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Abstract

Background—Using electronic health records (EHR) data to predict events and onset of diseases 

is increasingly common. Relatively little is known, though, about the tradeoffs between data 

requirements and model utility.

Methods and Results—We examined the performance of machine learning models trained to 

detect pre-diagnostic heart failure (HF) in primary care patients using longitudinal EHR data. 

Model performance was assessed in relation to data requirements defined by: the prediction 

window length (time before clinical diagnosis), the observation window length (duration of 

observation prior to prediction window), the number of different data domains (data diversity), the 

number of patient records in the training data set (data quantity) and the density of patient 

encounters (data density). A total of 1,684 incident HF cases and 13,525 gender, age-category, and 

clinic matched controls were used for modeling. Model performance improved as: 1) the 

prediction window length decreases, especially when less than 2 years; 2) the observation window 

length increases but then levels off after 2 years; 3) the training data set size increases but then 

levels off after 4000 patients; 4) more diverse data types are used, but, in order, the combination of 

diagnosis, medication order, and hospitalization data were most important; and 5) data were 

confined to patients who had 10 or more phone or face-to-face encounters in two years.

Conclusions—These empirical findings suggest possible guidelines for the minimum amount 

and type of data needed to train effective disease onset predictive models using longitudinal EHR 

data.
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Introduction

For those 40 years of age the lifetime risk of developing heart failure (HF) is 20%.[1] 

Diagnosis is associated with a high level of disability, health care costs and mortality (i.e., 

~50% within 5 years of diagnosis)[2], [3]. Earlier detection of HF opens the possibility to 

test means to preserve cardiac function and change the natural history of disease onset. The 

rapid growth of health systems with electronic health records (EHRs) in the past 15 years 

opens new opportunities to implement early detection surveillance. However, the success 

that any health system will have in detecting HF early with predictive methods will depend 

on patient level data diversity, quantity and density.

Information that can be gained on populations of patients from longitudinal EHR data can be 

used to individualize care for a given patient. Access to these data in combination with the 

rapid evolution of modern machine learning and data mining techniques offer a potentially 

promising means to accelerate discoveries that can be readily translated to clinical practice.

Rapid growth in the application of machine learning methods to EHR for predicting future 

patient outcomes is fostering a deeper understanding of best practices and the tradeoffs 

between model performance and patient coverage (i.e., the percent of potentially eligible 

patients for which risk assessment can be completed)[4]–[7]. Model utility for a given 

system will strongly depend on the length of the prediction window, the length of the 

observation window, and the diversity, quantity and density of the available data. A longer 

prediction window (i.e., the duration of time before diagnosis that disease is detected) would 

likely increase the potential for successful prevention, but accuracy may decrease. Model 

performance will improve, to some degree, as the observation window (i.e., duration of time 

before the prediction window from which data are used) increases. But, patient coverage 

decreases (i.e., more patients will be excluded from risk assessment) because of the more 

stringent data requirement. The diversity (Table 1) of available data may also influence how 

well a model performs. Performance will likely improve as more different data domains are 

used. However, as the number of required data domains increases, it will become more 

challenging for health systems to make use of developed predictive models. Moreover, some 

data domains (e.g., diagnostic codes) may be more useful than others and there may be a 

diminishing return when the threshold of one or more qualifying combinations is reached. 

Finally, performance will likely depend on the overall amount (i.e., the number of case and 

control patients) and density of the available data.

Relatively little is known about the tradeoffs among these factors. To this end, we used data 

from a large health system to examine how well machine learning tools perform in relation 

to the prediction window length, observation window length, and the diversity, quantity and 

density of the available EHR data.
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Methods

Study Design, Population, Setting, Source of Data

For this study, a nested case-control design was used on a large patient population from a 

health system that provided access to longitudinal EHR data. The source data were from the 

Geisinger Clinic which is a multispecialty group practice with a large primary care practice. 

All cases and controls were primary care patients. Geisinger includes 41 outpatient clinics in 

central and northeastern Pennsylvania. EpicCare EHR[8] was installed at Geisinger before 

2001. The study was approved by an institutional review committee and the subjects gave 

informed consent.

