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Structure Evolution and 
Multiferroic Properties in Cobalt 
Doped Bi4NdTi3Fe1-xCoxO15-
Bi3NdTi2Fe1-xCoxO12-δ Intergrowth 
Aurivillius Compounds
D. L. Zhang1, W. C. Huang1, Z. W. Chen1, W. B. Zhao1, L. Feng1, M. Li1, Y. W. Yin1,2, S. N. Dong1 
& X. G. Li1,3,4

Here, we report the structure evolution, magnetic and ferroelectric properties in Co-doped 4- and 
3-layered intergrowth Aurivillius compounds Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ. The 
compounds suffer a structure evolution from the parent 4-layered phase (Bi4NdTi3FeO15) to 3-layered 
phase (Bi3NdTi2CoO12-δ) with increasing cobalt doping level from 0 to 1. Meanwhile the remanent 
magnetization and polarization show opposite variation tendencies against the doping level, and 
the sample with x = 0.3 has the largest remanent magnetization and the smallest polarization. It is 
believed that the Co concentration dependent magnetic properties are related to the population of 
the Fe3+ -O-Co3+ bonds, while the suppressed ferroelectric polarization is due to the enhanced leakage 
current caused by the increasing Co concentration. Furthermore, the samples (x = 0.1–0.7) with 
ferromagnetism show magnetoelectric coupling effects at room temperature. The results indicate that 
it is an effective method to create new multiferroic materials through modifying natural superlattices.

The search for multiferroic materials combining electric and magnetic properties in a single phase has attracted 
a lot of attention in the perspective of future spintronic or magnetoelectronic devices1–3. Unfortunately, only a 
handful of single phase multiferroics have been discovered so far, and most of them are not suitable for practical 
applications at present, either because the room temperature polarization/magnetization is too small or their 
mutual coupling is too weak4–6. Therefore people are still hunting for new multiferroic systems2,7. One possible 
route for designing single-phase multiferroic materials is to start from a series of well-established ferroelectrics 
and create additional functionality by incorporating magnetic ions into these systems1,8,9. A promising class of 
materials for this purpose is the so-called Aurivillius phases with a naturally layered perovskite-related crys-
tal structure, which consists of n perovskite-like layers (An−1BnO3n+1)2−, stacked along the [001] direction, and 
separated by fluorite-like (Bi2O2)2+ layers10. The overall chemical composition is thus Bi2An−1BnO3n+3, where 
many different cations can be incorporated on the A and B sites within the perovskite-like layers11. The series of 
Aurivillius phase compounds are well known for their excellent ferroelectric properties with very low fatigue12, 
and offer great potential for tailoring specific properties by varying different ionic compositions or even number 
of layers8,13,14. By doping with magnetic cations, the bismuth-based Aurivillius phase compounds were found 
to have a room temperature ferromagnetic order besides the natural ferroelectricity, indicating their multifer-
roic potential8,9,15–17. Moreover, the Sm and Co co-doped 3-layered (n =​ 3) Bi4-xSmxTi3-xCoxO12-δ (0 ≤​ x ≤​ 0.07) 
ceramics show a magnetoelectric (ME) coupling coefficient of 0.65 mV/cm∙Oe at room temperature15, while the 
5-layered (n =​ 5) SrBi5Fe0.5Co0.5Ti5O18 ceramic was found to show a ME coupling coefficient of 0.27 mV/cm∙Oe8. 
Thus this kind of material is one of the excellent choices for ME applications and deserves further investigation.
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Furthermore, due to the complexity of the structure, an interesting phenomenon called intergrowth has been 
reported in Aurivillius compounds18–20. It has been demonstrated that the ferroelectricity of 4- and 3-layered 
intergrowth compounds is larger than that of individual 4- or 3-layered compound21,22. However, the effects of 
magnetic ions doping on ferroelectric, magnetic and multiferroic properties are still unknown in such an inter-
growth superlattice system.

