C9 CYP2C9*2

(c.430C[T)

rs1799853 0.03 0.13 0.09 Decreased CL [19]

Cyclophosphamide CYP2C19 CYP2C19*2

(c.681G[A)

rs4244285 0.17 0.15 0.19 Reduced CL

[16, 20, 179, 180]

CYP2C19*3

(c.636G[A)

rs4986893 5 9 10-4 2 9 10-4 6 9 10-3

Gefitinib

Tamoxifen

CYP2D6 CYP2D6*2xN duplication Endoxifen plasma

concentrations [21–23, 28]

CYP2D6*3

(c.775delA)

rs35742686 4.5 9 10-3 1.7 9 10-2 1.3 9 10-2 Gefitinib plasma

concentrations [29, 30]

CYP2D6*4

(c.506-1G[A)

rs3892097 0.07 0.19 0.17

CYP2D6*5 del

CYP2D6*6

(c.454delT)

rs5030655 2 9 10-3 9 9 10-3 7.9 9 10-3

CYP2D6*9

(c.841_843del)

rs5030656 5.9 9 10-3 2.7 9 10-2 1.9 9 10-2

CYP2D6*10

(c.100C[T)

rs1065852 0.12 0.22 0.25

CYP2D6*17

(c.320C[T)

rs28371706 0.17 1.8 9 10-2 1.8 9 10-2

(c.886C[T) rs16947 0.49 0.34 0.34

Busulfan

Chloorambucil

Melphalan

GSTA1 GSTA1*B

(c.-135T[C)

rs3957357 nr nr nr Reduced CL busulfan [32, 33]

Thiotepa GSTP1 GSTP1

(c.341C[T)

rs1138272 0.02 0.08 0.06 Reduced CL thiotepa and tepa

[34]

Irinotecan UGT1A1 UGT1A1*6

(c.211G[A)

rs4148323 0.01 0.01 0.02 Reduced CL SN-38

[36–38, 42]

UGT1A1*28a rs8175347

AUC area under the curve, CL clearance, ExAc Exome Aggregation Consortium, ESP Exome Sequencing Project, MAF minor allele frequency,

nr not reported, PK pharmacokinetic, 5-FU 5-fluorouracil
a UGT1A1*28 occurs with a frequency of 0.26–0.31 in Caucasians, 0.42–0.56 in African Americans, and only 0.09–0.16 in Asian populations

[181]
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lower in patients with two variant alleles of CYP2A6 than

in patients with the wild-type or 1 variant allele [14].

The CYP2B6 enzyme converts cyclophosphamide to its

active form 4-hydroxycyclophosphamide. The most com-

mon functionally deficient allele is CYP2B6*6. A total of

644 plasma samples collected over a 5-year period, from

49 B-cell non-Hodgkin lymphoma (NHL) patients aged

B18 years receiving cyclophosphamide (250 mg/m2), were

used to characterize a population pharmacokinetic model.

Polymorphisms in genes including CYP2B6 and CYP2C19

were analyzed. The presence of at least one CYP2B6*6

variant allele was associated with a lower cyclophos-

phamide clearance, as compared with homozygous wild-

type patients, but there was no impact on clinical outcome

[15]. However, several other reports have shown that the

*6 allele is associated with a higher rate of cyclophos-

phamide 4-hydroxylation [16–18]. The overall effect of

CYP2B6*6 expression on the pharmacokinetics and thera-

peutic efficacy/toxicity of cyclophosphamide seems diffi-

cult to predict and would depend on whether the dominant

effect is reduced enzyme expression or increased specific

enzyme activity.

Patients with the CYP2C9 *1/*2 or *2/*2 genotype

undergoing hemopoietic stem cell transplantation may

have decreased metabolism of busulfan as compared with

patients with the wild-type genotype. However, other

genetic and clinical factors may also influence the meta-

bolism of busulfan [19]. The CYP2C19 enzyme plays a

role in the metabolism of cyclophosphamide, ifosfamide,

tamoxifen, and thalidomide. A splice site mutation in exon

5 (CYP2C19*2) and a premature stopcodon in exon 4

(CYP2C19*3) represent the most predominant null alleles

[10]. With regard to cyclophosphamide and CYP2C19

activity, poor metabolizers are theoretically expected to

have a reduced response and low toxicity upon therapy

with cyclophosphamide, as a result of decreased

CYP2C19-mediated activation. However, for CYP2C19*2

and CYP2C19*3, no effect on the pharmacokinetics of

cyclophosphamide was observed in two larger trials con-

ducted in Japanese and European patients [16, 20]. This

might be owing to the fact that cyclophosphamide is acti-

vated via multiple CYP enzyme pathways.

The CYP2D6 gene is the best-studied member of the

CYP family, with over 40 variant alleles [10]. In breast

cancer patients, CYP2D6 plays an important role in the

activation of tamoxifen into endoxifen. In several studies,

clear associations were found between CYP2D6 status and

plasma endoxifen concentrations [21–23]. However, a clear

exposure-response effect remains controversial. In two of

the largest prospective-retrospective studies from BIG 1-98

and ATAC, no association was found between the CYP2D6

genotype and breast cancer recurrence, although genotyp-

ing was performed in tumor DNA and massive departures

from the Hardy–Weinberg equilibrium have been noted

[24–26]. These controversial findings and the partial con-

tribution of the genotype in explaining inter-individual

variability in plasma concentrations of endoxifen imply

that tailored tamoxifen treatment may not be fully realized

through pharmacogenetics of metabolizing enzymes alone

[27].