Definition and Selection of Cases and Controls

Criteria for incident onset of HF were adopted from Gurwitz [9] and defined in detail 

elsewhere [10], [11], but relied on qualifying ICD-9 codes for HF with a minimum of three 

clinical encounters occurring within 12 months of each other. The date of diagnosis was 

assigned to the earliest of the three dates. Finally, incident cases had to have at least 18 

months before the first occurrence of a HF ICD-9 code diagnosis without an indication that 

HF had been previously diagnosed or treated. Analysis was limited to patients who were 50 

to 84 years of age at the time of HF diagnosis. Applying these criteria, a total of 1,684 

incident HF cases were identified between 2003 and 2010, where the average primary care 

patient census was approximately 240,000, of which 28% were between 50 and 84 years of 

age.

Up to 10 eligible primary care clinic-, sex-, and age-matched (in 5-year age intervals) 

controls were selected for each incident HF case for a total of 13,525 control patients. 

Primary care patients were eligible as controls if they had no HF diagnosis before the date: 

one year post-HF diagnosis of the matched case. Control subjects were required to have their 

first office encounter within one year of the incident HF patient’s first office visit and have 

≥1 office encounters 30 days before or any time after the case’s HF diagnosis date to ensure 

similar duration of observations among cases and controls. Nine or ten controls were 

identified for 49% of the cases. Only 1.5% of the cases had just 1 or 2 controls.

Structured Data Extraction from Longitudinal EHR Patient Data

EHR encounter data were extracted for all cases and controls from each of the eight data 

type domains (Table 1). Encounters included outpatient face-to-face and phone visits and 

inpatient visits. As shown in Table 1, the number of unique variables in each data type 

substantially varied.

For the diagnoses data type, ICD-9 codes from outpatient visits and problem lists are treated 

separately. This means that the same ICD-9 code associated with the different events were 

treated as separate variables. For the medications data type, normalized drug names (i.e. 

combining all branded names and the generic name for a medication) were used. Dosing 

information was not used. For the hospitalization data type the primary and secondary ICD-9 

codes associated with the hospital admission were used[12]. The labs and vital signs data 

types contain information not only about the test order but also the numerical results of the 
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test. From the cardiovascular imaging order data type only information about the imaging 

order type (2D echo, stress echo, etc.), associated ICD-9 codes, and any LVEF values were 

used. No other test results of the imaging orders were available.

For the diagnoses, hospitalizations and medication data types, different levels of 

representations were explored. For the diagnoses and hospitalizations data types, the 

ungrouped representation was the ICD-9 disease code (e.g., 401.0, 492.0, 584.90, etc.) while 

the grouped representation was the hierarchical condition categories (HCC) from the Centers 

for Medicare & Medicaid Services (CMS): e.g., hypertension, chronic obstructive 

pulmonary disease (COPD), renal failure, etc.[13] For the medications data type, the 

ungrouped representation was the normalized drug name (e.g., Hydrochlorothiazide, 

Atenolol, Lisinopril, Furosemide, etc.) while the grouped representation was the pharmacy 

subclass (e.g., thiazide diuretics, beta-blockers, ACE inhibitors, loop diuretics, etc.). 

Grouping reduces the number of available features and creates features that are less sparse. 

As shown in Table 1, the number of unique features drops from 12616 to 189 for the 

diagnoses data type, from 7071 to 189 for the hospitalizations data type and from 3952 to 

631 for the medications data type.

Feature Construction from Longitudinal EHR Patient Data

A feature vector representation for each patient was generated based on the patient’s 

extracted EHR data. The EHR data were represented as a temporal sequence of events (e.g. a 

patient can have multiple diagnoses of hypertension on different dates) in the observation 

window. Events of the same feature type (e.g., anti-hypertensive medication) within the 

observation window were represented by one or more relevant summary statistics. The 

summary functions can include simple feature values like Booleans, counts, means and 

complex feature values that can take into account temporal information (e.g., trend and 

temporal variation). In this study, basic aggregation functions were applied and included 