Here we successfully synthesized a series of Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ (BNTFC-x) com-
pounds with different ratios of 4- and 3-layered Aurivillius intergrowth superlattice structure. It was found that 
as the cobalt doping concentration increases from 0 to 1, the samples suffer a structure evolution from 4-layers to 
3-layers. The observed magnetic and ferroelectric properties can be well explained by the magnetic ions doping 
and the intergrowth structure evolution.

Results and Discussion
To clarify the structure evolution of the Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ (BNTFC-x) compounds, the 
high-angle annular dark-field (HAADF) images and selected area electron diffraction (SAED) were performed, 
as shown in Fig. 1. In the HAADF images, the big bright spots stand for the location of the Bi/Nd atoms while 
the small spots located near the center of Bi/Nd lattice represent the Ti/Fe/Co atoms as depicted in the inset of 
Fig. 1(b) (4-layered) and (e) (3-layered). It can be seen that the fluorite-like (Bi2O2)2+ layers and peroskite-like 
(An−1BnO3n+1)2− layers are stacking along c direction, indicating that all compounds have a typical Aurivillius 
layered structure. From the SAED patterns, the electron incidence direction, namely the view direction, can be 
obtained, as marked in Fig. 1. As shown in Fig. 1(a), the 4-layered lattice can be clearly distinguished for x =​ 0.1. 
As the Co concentration increases to 0.3, the 3-layered lattice begins to appear as shown in Fig. 1(b). While x 
increases to 0.5, the 4-layered and 3-layered structures alternately stack along the [001] direction (shown in 
Fig. 1(c)). With the x further increasing to 0.7, the 3-layered structure starts to dominate (shown in Fig. 1(d)), and 
at last for x =​ 0.9 and 1 components, the 4-layered Aurivillius structure almost disappears (shown in Fig. 1(e) and 
(f)). The HAADF results indicate that increasing Co doping level makes the BNTFC-x compound experiencing 
a structure evolution from 4-layered structure to 3-layered structure. This intergrowth phenomenon has also 
been reported in SrxBi7-xFe1.5Co1.5Ti3O21-δ, which undergoes a phase evolution from 6-layers to 4-layers when the 
concentration of A-site doped strontium increases from 0 to 114.

The room temperature powder X-ray diffraction (XRD) patterns with data refined by Rietveld Method 
via Materials Analysis Using Diffraction (MAUD) program23,24 for BNTFC-x ceramics are shown in Fig. 2. 
Quantitative analysis confirms that three phases, including 4-layered phase Bi4NdTi3Fe1-xCoxO15 (n =​ 4), 
3-layered phase Bi3NdTi2Fe1-xCoxO12-δ (n =​ 3), and an impurity phase Bi12TiO20 coexist in the BNTFC-x system. 
The refinements were based on space group A21am (No. 36) for 4-layered phase25, B2cb (No. 41) for 3-layered 

Figure 1.  HAADF images and SAED patterns of BNTFC–x: (a) x =​ 0.1; (b) x =​ 0.3; (c) x =​ 0.5; (d) x =​ 0.7; (e) 
x =​ 0.9; (f) x =​ 1.0. The big white spots represent the Bi (Nd) atoms, while the small spots located near the center 
of Bi/Nd lattice represent the Ti/Fe/Co atoms. The inset in (b) and (e) is a magnifying image for 4- and 3-layered 
phase, respectively, where the azury and green sphere denote Bi/Nd and Ti/Fe/Co atoms, respectively. For (a,c,e 
and f), the viewing direction is along [100], while for (b) and (c) the viewing direction is along [110]. For x ≤​ 0.5, 
the marked diffraction spots belong to 4-layered phase, while for x >​ 0.5 the marked diffraction spots belong to 
3-layered phase.
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phase26 and I23 (No. 197) for Bi12TiO20 phase27. The good matching between experimental and calculated XRD 
patterns is demonstrated by the low Rw value for all compounds (Rw ≤​ 6.15%), as shown in Fig. 2. To better 
understand and analysis the structures, the schematic structure diagrams of 4- and 3-layered phases are shown in 
Fig. 3(a) and (b), respectively. The Ti, Fe and Co cations were set to occupy the same position (B site in the center 
of each perovskite structure in the perovskite-like layer) with fixed Ti occupancy (3/4 in 4-layer phase, and 2/3 in 
3-layer phase) and changeable occupancies of Fe and Co with the cobalt nominal doping level ((1-x)/4 for Fe and 
x/4 for Co in 4-layer phase, (1-x)/3 for Fe and x/3 for Co in 3-layer phase).