Lung cancer patients designated as CYP2D6 poor

metabolizers might theoretically have increased concen-

trations of gefitinib as compared with individuals desig-

nated as CYP2D6 extensive metabolizers. However, other

genetic and clinical factors may also influence concentra-

tions of gefitinib. The pharmacokinetics and pharmacoge-

nomics were not associated with significantly different

toxicities, response rates, or survival times with gefitinib

[28, 29].

2.3 CYP3

The CYP3A subfamily is involved in the metabolism of

more than 50 % of clinically used drugs, including several

anticancer drugs such as cyclophosphamide, ifosfamide,

thiotepa, etoposide, teniposide, docetaxel, paclitaxel,

irinotecan, toremifene, vinblastine, vincristine, vinorelbine,

gefitinib, imatinib, and erlotinib. The enzyme activity of

CYP3A ranges widely among subjects, and its activity is

largely affected by non-genetic factors such as age,

endogenous hormone levels, health status, and environ-

mental stimuli. Although approximately 40 allelic variants

have been described for CYP3A4, it has been found that

genetic variability in CYP3A alone is insufficient to

explain its widely ranging enzyme activity and therefore is

not indicated in clinical practice [30]. Recently, it was

demonstrated that the CYP3A4*22 (rs35599367:C[T) and

the CYP3A5*3 (rs776746:A[G) polymorphisms have a

small but clinical insignificant impact on the pharmacoki-

netics of sunitinib, but so far no other studies have

demonstrated an impact on the pharmacokinetics of anti-

cancer drugs [31].

3 Non-CYP Phase II-Metabolizing Enzymes

Several clinical relevant gene polymorphisms associated

with phase II drug metabolism and pharmacokinetics of

anticancer drugs have been reported in the literature. The

GST enzyme family and UGT enzymes have been most

intensively studied (Table 2).

3.1 Glutathione S-Transferase

Four subfamilies of GSTs exist, namely, GSTA, GSTM,

GSTP, and GSTT. GSTA1 plays an important role in the
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detoxification of, busulfan, melphalan, and chlorambucil.

GSTA1*B might be of clinical relevance in busulfan

treatment because two studies in children demonstrated

that the presence of GSTA1*B reduced the clearance of

busulfan up to 30 % [32, 33]. In clinical practice, this

might require dose adjustments of busulfan, at least in

children, based on the GSTA1*B genotype.

In 124 Caucasian patients treated with high-dose

chemotherapy for metastatic breast, ovarian, and testicular

tumors, the clearance of thiotepa and tepa was predomi-

nantly affected by the GSTP1 C341T polymorphism, which

had a frequency of 9.3 %. This allele variant increased

non-inducible thiotepa clearance by 52 % and decreased

tepa clearance by 32 % in heterozygous patients, which

resulted in an increase in combined exposure to thiotepa

and tepa of 45 % in homozygous patients [34].

3.2 Uridine Diphosphate Glucuronosyltransferases

The UGT enzymes are a superfamily of enzymes respon-

sible for the glucuronidation of target substrates. The

transfer of glucuronic acid renders xenobiotics and other

endogenous compounds water soluble, allowing for their

biliary or renal elimination. Unconjugated hyperbiliru-

binemias, such as Gilbert’s syndrome and Crigler–Najjar

syndrome, have been found to be associated with poly-

morphic variants of UGT1A1, especially with UGT1A1*28

[35]. Currently, over 113 different UGT1A1 variants have

been described throughout the gene. These variants can

confer reduced or increased activities, as well as inactive or

normal enzymatic phenotypes.

Irinotecan is converted to its active metabolite SN-38.

SN-38 is further metabolized to SN-38-glucuronide by

various hepatic and extrahepatic UGT1A isozymes, mainly

UGT1A1. Impaired glucuronidation activity of the

UGT1A1 enzyme has been linked with elevated levels of

SN-38, leading to toxicities. UGT1A1*28 involves an extra

TA repeat in the UGT1A1 promoter region and is the

variant most frequently contributing to interpatient vari-

ability in irinotecan pharmacokinetics and toxicities. This

information led to the revision of the irinotecan label by the

US Food and Drug Administration. Both the *28 and *6

alleles have been well studied in regard to pharmaceutical

toxicities. In particular, both alleles have shown associa-

tions with the development of irinotecan toxicities [36–38].

UGT1A1*28 occurs with a frequency of 0.26–0.31 in

Caucasians, and 0.42–0.56 in African Americans, and only

0.09–0.16 in Asian populations [39, 40]. UGT1A1*6 has

allele frequencies in Japanese, Korean, and Chinese pop-

ulations of 0.13, 0.23, and 0.23, respectively [41].

Several studies hypothesized that patients with the *1/*1

genotype would tolerate a higher dose than the standard

recommended dose of 180 mg/m2, while patients with the

*28/*28 genotype would require dose reduction. A

prospective genotype-guided phase I study in colorectal

cancer patients receiving irinotecan monotherapy indeed

demonstrated a maximum tolerated dose (MTD) of 850

mg, 700 mg, and 400 mg in patients with the *1/*1

genotype, *1/*28 genotype, and *28/*28 genotype,

respectively. Interestingly, although the irinotecan AUC

increased according to the different MTDs in each geno-

type group, the mean SN-38 AUC levels were comparable

across the different MTDs in each genotype group [42].