Booleans for categorical variables and means for numeric variables as a method to deal with 

irregular sampling that occurs because of variation in how patients use care. For missing 

aggregated values, a simple imputation approach was used. For categorical variables, the 

value was set to 0. For numerical variables, a single value (mean) imputation method was 

used. Figure 1 illustrates the relationship among the prediction window, observation window, 

index date and diagnosis date for cases and matching controls. The diagnosis date is the date 

of the clinical diagnosis for cases and the equivalent date for matched controls. The 

prediction window is the length of time before the diagnosis date. The index date marks the 

beginning of the prediction window and is the date where the risk prediction is made. The 

observation window specifies a period of time prior to the index date where patient data are 

observed. Only data in the observation window are used to represent the patient. Figure 1 

also illustrates how a patient feature vector is generated by applying appropriate aggregation 

functions on the longitudinal EHR patient data from the observation window to combine 

multiple observations of the same type from different encounters in the window into a single 

variable.
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Predictive Modeling

An initial set of experiments was performed comparing several different data driven machine 

learning classification approaches to select the ones to use in this study. The different 

classifiers compared were: random forest [14], support vector machine, k nearest neighbor, 

decision tree, logistic regression, and L1-regularized logistic regression. The L1-regularized 

logistic regression and random forest models were selected for superior predictive 

performance, computational efficiency, and because they represent very different modeling 

approaches that would be interesting to compare.

In this study, the information gain measure was used to select the top 200 most 

discriminating features from the original 3400+ features [15]. Interactions between the 

variables were not considered. Next L1-regularized logistic regression and random forest 

models were trained and evaluated. Unconditional logistic regression models with 

adjustment for continuous age were used to account for residual confounding. Internal cross 

validation was used to determine the model hyper-parameters: the number of features in the 

logistic regression model and number of trees in the random forest model.

A sequence of experiments was completed to measure how well data driven machine 

learning predictive modeling performs in relation to the prediction window length, the 

observation window length, and the diversity, quantity and density of the available EHR 

data. Models were trained and evaluated as detailed below. Fixed prediction window (1 year) 

and observation window (2 years) were used, except where specified where these parameters 

were evaluated.

• Data Diversity: Eight different data types (Table 1) were individually assessed on 

model performance. For the diagnoses and hospitalizations data types, different 

levels of representations of the ICD-9 codes were explored. For the medications 

data type, different levels of representation of the medications were explored. 

Models were also trained and evaluated using data type combinations starting 

with demographics/health behaviors and then adding vitals, diagnoses, 

medications, labs, Framingham Heart HF signs and symptoms [5], [6], 

hospitalizations and imaging to characterize the impact of using more data types.

• Prediction Window Length: Varied from 30 days to 5 years.

• Observation Window Length: Varied from 60 days to 5 years.

• Data Quantity: Varied in the amount of randomly selected training data that 

ranged from 114 to 11400 patients and evaluated on a held out testing data set 

while keeping the case/control ratio constant.

• Data Density: Different amounts of data were selected based on the number of 

encounters in the observation window.

10-fold cross validation was used in all modeling iterations (which includes both the initial 

feature selection step and the classifier training step) to make efficient use of the available 

data and to obtain an estimate of how well the model can generalize to an independent data 

set. Prediction performance was assessed by the mean and standard error of the area under 

the ROC curve (AUC) metrics computed over the cross validation folds. The experiments 
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used a combination of software tools developed in house and based on open source packages 

for Python[16] and R[17].

Results

Performance as a Function of the Data Diversity

Figure 2 shows the prediction performance for ungrouped versus grouped representations for 

the diagnoses, medications and hospitalizations data types when used individually (i.e., 

unique formats represented in the EHR). The approach to grouping, based on HCC, relies on 

a knowledge driven hierarchy and was used to eliminate correlated and redundant features as 

a means to enhance model performance by allowing other useful features to be selected by 

the model. For each of these three data types (Figure 2), the grouped representation performs 

as well as or better than the non-grouped representation. The logistic regression models 

using the grouped representation were also less complex than those using the non-grouped 

representations as measured by the number of model features. For ICD-9 codes, the 

difference in the number of selected variables was 43 versus 59 for the diagnoses type and 

11 versus 40 for the hospitalizations type. For the medications data type, both 

representations have 13 selected variables, but the grouped representation has significantly 

better performance: AUC 0.708 versus 0.674, p < 0.01. Table 2 lists some examples of the 

top selected grouped features for the diagnoses, hospitalization and medications data types. 