The lattice parameters a and b obtained by refinement gradually decrease and c increases in both 4-layered 
(Fig. 4(a)) and 3-layered (Fig. 4(b)) phase with increasing cobalt concentration. As shown in Fig. 4(c), the volume 
fraction of 4- (3-) layered phase gradually decreases (increases) from 100% (0) to 0 (85.34%) as x increases from 
0 to 1, also confirming that the samples suffer a structure evolution from 4-layered phase to 3-layered phase. The 
fraction of the Bi12TiO20 phase increases with the Co concentration in the samples with x <​ 0.5, and keeps at about 
15% for x ≥​ 0.5. The impurity phase (Bi12TiO20) is induced by the element loss during the structure evolution pro-
cess, similar to the situation in SrxBi7-xFe1.5Co1.5Ti3O21-δ system14. According to the results of XRD patterns and 
HAADF images, the BNTFC-x compounds undergo a structure evolution with a two-phase modulated super-
lattice when the concentration of Co changes. In other words, the micro superlattice structure can be naturally 
controlled by the cobalt doping level.

In addition, the Fe/Co ions can occupy two non-equivalent positions (center of inner and outer octahedrons 
between two (Bi2O2)2+ layers) in 4- and 3-layered structures. In 4-layered Bi5Ti3FeO15, these octahedrally coordi-
nated center sites are shared between Ti4+ and Fe3+ cations, and a quasi-random cation distribution is observed 
in experiments25,28. Similarly, it can be assumed that Ti4+, Fe3+, and Co3+ cations are randomly distributed in the 
octahedral center positions in both 4- and 3-layered structures. In perovskite-like compounds the most prob-
able valence states of Fe and Co are +​ 3. According to Goodenough-Kanamori rules9,29–31, Fe3+ -O-Fe3+ and  
Co3+ -O-Co3+ superexchange interactions with the nature of antiferromagnetism exist in x =​ 0 and 1 samples, 
respectively, making the ground state of these two compounds to be antiferromagnetic. Based on the discussions 
on the occupations and interactions of Fe/Co cations, it can be expected that the structure evolution of BNTFC-x 
will have a significant impact on the physical properties, e.g. magnetism and ferroelectricity. To verify this, we 
systemically measured the magnetic and ferroelectric properties of BNTFC-x compounds, and discussed the 
relationship between the structure and properties as follows.

The room temperature magnetic hysteresis loops for BNTFC-x are shown in Fig. 5(a). The magnetization (M) 
versus applied field (H) curves of x =​ 0.1 to 0.7 samples show a typical ferromagnetic hysteresis feature, while those 
for x =​ 0, 0.9 and 1.0 show a linear behavior. The remanent magnetization (Mr) and saturation magnetization (Ms, 
obtained from the M-H curves after deducting the linear part) gradually increase and reach a maximum with 
increasing Co content to x =​ 0.3, and then decreases with further increasing Co content, as shown in Fig. 5(b). 
It is known that the ground state of Bi4NdTi3FeO15 (x =​ 0) is antiferromagnetic. When Co3+ replaces parts of 
Fe3+ cations, some Fe3+ -O-Fe3+ chains will be destroyed, while the antiparallel Fe3+ and Co3+ superexchange 