A similar, genotype-guided dose escalation study in

colorectal patients receiving FOLFIRI (5-FU, folinic acid,

irinotecan) identified the MTD of irinotecan to be 370 mg/

m2 and 310 mg/m2 in patients with the *1/*1 genotype and

*1/*28 genotype, respectively. Patients with the *28/*28

genotype were excluded [43]. Recently, it was demon-

strated that high-dose irinotecan (260 mg/m2) FOLFIRI

combined with bevacizumab did not improve the overall

response rate in metastatic colorectal cancer patients with

the *1/*1 or *1/*28 genotype [44]. Whether irinotecan

dose escalation in wild-type UGT1A1 patients contributes

to improved clinical outcome is therefore questionable.

4 Enzymes of Purine and Pyrimidine Metabolism

Structural analogs of nucleobases and nucleosides are used

in the treatment of cancer, viral infections, and inflamma-

tory diseases. These nucleobase and nucleoside analogs are

inactive produgs that are taken up by the cell via specific

nucleobase or nucleoside transporters and subsequently

phosphorylated intracellularly to their pharmacologically

active triphosphate form [45]. The incorporation of

nucleoside triphosphate analogs into DNA causes termi-

nation of DNA elongation and often also resistance to

proofreading exonucleases. Some of these analogs also

inhibit key enzymes (e.g., ribonucleotide reductase,

thymidylate synthase, or dCMP deaminase) involved in the

generation of purine and pyrimidine nucleotides for RNA

and DNA synthesis. Opposing the activation of these pur-

ine and pyrimidine analogs are enzymes that inactivate or

degrade the parent compounds or one of its anabolic

products. Thus, a deficiency of a key enzyme in the ana-

bolic or catabolic pathway of these purine and pyrimidine

analogs will not only affect the clinical efficacy and toxi-

city of the drug but is also likely to alter the pharmacoki-

netics of the drug (Table 3).

5-FU and its oral prodrug capecitabine (Xeloda�, F.

Hoffmann-La Roche AG, Basel, Switzerland) are two of

the most frequently prescribed chemotherapeutic drugs for

the adjuvant and palliative treatment of patients with can-

cers of the gastrointestinal tract, breast, and head and neck

[46, 47]. Both 5-FU and capecitabine need to undergo
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Table 3 Genotypes affecting pharmacokinetics of drugs targeting purine and pyrimidine metabolism

Drugs Gene Mutations dbSNP ID ESP MAF ExAC

MAF

PK parameters

African

American

European

American

5-FU

Capecitabine

Tegafur

DPYD c.1905?1G[A rs3918290 9.0 9 10-4 5.8 9 10-3 5.2 9 10-3 Vmax, t1/2, AUC, CL

[58, 59, 61, 182]

c.1679T[G rs55886062 0 6 9 10-4 3.5 9 10-4 CL [61]

c.2846A[T rs67376798 9.0 9 10-4 5.5 9 10-3 2.6 9 10-3 CL [61]

c.2579delA rs746991079 nr nr 3.3 9 10-5 Vmax (uracil) [62]

c.1129-5923C[G rs75017182 nr nr nr Vmax (uracil) [62]

DPYS c.1506delC rs147965145 2.6 9 10-3 0 2.4 9 10-4 Tmax, Cmax, AUC [66]

UPB1 c.254C[A rs34035085 1.5 9 10-2 0 1.4 9 10-3 Altered uracil flux [68]

Capecitabine MTHFR c.655C[T

(C677T)

rs1801133 0.12 0.35 0.30 t1/2 [70]

Thiopurines TPMT TMPT*2

(c.238G[C)

rs1800462 0 2.3 9 10-3 1.4 9 10-3 TGN [77, 78]

TPMT*3B

(c.460G[A)

rs1800460 1.0 9 10-2 3.7 9 10-2 2.7 9 10-2

TMPT*3C

(c.719A[G)

rs1142345 5.3 9 10-2 4.2 9 10-2 3.7 9 10-2

Methotrexate MTHFR c.665C[T

(C677T)

c.1286A[C

rs1801133 0.12 0.35 0.30 CL, serum concentrations MTX

[183, 184]

rs1801131 0.16 0.31 0.30 Serum concentrations MTX [184]

ARID5B c.1200-6044T[C rs4948502 nr nr nr Serum concentrations MTX [185]

c.734-5030T[C rs4948496 nr nr nr Serum concentrations MTX [185]

c.276?7693C[A rs4948487 nr nr nr Serum concentrations MTX [185]

ABCC2 c.1234A[G

Knockout model

rs765027508 nr nr 8.2 9 10-6 t1/2 [186]

AUC [187]

SLCO1B1 c.521T[C rs4149056 3.6 9 10-2 0.16 0.13 Serum concentrations MTX,

AUC, CL [185, 188]

c.388A[G rs2306283 0.23 0.40 0.48 Serum concentrations MTX,

AUC, CL [188]

c.1865?248G[A rs4149081 nr nr nr CL [189]

c.1865?4846T[C rs11045879 nr nr nr CL[189]

Hap*5 CL[190]

Hap*15 CL [190]

Hap*23 CL [190]

Hap*31 CL [190]

Gemcitabine CDA Hap*3

(c.208G[A)

rs60369023 nr nr 2.9 9 10-4 AUC, CL, Cmax [88]

THU induceda AUC, CL [191]

CNTN4 c.2398?70G[T rs4685596 nr nr nr AUC, Cmax [87]

ALOX5AP c.495-204A[G rs4769060 nr nr nr AUC, Vss, Cmax [87]

c.495-523T[C rs3935645 nr nr nr Vss, Cmax [87]

c.341?12C[A rs3803277 0.44 0.44 0.49 Vss, Cmax [87]