For the rest of the experiments in this study we used the grouped representations for the 

diagnoses, hospitalizations, and medications data types.

Individually, diagnosis and medication order data types performed best (Figure 3A), 

followed by lab test and hospitalization data types. Demographics/health behaviors, imaging 

test orders, and vitals data types perform the worst on their own.

Figure 3B shows prediction performance as data types are used in combination starting with 

demographics/health behaviors and adding vitals, diagnoses, medications, labs, 

hospitalizations and imaging. The combination sequence is based on our assessment of the 

availability of each of the data types from most to least common. Use of only the 

demographics/health behaviors and vitals data types did not yield models that perform well. 

Adding in the diagnoses data type results in a large increase in model performance (AUC 

0.733 versus 0.581, p < 0.00001). The addition of the medications data type results in a 

small but significant performance improvement (AUC 0.752 versus 0.733, p < 0.05). Adding 

the labs data type did not significantly improve model performance. In contrast, addition of 

the hospitalization data type significantly improved performance (AUC 0.791 versus 0.756, 

p < 0.001). Finally, the addition of the imaging data types did not significantly improve 

performance.

Supplemental Table S1 lists the selected variables and related statistics for the L1-

regularized logistic regression models trained on 90% of the data from one of the cross 

validation folds using all the data types. The variables selected for the other cross validation 

folds were very similar. Hospitalization, diagnosis, medication, and lab features dominated. 

A few of the Framingham HF signs/symptoms and imaging variables were also selected. 

None of the demographic/health behaviors or vital features was selected.
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Supplemental Table S2 shows the top variables selected in the random forest model based on 

the variable importance score [14]. A random forest classifier was built, measuring how 

much the classification output changes as each input feature variable is randomly changed. 

Important input features are expected to substantially improve classification output value, 

while changes to an unimportant input feature will not affect the output much. The variable 

importance scores from the random forest classifier trained on each of the ten cross 

validation folds were averaged and represented as composite scores to then rank the features. 

The random forest classifier uses many more features from all data types except imaging 

than the logistic regression classifier. For the rest of the experiments in this study we used all 

eight of the data types. Descriptions of all the variables appearing in Supplemental Tables S2 

and S3 are listed in Supplemental Table S3.

Performance as a Function of Prediction Window Length

The impact on model performance was evaluated for a window length of 30 days to 5 years 

(Figure 4) with a fixed two year observation window. The prediction window length 

specifies the amount of time before the true clinical HF diagnosis that the prediction is 

performed (Figure 1). As expected, performance for both classifiers declines in relation to 

increasing prediction window length (i.e., the time before the actual clinical diagnosis). 

Prediction performance is at or above 0.80 AUC for prediction windows less than or equal to 

1 year. Performance is at 0.74 AUC for a 2 year prediction window. Performance then 

declines rapidly for prediction window lengths longer than 2 years.

Performance as a Function of Observation Window Length

The impact of model performance was evaluated in relation to the observation window 

length ranging from 60 days to 5 years (Figure 5) with a fixed prediction window length of 1 

year. The observation window length specifies the length of time in the patient record from 

which data are extracted to represent the patient (Figure 1). The longer the observation 

window the more data points from the patient record are used except, of course, where 

patient time under observation is shorter than the observation window. For both classifiers, 

prediction performance improves steadily as the observation window length increases up 

until 2 years where the performance reaches 0.79 AUC. Longer observation windows (3, 4 

and 5 years) had minimal impact on model performance (up to 0.80 AUC).

Performance as a Function of the Training Set Size

The original data set is randomly split into 25% (3802 patients) for testing and 75% (11407 

patients) for training. The training set was randomly sampled (without replacement) and 

varied from 114 to 11407 patients in size to train the classifiers and then used to score the 

patients in the test set. Fifty iterations of training and testing for each training set size is 

performed and the average and standard error of the 50 AUC scores are plotted as a function 

of the training set size (Figure 6).