Figure 2.  XRD patterns and refined results of BNTFC-x samples with (a) x =​ 0.1; (b) x =​ 0.3; (c) x =​ 0.5;  
(d) x =​ 0.7; (e) x =​ 0.9; (f) x =​ 1.0.
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interaction appears. Considering the difference of magnetic moments between a single Fe3+ (5.916 μ​B)  
and a single Co3+ (4.899 μ​B)32, the interaction of Fe3+ -O-Co3+ should contribute to a net magnetization, as dis-
cussed in Bi5Fe0.5Co0.5Ti3O15

33 and Bi4NdFe0.5Co0.5Ti3O15
16 ceramics. In the situation of x =​ 0.1, namely 10% Fe3+ 

ions are substituted by Co3+, the formation of Fe3+ -O-Co3+ bonds results in the appearance of ferromagnetism. 
In x =​ 0.3, more Fe3+ -O-Co3+ bonds form, leading to a larger remanent magnetization. While for x >​ 0.5, the 
decrease of the amount of Fe3+ -O-Co3+ bonds may lead to the diminution of magnetization. As for x =​ 0.9, 
the concentration of Fe3+ ions is too low to construct effective Fe3+ -O-Co3+ order, the system may be anti-
ferromagnetic or paramagnetic at room temperature, just like Bi5Ti3FeO15

34. Thus, it can be proposed that the 
magnetization of BNTFC-x may be mainly contributed by the population of Fe3+ -O-Co3+ local structure due to 
the cobalt doping33. Besides, the Ti/Fe/Co-O-Ti/Fe/Co angles may be affected by Co substitution35 and structure 
evolution22, which could also affect the observed magnetic properties. It should be noted that the most prominent 
remanent magnetization (Mr =​ 123 memu/g) at x =​ 0.3 is about 31 times larger than that of Bi5Ti3Fe0.5Co0.5O15 
(3.9 memu/g)33, and comparable with that of Bi4NdTi3Fe0.5Co0.5O15 (165 memu/g)16 and Bi4NdTi3Fe0.7Ni0.3O15 
(194 memu/g)36.

It has been reported that the doping of an Aurivillius phase with cobalt will lead to the generation of magnetic 
second-phase inclusions (Co/Fe-rich spinel phases) which volume fraction is too small to be visible in XRD but 
may be already enough to contribute significant ferromagnetic signal9,37,38. Generally, the Fe and Co-rich mag-
netic inclusions have a chemical formula Fe3-yCoyO4 (0 ≤​ y ≤​ 3), and the remanent magnetizations (0–20 emu/g) 
at room temperature decrease with increasing Co content39–44. Following the effective statistical method pro-
posed by M. Schmidt et al.38, the volume fraction of the possible inclusions and their upper limit impact on 
magnetic contributions (Mi/Mr, where Mi is the remanent magnetization of the inclusions and Mr is that of the 
specimen) for the worst case scenario were carefully estimated via energy selective backscatter (ESB) image and 
energy dispersive X-ray analysis (EDX). For the samples with ferromagnetic signals, namely, x =​ 0.1, 0.3, 0.5, and 
0.7, the magnetic contributions to the corresponding specimens of the inclusions are conservatively estimated 
to be about or smaller than 3.9%, 1.9%, 3.8%, and 1.5%, respectively. While for x =​ 0.9 and 1.0, the inclusions 
are paramagnetic at 300 K44,45, and have no magnetic contributions to the main phase. Based on the criteria 
of the comprehensive framework raised by M. Schmidt et al.38, we believe that the magnetic results do reflect 
the intrinsic ferromagnetic properties of the main phase. Detailed calculations are presented in Part I of the 
Supplementary Material.