DMD c.1331?127G[A rs5928065 nr nr nr AUC, Vss [87]

HEXDC c.15T[G rs1141463 0.38 0.30 0.35 AUC, Vss [87]

Decitabine CDA mRNA expression

activity

Plasma concentrations decitabine

[95]

AUC area under the curve, ExAc Exome Aggregation Consortium, CDA cytidine deaminase, CL clearance, Cmax maximum plasma concentration,

ESP Exome Sequencing Project, MAF minor allele frequency, nr not reported, PK pharmacokinetic, TGN thioguanine nucleotides, t1/2 elimi-

nation half-life, Vmax maximum enzymatic conversion capacity, Vss volume of distribution at steady state, 5-FU 5-fluorouracil
a CDA deficiency was achieved in mice by treatment with tetrahydrouridine [191]
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enzymatic activation to fluoropyrimidine nucleotides to

exert their cytotoxic effects (Fig. 1a). However, the

degradation of 5-FU plays a significant role as more than

80 % of 5-FU is catabolized by DPD [48]. 5-FU has a

narrow therapeutic index and an increased exposure to

5-FU, owing to a reduced activity of DPD, can thus result

in severe or even lethal toxicity [49]. For DPD activities

within the normal range, conflicting results have been

published as to whether a correlation exists between the

DPD activity and the clearance of 5-FU [50–52]. Com-

pelling results, however, have shown that patients with a

partial or complete DPD deficiency have a reduced

capacity to degrade 5-FU and are at risk of developing

severe 5-FU-associated toxicity [53]. To date, many

mutations and polymorphisms have been described in the

gene encoding DPD (DPYD) and ample evidence has been

provided that carriers of the c.1905?1G[A, c.1679T[C,

c.2846A[T, and c.1129-5923C[G/hapB3 variant have a

strongly increased risk of developing toxicity [6, 54–57].

In a two-compartment model with Michaelis–Menten

elimination, the mean Vmax value was 40 % lower in

patients heterozygous for the c.1905?1G[A mutation in

DPYD compared with controls [58]. Non-compartmental

analysis showed that the mean AUC was 1.5-fold and 1.3-

fold higher in carriers of the c.1905?1G[A mutation

treated with 300 mg/m2 and 450 mg/m2, respectively, when

compared with controls. The mean terminal half-life of

5-FU was 2.1-fold and 1.7-fold longer at 300 mg/m2 and

Fig. 1 Metabolism of drugs interfering with purine and pyrimidine

synthesis. a Metabolism of fluoropyrimidine-containing drugs.

b Thiopurine metabolism. c Methotrexate metabolism. d Nucleoside

metabolism. ABC adenosine triphosphate-binding cassette family of

transporters, CDA cytidine deaminase, DCK deoxycytidine kinase,

DHF dihydrofolate, DHFR dihydrofolate reductase, DPYD dihy-

dropyrimidine dehydrogenase, DPYS dihydropyrimidinase, FBAL

fluoro-b-alanine, FGPS folylpolyglutamate synthase, FUH2 5-flu-

oro-dihydrouracil, FUPA fluoro-b-ureidopropionate, GGH c-glutamyl

hydrolase, HPRT1 hypoxanthine-guanine phosphoribosyltransferase,

MTX methotrexate, MTX-PGs MTX-polyglutamate, NA (deoxy)nu-

cleoside analogs, RFC reduced folate carrier, SLCO1B1 solute carrier

organic anion transporter B, THF tetrahydrofolate, dehydrogenase/

oxidase, TPMT thiopurine-S-methyltransferase, UPB1 b-ureidopropi-
onase, XDH xanthine, 5-FU 5-fluorouracil, 6-MeMP 6-methylmer-

captopurine, 6-MeTIMP 6-methylthioinosine monophosphate, 6-MP

6-mercaptopurine, 6-TGN 6-thioguanine nucleotides, 6-TIMP 6-thioi-

nosine monophosphate, 6-TUA 6-thiouric acid
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450 mg/m2, respectively, compared with controls [58].

Furthermore, a clinical pharmacological study of a patient

with a complete deficiency owing to homozygosity for the

c.1905?1G[A mutation in DPYD demonstrated minimal

catabolism of 5-FU, with a tenfold longer half-life of 5-FU

compared with patients with a normal DPD activity

[59, 60]. A decreased clearance of plasma 5-FU concen-

trations was also noticed for carriers of the c.2846A[T and

c.1679T[G mutations [61]. In addition, an oral uracil

loading test to identify DPD-deficient patients showed

altered pharmacokinetics of uracil in patients who were

carriers for the c.1905?1G[A, c.2846A[T, c.2579delA,

c.1679 T[G, or c.1129-5923C[G mutation [62].

Patients with a complete dihydropyrimidinase (DPYS)

deficiency, the second enzyme of the pyrimidine degrada-

tion pathway, present with strongly elevated levels of

dihydropyrimidines and moderately elevated levels of

uracil and thymine [63]. Patients with a partial DHP defi-

ciency also show an impaired flux through the pyrimidine

degradation pathway and are prone to the development of

severe toxicity after the administration of 5-FU [64–67].