Prediction performance improves substantially from an AUC 0.653 to an AUC of 0.786, 

p<0.00001 for the logistic regression classifier, as the size of the training set increases from 

114 to 3802 patients. After 3802 patients, model performance begins to asymptote (from 
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0.786 to 0.796 AUC) as the training set size increases to 11407 patients. Performance of the 

random forest classifier is slightly better at all data set sizes but has a similar trend.

Performance as a Function of the Training Data Density

An estimate of the data density (i.e., in-person and phone encounters) in the observation 

window (set at two years for this analysis) is computed for each case and control by first 

accounting for each instance of a diagnoses, medications, labs, imaging orders and vitals 

data types along with the associated date.. Next, the total number of distinct dates is 

computed. This “number of encounters” is then used as the data density estimate. A total of 

18% of cases (red line, figure 7) and 25% of controls (blue line, Figure 7) had less than 10 

encounters. Half of the controls have less than 20 encounters and half of the cases have less 

than 25 encounters.

To measure prediction performance as a function of the training data density, a series of 

regularized logistic regression and random forest classifiers were trained and evaluated using 

10-fold cross validation on different subsets of the training data selected using two methods: 

1) based on increasing data density in the observation window and 2) randomly without 

replacement to meet a specified data set size. The density based selection was performed by 

including case and control patients that have at least the minimum number of specified 

encounters in the 2 year observation window. The bar graphs in Figure 8 show that as the 

density threshold increases, the number of selected cases (red bars) and controls (blue bars) 

that have the minimum number of required encounters in the observation window decreases. 

Each bar graph is labeled with a percent of the total patients who are cases, where cases 

comprise 11% of all patients. This percentage changes slightly when both case and control 

patients are restricted to those with 10 or more encounters in the observation window (i.e., 

12% to 13%), then increases incrementally to 15% at 20 encounters and finally to 26% at 60 

encounters. The green curve in Figure 8 plots the mean and standard error of the cross 

validated AUC scores (vertical axis) as a function of the data set density (horizontal axis) 

expressed as the minimum number of encounters in the observation window. Predictive 

performance improves significantly when data are restricted to those with at least 10 to 15 

encounters in the 2 year observation window, a range where the exclusion of cases and 

controls is similar. Model performance continues to improve when data are restricted to 

those with more encounters, but the selective exclusion of controls is substantial compared 

to cases. As a comparative baseline, models trained using the same amount of data but 

selected randomly instead of by data density are evaluated. For each threshold value, 50 

iterations of training and testing are performed using randomly selected data sets that are the 

same size as the corresponding density based data set. The purple curve in Figure 8 plots the 

mean (and standard error) of the 50 AUC scores for each threshold data set size. 

Performance holds steady for moderate data set sizes (down to 6000 patients) and then 

slowly drops off as the data set size decreases. These results seem to indicate the importance 

of having less but denser data over having more but sparser data.
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Discussion

The adoption of electronic health records in US healthcare is contributing to an explosive 

growth in diverse longitudinal patient data that will increasingly support population level 

analyses to support individualized patient care. Predictive analytics represent one important 

domain that is relevant to early detection of disease, avoidable care (e.g., hospital 

admission), and clinical decision support, among numerous other applications. The 

quantitative performance of a predictive model, represented by the AUC, is often a dominant 

focus of concern, but this represents only one of several factors that will dictate the overall 

utility of and the likelihood that a model will be adopted for clinical care (Table 3). In this 

paper we explored how the quantity and diversity of EHR data influences model 

performance defined by both the AUC and other features. We consider implications for 

implementation of predictive models specifically for the early detection of heart failure and 

then consider issues with generalizability.

The demand for more diverse, voluminous, or higher density of data to improve model 

performance creates an inevitable tension by reducing the size of the market that can use the 

model. This tension does not necessarily lead to the creation of a single model that is 

designed to the lowest common denominator. Rather, the tradeoff influences the family of 

models that might be created to accommodate differences in the data that are available to 

specific provider groups. In our analysis, model performance was most strongly influenced 

by the diversity of data, basic feature construction, and the length of the observation window. 

In raw form, EHR data are highly diverse, represented by thousands of variants for disease 

coding, medication orders, lab measures and other data types. It seems obvious that some 

level of feature construction that relies on well-established ontologies should improve model 

performance. We examined this specific issue because it had not been previously explored. 