Figure 6 shows the room temperature polarization (P) versus electric field (E) curves of BNTFC-x samples, 
indicating that all specimen have a good ferroelectricity. With increasing the cobalt doping concentration, the 
remanent polarization Pr first decreases and reaches the minimum (4.26 μ​C/cm2) at x =​ 0.3, and then gradually 
increases with further doping. The obtained Pr for BNTFC-x is better than Bi4NdTi3Fe0.5Co0.5O15 (1 μ​C/cm2)16 

Figure 3.  Schematic structure diagram of (a) 4- and (b) 3-layered phases, with atom positions marked in the 
figure.
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as well as Bi4NdTi3Fe0.7Ni0.3O15 (4.3 μ​C/cm2)36, and comparable to that of Bi5Ti3Fe0.5Co0.5O15 ceramics (6.5 μ​C/
cm2)33. While the coercive field Ec of BNTFC-x keeps decreasing as the cobalt concentration increases, which 
should be related to the smaller coercive field in 3-layered phase than 4-layered phase21. It should be noted that 
the Pr-x curve (Fig. 6(b), black line) shows an opposite variation tendency as compared with Mr-x curve (Fig. 5(b), 
black line), indicating a correlation between ferroelectricity and magnetism. For example, the minimum Pr and 
maximum Mr are observed in x =​ 0.3 sample. The Pr-x curve indicates that the Pr values of the 4- and 3- layered 
intergrowth compounds (0.1 <​ x <​ 0.9) are smaller than that of individual 4- (x =​ 0) or 3- (x =​ 1) layered com-
pound, which is opposite to previous reports (no magnetic ions doped in the samples)21,22, probably due to the 
magnetic ion doping in our system. Figure 6(b) (red line) shows the resistivity (ρ) for the BNTFC-x at room 
temperature. The similar variation tendency of Pr and ρ implies that the weakened ferroelectricity should be 
attributed to the increasing leakage current. Usually, magnetic ion doping will reduce the resistivity of a dielectric 
material and weaken the ferroelectric performance due to the strengthening of exchange interaction between 
magnetic ions46,47. This behavior is consistent with other multiferroic system, such as Co-doped BiFeO3

46 and 
Fe-doped BaTiO3

47.

Figure 4.  Lattice parameters of (a) 4-layered phase and (b) 3-layered phase; (c) the volume fraction of 4-, 
3-layered and impurity (Bi12TiO20) phases.

Figure 5.  (a) Room temperature M-H hysteresis loops. Inset is the zoom of the main plot; (b) Mr and Ms as a 
function of cobalt doping level x for BNTFC-x (x =​ 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1).
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The magnetoelectric (ME) effects of the samples with ferromagnetic M-H (x =​ 0.1–0.7) are measured at room 
temperature under an AC magnetic field ~2.27 Oe at 2 kHz, as shown in Fig. 7. The ME coefficients for x =​ 0.1–0.5 
gradually increase with the increasing of the applied DC magnetic field, while the ME coefficient for x >​ 0.5 has 
an opposite behavior, as indicated by the arrows. This difference may be attributed to the different response of the 
magnetic and electric eigenmodes to the AC magnetic field frequency48,49. The largest ME coefficient at room tem-
perature is 1.24 mV/cm∙Oe for x =​ 0.5 sample at 4 kOe, comparable with that in 3-layered Bi4-xSmxTi3-xNixO12 ± δ 
(0.6 mV/cm∙Oe)50, 5-layered SrBi5Fe0.5Co0.5Ti5O18 ceramic (0.27 mV/cm∙Oe at room temperature)8, cation doped 
BiFeO3 (0.3–2.3 mV/cm∙Oe)51, and core-shell 50%CoFe2O4-50%BaTiO3 (3.4 mV/cm∙Oe)52. Besides, as mentioned 
above, some Fe/Co-rich spinel inclusions were observed in the samples. This would lead to the formation of a 0–3 
type multiferroic composite, in which another kind of ME coupling effect induced by the magnetostrictive effect 
from the magnetic phase and the piezoelectric effect from the piezoelectric phase could be obtained53. For exam-
ple, in xCoFe2O4-(1-x)Bi4Ti3O12 composite, a much smaller ME coefficient about 0.16 mV/cm∙Oe is observed 
for x =​ 0.654. However, considering the maximal volume fractions of the magnetic inclusions in our samples are 
smaller than 0.09%, the contribution to the ME coefficient from the inclusions can be neglected53.