The identification of a healthy individual showing altered

catabolism of uracil due to heterozygosity for a mutation in

UPB1 suggests that also patients with a b-ureidopropionase
deficiency, the third enzyme of the pyrimidine degradation

pathway, might be at risk of developing 5-FU toxicity

[68, 69]. Although methylenetetrahydrofolate reductase

(MTHFR) is not involved in the degradation of capecita-

bine, a borderline decrease in the elimination-half-life of

capecitabine was observed for the c.677C[T mutation in

MTHFR [70]. The c.677C[T mutation in MTHFR reduces

the enzyme activity and presumably increases the level of

5,10-methyleneterahydrofolate, a substrate of thymidylate

synthase. Thus, a direct causal relationship between

MTHFR genotype and apparent elimination half-life of

capecitabine is not likely.

6-Mercaptopurine (6-MP) is an analog of guanine and

hypoxanthine, which is widely used in the treatment of

patients with inflammatory bowel disease and patients with

acute lymphoblastic leukemia [71, 72]. The principal

cytotoxic and immunosuppressive effects of thiopurine

drugs are caused by incorporation of thioguanine nucleo-

tides into DNA or RNA (Fig. 1b). Opposing the principal

enzyme of the anabolic pathway, hypoxanthine-guanine

phosphoribosyl transferase, are the two catabolic enzymes

xanthine oxidase and TPMT. Xanthine oxidase is respon-

sible for oxidation of 6-MP into the inactive metabolite

6-thiouric acid, whereas TPMT methylates 6-MP to form

the inactive metabolite 6-MP. Therefore, TPMT plays a

pivotal role in the production of active thiopurine

metabolites by diverting a proportion of available sub-

strates away from the anabolic pathway of thiopurines to

generate methylated metabolites. To date, more than 35

variants in the gene encoding TPMT have been associated

with decreased TPMT activity [72]. Three variants

TPMT*2, TMPT*3A, and TMPT*3C account for 80–85 %

of intermediate or low enzyme activity in the Caucasian

population [5]. Individuals who are heterozygous carriers

or homozygous for an inherited functional mutation in

TPMT have an increased risk of developing life-threatening

myelosuppressive effects of thiopurines. Patients who are

heterozygous for a TPMT deficiency require a lower dose

of thiopurines (30–50 % of the regular dose) and sub-

stantial reduced doses ([tenfold) or the use of alternative

agents is recommended in patients homozygous for a

TPMT deficiency [72, 73]. Upfront screening of patients

for variants in TPMT, followed by a dose reduction in

heterozygous or homozygous carriers of a variant, reduced

hematological events during thiopurine treatment of

inflammatory bowel disease [74]. Furthermore, a similar

treatment efficacy was obtained in carriers treated with a

reduced thiopurine dose as compared with that observed in

controls [74].

The oral bioavailability of 6-MP is very low owing to

extensive intestinal and hepatic metabolism by xanthine

oxidase [75]. The maximum concentration of 6-MP in

plasma is observed approximately 1.3 h after oral admin-

istration of 6-MP and the elimination half-life is approxi-

mately 1.8 h [76]. One approach to ensure optimal dosing

of thiopurines is to monitor the thiopurine metabolites in

erythrocytes [72]. A population pharmacokinetic model has

been developed to predict the concentrations of thiogua-

nine nucleotides in erythrocytes in pediatric patients with

acute lymphoblastic leukemia and the most influential

covariate examined proved to be the TMPT genotype [77].

In a physiologically based pharmacokinetic model, the

predicted thioguanine nucleotides in erythrocytes in

patients with heterozygous or homozygous variants in the

TPMT gene were twofold and tenfold higher, respectively,

compared with those observed in patients with wild-type

TMPT [78].

Methotrexate (MTX) is most frequently used for the

treatment of patients with rheumatoid arthritis as well as

patients with acute lymphoblastic leukemia. Nevertheless,

MTX can cause severe dose-limiting adverse events and

organ toxicities [79]. MTX is a structural analog of folic

acid and it enters the cell via the reduced folate carrier

(solute carrier family 19 member 1B1, SLC19A1) or the

solute carrier organic anion transporter B1 (SLCO1B1)

(Fig. 1c). In the cytoplasm, MTX is polyglutamated by

folylpolyglutamate synthase, which enhances its retention

in the cell. This process can be reversed by the enzyme c-
glutamyl hydrolase. MTX and MTX-polyglutamate inhibit

dihydrofolate reductase, which catalyses the conversion of

dihydrofolate into tetrahydrofolate. Because reduced

folates are required for both the de novo thymidylate and
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purine synthesis, inhibition of dihydrofolate reductase

results in direct inhibition of both pathways (Fig. 1). In

addition, methotrexate polyglutamate metabolites also bind

directly and inhibit thymidylate synthase and aminoimi-

dazolecarboximide ribonucelotide formyltransferase (pur-

ine de novo pathway) [80]. Efflux of MTX from the cell

occurs via members of the adenosine-50-triphosphate-
binding cassette (ABC) family of transporters, including

ABCB1 [81]. Genetic variations in pharmacokinetic genes

involved in MTX metabolism can be major determinants of

clinical response and toxicity (Table 3) [71, 81–84].

Deoxycytidine kinase (dCK) is responsible for the initial

activation of a number of clinically important anticancer

drugs such as cytarabine, gemcitabine, decitabine, flu-

darabine, and clofarabine (Fig. 1d). Impaired dCK

expression or activity in cells results in resistance to these

drugs, whereas overexpression of dCK in dCK-deficient

cell lines increased the sensitivity of dCK-activated

deoxynucleoside analogs, indicating that dCK plays a key

role in their metabolism and pharmacological activities

[45]. Cytidine deaminase is an important determinant of

the efficacy and cytotoxicity of cytarabine, gemcitabine,

and decitabine because these deoxynucleoside analogs are

readily deaminated and thereby inactivated by cytidine

deaminase [85]. The pharmacokinetics of cytarabine [86],

gemcitabine [87–89], decitabine [90], fludarabine [91], and

clofarabine [92, 93] have been thoroughly investigated in

cancer patients. To date, limited information is only

available regarding the potential impact of altered levels of

the cytidine deaminase gene (CDA) on the pharmacoki-

netics of gemcitabine [87–89, 94] and decitabine [95].