Use of ontologies for ICD-9 codes and medication classes each substantially improves 

model AUC, reduces the number of features, or both. Modest curation of data using existing 

ontologies substantially reduces data diversity without loss of information and possibly a 

gain in information that both supports improvement to model performance, parsimony, and 

coherence. Moreover, this modest data curation also simplifies standardization of data across 

different provider entities. This finding may suggest that more advanced forms of data 

curation that are beyond traditional ontologies may further improve model performance and 

parsimony.

The adoption of predictive models will depend, in part, on the data diversity requirements 

Adoption is more favorable when the same or similar model performance can be achieved 

with fewer types of data. In our analysis, model performance was considerably better when 

using either diagnoses or medication order data alone compared to other data types (i.e., 

labs, hospitalization, demographics/health behaviors, image orders, and vitals). These two 

domains may be dominant because they also represent the most common sources of data and 

also offer information relative to a patient’s status over a longer period of time than a clinical 

measure. This does not necessarily mean that larger quantities of lab or vital sign data that 

could be generated from wearable devices could also improve model performance for those 

specific domains. Notably, the combination of diagnoses, medications, demographics/health 

behaviors, and vital sign data does not yield an AUC that is significantly better than 
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diagnoses and medication data alone (i.e., AUC of 0.752 versus 0.740, p=0.23, data not 

shown). While we cannot generalize to predicting other health problems, the findings are 

sensible given that information about smoking and alcohol use habits and vital signs are 

likely to be captured by diagnoses and medication data. For example, ICD-9 codes for 

hypertension combined with related medication orders may be more informative than 

intermittent measures of blood pressure. One limitation to our assessment of data types is 

related to the image order data. Other than ECHO order data on LVEF we did not extract test 

results for other imaging orders.

We examined a 12-month prediction window, varying the length of the observation window. 

While a longer observation window increases the volume of data it also reduces the number 

of patients to whom the model could be applied in a given provider group. Not surprisingly, 

model performance improved substantially as the length of the observation window 

increased. Performance began to plateau for observation windows longer than two years. For 

HF this finding may suggest that signals of early detection in EHR data may only exist 

within one to three years of diagnosis. However, in modeling experiments, the observation 

window was treated as a static dataset represented by summary statistics. It is possible that 

longer observation windows improve model performance when using more advanced models 

that can make temporal connections among features or events.

The most surprising finding in this study is how sensitive the model performance is to the 

size of the training set. Substantial improvements to our predictive model were achieved by 

increasing the training set size from 1000 patient records to 4000 records. While the training 

set size may be influenced by other factors (e.g., type of data, case/control ratio, data 

density), this finding, in particular, may pose the greatest challenge to application of models 

in clinical practice. It is likely that any predictive model that is developed for use in clinical 

practice will have to be adapted to the data available in a clinical practice. That is, model 

development work largely offers a guide on data requirements and data curation, not the 

specific formulation that could be applied to patient data. As such, the training set size may 

be the most influential factor in adoption of predictive models for smaller practice groups. 

The case-control dataset for this study included 1,684 HF cases and 13,525 controls from a 

modest size clinical practice. The incident HF cases accrued over a 7-year period. It is 

unlikely that most practice groups will have equivalent or greater denominators, represented 

by the combination of years of data and size of the patient population. While we do not have 

evidence of the generalizability of this finding to other areas of predictive modeling, we can 

conclude that there is likely to be a strong tradeoff in model performance and the size of the 

training set and that smaller practices may benefit from pooling of data.

The quantity and diversity of available EHR data are highly heterogeneous among patients 

and this poses potential methodological challenges in using EHR data for predictive 

modeling purposes. In contrast to epidemiological data that are collected using a structured 

protocol and time schedule, EHR data accrue in an unscheduled manner and with a modest 

amount of structure defined by clinical protocols. For example, vital signs are collected 

during most visits, but often with variation in the “protocol.” The frequency, type and 

quantity of lab tests ordered can also be widely inconsistently among practitioners and their 

patients. Other data like ICD-9 codes and medication orders are documented using 
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standardized schemes, but physicians vary in how they document and what they order. 