Conclusions
In summary, the 4- and 3-layered intergrowth Aurivillius ceramics Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ 
with a natural superlattice structure were successfully synthesized, offering us a platform to investigate the rela-
tionship between the superlattice structure and physical properties via conventional methods. By increasing the 
cobalt doping concentration, the 4-layered parent phase gradually transforms to 3-layered phase, corresponding 
to a structure evolution. The 4-layered and 3-layered phase can clamp or modulate each other via the lattice mis-
match. So the observed properties are beyond a simple combined effect of the two phases. As cobalt doping level 
increases, the ferromagnetism appears in the ferroelectric material, and the remanent magnetization gradually 
increases and reaches the maximum value at x =​ 0.3, accompanied by the decreasing of remanent ferroelectric 
polarization. When further increasing the cobalt doping concentration, the remanent magnetization decreases 
along with the increasing of ferroelectricity. The variation of magnetic and ferroelectric properties can be well 
explained by the superlattice structure evolution. Furthermore, all samples with ferromagnetic M-H (x =​ 0.1–0.7) 
show ME effect at room temperature, and the largest ME coefficient is in x =​ 0.5 sample.

Figure 6.  (a) Room temperature P-E hysteresis loops measured under standard bipolar mode (b) Pr, Ec, and  
ρ vs. x curves for BNTFC-x.

Figure 7.  ME coefficients of BNTFC-x as a function of cobalt doping level x. 
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Methods
The polycrystalline intergrowth superlattice structure Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ (BNTFC-x) 
with x =​ 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0 were prepared by a conventional solid-state reaction method. Note that all 
the samples were synthesized with 4-layered nominal composition as Bi4NdTi3Fe1-xCoxO15. The stoichiometric 
amounts Bi2O3 (with 10 wt. % excess Bi2O3 to compensate volatilization loss during the sintering process), Nd2O3, 
Fe2O3, Co2O3, and TiO2 powders were mixed by grinding. The mixtures were then pre-sintered at 850 °C for 20 h, 
and subsequently grounded, pelletized and calcined at 900 °C for 20 h. The obtained samples were cut into the 
form of pellets with the area of 4 ×​ 4 mm2. For electrical measurement, the samples were well-polished to thick-
ness of 0.120 mm, and deposited Au electrodes onto the opposite surfaces by sputtering. Due to the extra amount 
of Bi and the generation of secondary phase, the stoichiometries discussed are nominal (see Supplementary infor-
mation Table S2 for actual stoichiometry determined by EDS).

Crystalline structures of the samples were characterized by powder X-ray diffraction (XRD) using Cu Kα1 radi-
ation (Philips X’Pert Pro diffractometer), and high-angle annular dark-field (HAADF) images (JEOL JEM-2010 
field emission electron microscope). Ferroelectric measurement was performed on Radiant Technologies Precision 
Premier II (Radiant Tech., USA). Magnetic properties were measured using a SQUID-VSM (Quantum Design, 
USA). The scanning electron microscopy (SEM) images (including secondary-electron (SE) and energy selective 
backscatter (ESB) images) and EDX were performed on Zeiss Gemini SEM 500 equipped with an ESB detector 
and an Oxford X-Max 80 detector. The magnetoelectric (ME) voltage coefficient was determined by measuring 
the electric field generated across the sample with ac magnetic fields (Hac about 2 Oe) and dc bias fields (Hdc up to 
5 kOe), performed on Super M-E system (Quantum Design). A signal generator amplified by a power amplifier 
was used to drive a Helmholtz coil to generate the small Hac superimposed on Hdc. The voltage generated across 
the sample was measured with a lock-in amplifier. The ME measurement was performed at room temperature.
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