5 Drug Transporters

Polymorphisms in genes encoding drug efflux transporters,

such as P-gp and BCRP, can influence uptake and excretion

of anticancer drugs (Table 4). This contributes to the inter-

Table 4 Polymorphisms in drug transporter genes affecting pharmacokinetics of anticancer drugs

Drugs Gene Mutations dbSNP ID ESP MAF ExAC MAF PK parameters

African

American

European

American

Docetaxel ABCB1 c.1236T[C rs1128203 0.22 0.43 0.54 CL [1]

c.3435T[C rs1045642 0.23 0.48 0.50 CL [192]

Paclitaxel ABCB1 c.1236T[C rs1128203 0.22 0.43 0.54 AUC [193]

c.2677T[A/G rs2032582 nr nr 0.54 AUC [193]

Etoposide ABCB1 c.3435T[C rs1045642 0.77 0.47 0.50 CL [194]

Doxorubicin ABCB1 c.1236T[C rs1128203 0.22 0.43 0.54 Cmax [106]

c.2677T[A/G rs2032582 nr nr 0.54 CL [106]

SLC22A16 c.146A[G rs714368 0.36 0.22 0.25 AUC [195]

c.312T[C rs6907567 0.36 0.22 0.25 AUC [195]

Irinotecan ABCB1 c.1236T[C rs1128203 0.22 0.43 0.54 AUC, CL [110]

Hap*2 CL [111]

Bicalutamide ABCG2 c.421C[A rs2231142 0.03 0.11 0.12 AUC, Tmax, Cmax, t1/2, CL

plasma concentrations

[113]

Topotecan ABCG2 c.421C[A rs2231142 0.03 0.11 0.12 F [196]

Imatinib ABCB1 c.1236T[C rs1128203 0.22 0.43 0.54 Cmin, CL, F [116, 117]

c.2677T[A/G rs2032582 nr nr 0.54 CL, F [117]

c.3435T[C rs1045642 0.23 0.48 0.50 CL, F [117]

Hap*4 Cmin [116]

ABCG2 c.421C[A rs2231142 0.03 0.11 0.12 Cmin, CL [118, 119]

SLC22A1 c.480C[G rs683369 0.05 0.22 0.17 CL, Cmin [128]

Gefitinib ABCG2 c.421C[A rs2231142 0.03 0.11 0.12 Css,min/C1,min [123]

Sunitinib ABCB1 c.2677T[A/G rs2032582 nr nr 0.54 CL [31]

The drug accumulation at the steady-state was assessed as the ratio of Css,min to C1,min, where Css,min was the average pretreatment concentration

on days 8, 15, 22 and 28, and C1,min was the pretreatment concentration before the second dose

AUC area under the curve, ExAc Exome Aggregation Consortium, ESP Exome Sequencing Project, CL clearance, Cmax maximum plasma

concentration, Cmin trough plasma concentration, Css,min/C1,min, F oral bioavailability, MAF minor allele frequency, nr not reported, PK

pharmacokinetic, Tmax time to maximum plasma concentration, t1/2 elimination half-life
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individual variability in pharmacokinetics and, as a con-

sequence, to large differences in treatment response

between cancer patients [7, 96].

P-gp is a member of the ABC superfamily of membrane

transporters and is involved in the active transport of

lipophilic and amphipathic molecules through lipid mem-

branes [97]. P-gp is encoded by the multidrug resistance 1

(MDR1) gene (ABCB1), located at chromosome 7q21. A

number of polymorphisms described in this gene signifi-

cantly influence the pharmacokinetics of several anticancer

drugs. There are three main polymorphisms influencing the

activity of P-gp; the c.2677G[T/A single nucleotide

polymorphism (SNP) in exon 21 leads to a change in the

amino acid sequence from Ala (G) to Ser (T) or Thr (A),

possibly resulting in increased P-gp function [98, 99]. The

second polymorphism is in exon 26 at wobble position

c.3435C[T, resulting in a more than twofold lower P-gp

expression in the duodenum [100]. The third one is also a

synonymous SNP, at c.1236T in exon 12, which does not

directly affect expression of P-gp but may have an indirect

effect such as altering RNA stability for P-gp [101].

BCRP, also called mitoxantrone resistant protein (MXR)

or placenta-specific ABC transporter, is another member of

the ABC transporter superfamily. BCRP is encoded by the

ABCG2 gene located at chromosome 4q22 [102]. A func-

tional SNP (c.421C[A) in exon 5 has been identified,

resulting in a Gln (C) to Lys (A) amino acid substitution,

which proved to be associated with decreased BCRP

expression levels and altered substrate specificity [103].

Docetaxel and paclitaxel are cytotoxic taxanes inhibit-

ing mitosis leading to cancer cell death, which are mainly

used in the treatment of breast, ovarian, and lung cancer

[104]. For taxanes, the ABCB1 gene is considered one of

the best candidates to become a biomarker underlying

variations in clinical responses and toxicity owing to

pharmacokinetic differences [105].