Patients also vary in how much care they use, independent of disease burden. In our analysis, 

we found that data density strongly influences model performance. Using a two-year 

observation window and one-year prediction window, model performance substantially 

improved when a minimum of 10 encounters was required, but even at these thresholds 20% 

or more of patients in a primary care practice would be excluded from risk assessment using 

the HF model. Performance continues to improve by restricting the data to patients with 

more than 15 encounters. In this experiment, the number of encounters between cases and 

controls are matched. As such, the performance gain cannot be explained by the difference 

in number of encounters between cases and controls. Some of the improvement may be due 

to a better representation of the patient derived from more data. Some of the additional gains 

in AUC may be due to the larger fraction of cases compared to controls being selected with 

higher density threshold values. More work needs to be done to better understand this 

behavior. Since some individuals who develop HF do so after a singular acute event, such as 

following a heart attack or a viral cardiomyopathy, there are likely to be a subset of people 

whose HF diagnosis follows a much more rapid trajectory and are more likely to have fewer 

medical encounters in the months to years before their diagnosis.

Several features (i.e., alpha/beta blockers orders, positive JV distention, negative pulmonary 

edema, loop diuretic orders, cardiac disorders) in the final model (Table S1) may suggest a 

covert HF diagnosis, but this does not necessarily mean that HF is actually present or even 

that individuals with those features will develop HF. The predictive importance of a feature 

(Table S2) takes into account both the discriminability and frequency of the variable. 

Features that may indicate HF often ranked relatively low in importance (e.g., positive JV 

distension ranked 97th, alpha/beta blockers ranked 89th, negative pulmonary edema ranked 

46th). When these five features were eliminated from the model the AUC was only reduced 

from 0.796 to 0.785. More importantly, there is considerable “noise” in EHR data and it is 

very difficult to state with certitude that an individual patient is at risk of a future diagnosis 

of HF simply because these features appear in their record. For example, Framingham HF 

signs and symptoms were common among cases and controls and had relatively little impact 

on model performance. Predictive models offer the means to discriminate the meaning of 

thousands of data points that simply cannot be deciphered by manual review. Moreover, even 

if a patient had HF before the recorded diagnosis date, the patient is not being managed 

accordingly. The value of predictive models in this context is to offer the means to conduct 

routine surveillance to surface and more effectively manage these patients before they are 

hospitalized for the first time with HF.

Our findings are consistent with prior work using EHR data. In predicting mortality over 

different time horizons from end-stage renal disease (ESRD), machine learning models that 

contain all available predictors outperform those that do not [18]. But, variable groups varied 

by utility, where exclusion of any particular group did not lead to a meaningfully reduction 

in risk prediction. Moreover, prediction performance decreased as the prediction window 

size increased (from 1 day to 3 years). Separately, renal function disease progression was 

modeled using machine learning methods with and without temporal information on data 

features. Prediction performance improved for temporal and non-temporal models as the 

observation window size increased with peak performance occurring between 2 and 3 years 
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of patient data [19]. In a different study, significant differences in the accuracy of 

hypoglycemia prediction using machine learning models for patients with type 2 diabetes 

were observed as a function of data density (number of self-monitored blood glucose data 

points) and prediction window size (1 hour to 24 hours) [20]. Model performance increased 

with denser data and with smaller prediction window size. There are a number of possible 

directions for future work. First, the approach and methods need to be validated on larger 

patient data sets from multiple healthcare systems and additional disease targets to better 

understand the generalizability of the data characteristic impacts on predictive modeling 

performance. More in depth analysis of the characteristics and distribution of the top risk 

factors captured by the predictive model is also needed. In this study, the prediction and 

observation windows were explored separately; understanding the combination of them is 

also important. Exploration of novel approaches to data curation that rely on combinations 

of data elements to characterize variation in disease complexity, disease control, and other 

features may improve model performance or coherence or both. It will be important to 

explore data density, training set size, and other requirements in greater depth and to develop 

methods that reduce the data demands as a means to increase adoption. Finally, use of 

modeling strategies that account for the sequencing and temporal distance of features in the 

observation window may offer an approach to increase model performance with the same 

amount of data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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What is Known

- Electronic health records (EHR) data can be used to predict events including 

onset of diseases but there is little known about the practical tradeoffs 

between data requirement and model utility.