Doxorubicin, an anthracycline widely used as mono- or

combination therapy in the treatment of solid tumors

including breast cancer, is also the substrate of P-gp and

BCRP [106]. Significantly altered clearance and lower

plasma concentration of doxorubicin was observed in

patients harboring any of the three above-described poly-

morphisms in ABCB1. For c.421C[A in ABCG2, no sig-

nificant influence on doxorubicin pharmacokinetics was

observed [106]. Pharmacokinetics of other anthracyclines,

such as epirubicin and daunorubicin, were not altered by

polymorphisms in drug transporter genes [107, 108].

Irinotecan, a topoisomerase I inhibitor, plays a major

role in the treatment of colorectal cancer as monotherapy

or in combination with 5-FU [109]. Elimination pathways

of irinotecan are partially mediated by P-gp and BCRP. A

study investigating polymorphisms in genes encoding these

transporters showed that only the polymorphism

c.1236C[T in ABCB1 was associated with significantly

increased exposure to irinotecan and its active metabolite

SN-38 in individuals homozygous for the T allele [110]. In

addition, a significant association has been observed for

ABCB1 haloptype*2 containing both c.1236C[T,

c.2677G[T/A, and c. 3435C[T, with reduced renal

clearance of irinotecan [111].

Bicalutamide, a non-steroidal pure anti-androgen that

competitively blocks the growth-stimulating effects of

androgens, is used in the treatment of prostate cancer as

monotherapy or in combination with a luteinizing hormone-

releasing hormone analog [112]. P-gp and BCRP are

involved in the disposition of bicalutamide. The pharma-

cokinetic parameters of bicalutamide did not show any

significant differences between ABCB1 genotype groups for

the three main polymorphisms previously described [113].

However, for ABCG2 it was shown that the c.421C[A

polymorphism influenced plasma concentrations of bicalu-

tamide with subjects homozygous for the c.421AA geno-

type exhibiting significantly higher plasma concentrations

than those with the c.421CC or c.421CA genotype [113].

Tyrosine kinase inhibitors (TKIs) are a relatively new

class of oral targeted anticancer therapy. TKIs are designed

to compete with adenosine-50-triphosphate in the tyrosine

kinase receptor mutated and/or over-expressed in cancer

tissues, thereby blocking the signaling important for tumor

growth [114]. Most TKIs are transported by P-gp and

BCRP, thus polymorphisms in genes encoding these

transporters are likely to influence the pharmacokinetics of

TKIs. Most studied in this respect is the first approved TKI;

imatinib, used in the treatment of chronic myeloid leuke-

mia and gastrointestinal stromal tumors [115]. However,

conflicting results have been reported as to whether

ABCB1/ABCG2 polymorphisms affect the pharmacokinet-

ics of imatinib [116–122]. For ABCG2, the results are more

consisted, with the c.421C[A SNP resulting in significant

lower plasma concentrations and changes in the clearance

of imatinib [118, 119]. Another first-generation TKI gefi-

tinib, a selective epidermal growth factor receptor inhibitor

used in the treatment of non-small-cell lung cancer, showed

higher drug accumulation in patients with c.421C[A SNP

in ABCG2 [123]. No relationship with gefitinib AUC was

found with polymorphisms in either ABCB1 or ABCG2

[28]. For the newer second- and third-generation TKIs,

axitinib, bosutinib, nilotinib, dasatinib, sorafenib, and

ponatinib, the substrate affinity for both efflux transporters

is lower than measured for imatinib. Therefore, their effi-

cacy is not significantly affected by polymorphisms in

genes encoding these transporters [115, 124–126].

Increased clearance of sunitinib, a multi-targeted TKI used

in the treatment of renal cell carcinoma, has been shown

for homozygote genotypes of c.2677G[A/T SNP in

ABCB1 [31].
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Another increasingly recognized group of transporters

involved in the pharmacokinetics of anticancer drugs are

the influx transporters of the solute carrier family, also

known as the human organic cation transporter 1 (hOCT1),

encoded by the SLC22A1 gene [127]. hOCT1 is expressed

in several tissues and organs where its activity contributes

to the uptake and elimination of endogenous small organic

toxic by-products and drugs. The c.480C[G polymorphism

in this gene is the most studied one in relation to phar-

macodynamic effects, but only for imatinib has an asso-

ciation been found between genotype and clearance [128].

6 Immunoglobulin-Metabolizing Enzymes

Monoclonal antibodies (mAbs) are increasingly being used

in the treatment of cancer, owing to their high specificity

and activity, combined with the expanding knowledge on

specific tumor targets [129]. mAbs are immunoglobulins

produced with recombinant DNA technology and can be

fully human, humanized chimeric (human/murine), or

murine [130].

The response to mAbs may be difficult to predict owing

to several sources of variability, partly explained by inter-

individual variability in pharmacokinetics [131]. mAbs are

hydrophilic high-molecular-weight proteins and their

pharmacokinetic properties are therefore different from

conventional chemical agents. mAbs used in cancer treat-

ment are, or derive from, human immunoglobulin G (IgG).

Therefore, the pharmacokinetic properties of mAbs are

similar to those of IgG [131]. The IgG structure can be

divided into two identical binding portions (Fab) and a

crystallizable portion (Fc). The Fc portion binds to the

neonatal Fc receptor (FcRn) expressed on phagocytic cells

of the reticuloendothelial system, which is involved in IgG

protection from intracellular catabolism [132]. Intracellular

catabolism is the main route for elimination of IgGs and

mAbs with a Fc portion [133]. Knock-out mice that do not

produce FcRn have a much higher IgG elimination (lower

half-life) than wild-type mice [134].

FcRn is encoded by FCGRT, a gene located on chro-

mosome 19 [135]. To date, little is known about potential

polymorphisms of this gene influencing the pharmacoki-

netics of mAbs [8]. A variable number of tandem repeats

(VNTR) in the FCGRT promotor region has been described

and immunoglobulin therapy proved to be more efficient in

VNTR3/VNTR3 homozygous patients than in VNTR2/

VNTR3 patients [136]. For cetuximab, a significant lower

distribution clearance was shown in VNTR3/VNTR3

patients compared with VNTR2/VNTR3 [8].

In addition, cells of the reticuloendothelial system

express various types of Fcc-receptors, which are also

expected to play a role in the elimination of mAbs, through

internalization and degradation by lysosomes in these cells

after binding of the mAb to the Fcc-receptors [137]. Two
of these Fcc-receptors are FccRIIA and FccRIIIA and

several studies described the influence of a polymorphisms

in FCGR2A or FCGR3A, the genes encoding the FcRIIA

and FcRIIIA receptors, respectively, on therapy outcomes

for rituximab [138–142], trastuzumab [143, 144], and

cetuximab [145–148]. The G to A point mutation described

in the FCGR2A gene generates two FccRIIA allotypes,

with either a histidine (H) or arginine (R) at amino acid

position 131. The T to G substitution described in FCGR3A

generates two FccRIIIA allotypes, with either a pheny-

lalanine (F) or valine (V) at amino acid position 158 in the

membrane-proximal Ig-like loop. Human IgG binds more

strongly to cells homozygous for FccRIIA-131H and

FccRIIIA-158V than to cells homozygous for FccRIIA-
131R and FccRIIIA-158F [149, 150].

Cetuximab, a chimeric immunoglobulin monoclonal

antibody that targets the epidermal growth factor receptor,

is used in the treatment of metastatic colorectal cancer in

combination with chemotherapy or as monotherapy [151].

Several studies explored the role of FCGR polymorphisms

in the treatment outcome of cetuximab, but have conflicting

results. In some studies, FccRIIIA-158F/F was correlated

with response and a longer progression-free survival [146],

while in other studies FccRIIIA-158V/V was associated

with longer progression-free survival [147] or no difference

on progression-free survival at all was observed [145, 148].

For FccRIIA-131 H/H, in two out of three studies, a better

disease control rate and progression-free survival was

observed than those for FccRIIA-131 R/R [147, 148, 152].

Rituximab, a chimeric immunoglobulin monoclonal

antibody that targets the B-cell-surface antigen CD20, is

used in the treatment of diffuse large B-cell lymphoma in

combination with chemotherapy or as monotherapy [153].

For rituximab, several studies showed that FccRIIIA-158V/
V patients had a longer progression-free survival than F

carriers [138–142].

Trastuzumab, a humanized immunoglobulin monoclonal

antibody that targets the human epidermal growth factor

receptor (HER2), is a major therapeutic agent in the

treatment of HER2-positive breast cancer in combination

with chemotherapy or as monotherapy [154]. Some studies

on trastuzumab show a similar effect as observed with

rituximab, with a better clinical response for FccRIIIA-
158V/V patients [143, 144], while others could not confirm

these results [155].

For cetuximab, rituximab, and trastuzumab, the under-

lying mechanism of FCGR polymorphisms was speculated

to be pharmacodynamic, owing to a more efficient

FccRIIa/FccRIIIa-dependent cytotoxicity. However,

because these receptors are also involved in the elimination

of mAbs, it can be hypothesized that these polymorphisms
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also impact mAb clearance. For infliximab, a mAb that is

not used in cancer treatment but instead is frequently used

to control inflammatory diseases, a higher infliximab

elimination rate constant in FccRIIIA-158V/V patients was

observed than in F carriers, leading to a faster infliximab

underexposure and relapse of disease [156]. These findings

can also explain why in vitro studies on rituximab showed

a much stronger correlation, with the concentration leading

to 50 % of maximal lysis about fourfold lower for

FccRIIIA-158V/V patients than for F carriers, than found

in vivo [157].

7 Conclusions

Cancer treatment is becoming more and more individually

based to increase drug efficacy and reduce adverse

responses to therapy. Pharmacogenetic screening and/or

drug-specific phenotyping of cancer patients eligible for

treatment with chemotherapeutic drugs, prior to the start of

anticancer treatment, can not only identify patients with

tumors that are likely to be responsive or resistant to the

proposed drugs but also patients prone to develop severe

toxicity. Ample evidence is now available that polymor-

phisms in DPYD, TPMT, and UGT can profoundly affect

the pharmacokinetics of 5-FU, mercaptopurine, and

irinotecan, respectively [158]. Considering the common

use of these three drugs in the treatment of cancer patients,

the severe toxicity in patients carrying functional poly-

morphisms in these genes, it would be preferable to screen

these patients prior to the start of the therapy. For most

other chemotherapeutic drugs, however, the association of

gene mutations and pharmacokinetics is less clear, which

may be because of a minor impact of genetics compared

with non-genetic factors such as diet, co-medication, health

status, and renal and liver function. These agents may be

candidates for dose individualization by a phenotype-based

approach such as therapeutic drug monitoring.

In the past decades, huge progress has been made in the

rapid characterization of SNPs, enabling the clinical

application of pretreatment pharmacogenetic screening.

However, the scarcity of information on functional char-

acteristics of many SNPs indicates the need for future

research, allowing pharmacogenetic and pharmacokinetic

screenings to become the standard of care.
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