- Rapid growth in the application of machine learning methods to EHR for 

predicting future patient outcomes is fostering a deeper understanding of 

modeling best practices.
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What the Study Adds

- Detailed characterization of the practical tradeoffs between data requirements 

and model utility is possible and shows the value and limitations of 

heterogeneous data sources to predictive models in EHR data.

- Possible guidelines for the minimum amount and type of data needed to train 

effective disease onset predictive models using longitudinal EHR data.
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Figure 1. 
Relation of prediction window, observation window for use of data and the index and 

diagnosis dates for cases and the same relative times for controls.
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Figure 2. 
Prediction performance for ungrouped versus grouped representations for the diagnoses, 

medications and hospitalizations data types.

Ng et al. Page 17

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Prediction performance for (A) individual and (B) combined data types.
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Figure 4. 
Prediction performance for different prediction window lengths.
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Figure 5. 
Prediction performance for different observation window lengths.

Ng et al. Page 20

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Prediction performance as a function of training set size.
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Figure 7. 
Distribution of the number of encounters in the 2 year observation window for cases and 

controls.
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Figure 8. 
Prediction performance as a function of data density and data size.
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Table 1

EHR data types, examples, number of unique variables and number of grouped variables

Data Type Examples Number of
Unique
Variables

Number of
Grouped
Variables

Diagnoses* ICD-9 codes (from outpatient visits and problem
lists treated separately).

12616 189

Medications
† Beta blockers, loop diuretics, etc. 3952 631

Labs
‡ Cholesterol, glucose, eGFR, etc. 2336 -

Hospitalization
§ ICD-9 codes associated with admission 7071 189

Demographics and
Health Behaviors

Age, Sex, Race/Ethnicity, smoking, alcohol use 5 -

Cardiovascular

Imaging Orders
#

2D echo, trans esophageal echo, stress echo, etc. 18 -

Vitals
‡ Pulse, systolic blood pressure, diastolic blood

pressure, height, weight, temperature
6 -

Framingham HF
Signs and
Symptoms

Positive and negative mentions of acute pulmonary
edema, ankle edema, dyspnea on ordinary exertion,
paroxysmal nocturnal dyspnea, etc.

28 -

*
ICD-9 codes from outpatient visits and problem lists are treated separately.

†
Normalized drug names, ignoring the dosing information, were used.

‡
The labs and vitals data types contain information about the test order and the numerical result of the test.

§
Primary and secondary ICD-9 codes associated with the hospital admission were used.

#
The imaging order type, associated ICD-9 codes, and any LVEF values were used.
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Table 2

Example feature groups for the diagnoses, hospitalizations and medications data types.

Diagnoses Hospitalizations Medications

Blood Disorders Cardiac Disorders ACE Inhibitors

Cardiac Disorders ENT Disorders Alpha-Beta Blockers

Cerebrovascular Disease Eye Diseases Angiotensin II Receptor Antagonists

Coronary Atherosclerosis Gastrointestinal Disorders Antiarrhythmics Type III

Diabetes Injuries Antidiabetic Combinations

Gastrointestinal Disorders Lung Disease Beta Blockers Cardio-Selective

Heart Arrhythmias Musculoskeletal Disorders Cardiac Glycosides

Heart Infection Skin Diseases Coumarin Anticoagulants

Kidney Disorders Symptom Disorders Insulin

Lung Disease Loop Diuretics

Metabolic Diseases Nitrates

Musculoskeletal Disorders Platelet Aggregation Inhibitors

Neoplasm Sympathomimetics

Neurological Diseases

Polyneuropathy

Vascular Disease
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Table 3

Model Utility in Health Care Delivery

Model performance AUC, Sensitivity, Specificity, PPV, etc.

Data requirements Shorter observation window, fewer features

Model coherence and
translation

Transparency, interpretability, clinical and etiological utility,
actionability

Model purpose and
validation

Diagnosis, prognosis, risk management, risk
communication, treatment/intervention indication

Ease of updating Ease of implementation, platform utilities

Ease of use/access User access, requirements, and burden;
Integration with workflow
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