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Abstract

While the tumorigenic effects of specific recurrent mutations in known cancer driver-genes is 

well-characterized, not much is known about the functional relevance of the vast majority of 

recurrent mutations observed across cancers. Prior studies have attempted to identify functional 

genomic aberrations by integrating multi-omics measurements in cancer samples with community-

curated biological pathway networks. However, the majority of these approaches overlook the 

following biological considerations: i) signaling pathway networks are highly tissue-specific and 

their regulatory interactions differ across tissue types; ii) regulatory factors exhibit heterogeneous 

influence on downstream gene transcription; iii) epigenetic and genomic alterations exhibit 

nonlinear impact on gene transcription.

In order to accommodate these biological effects, we propose a hybrid Bayesian method to learn 

tissue-specific pairwise influence models amongst genes and to predict a gene's expression level as 

a nonlinear-function of its epigenetic and regulatory influences. We employ a novel tree-based 

depth-penalization mechanism in order to capture the higher regulatory impact of closer neighbors 

in the regulatory network. Using a breast cancer multi-omics dataset (N=1190), we show that our 

proposed method has superior prediction power over optimization-based regression models, with 

the additional advantage of revealing gene deregulations potentially driven by somatic mutations.

I. Introduction

Large-scale profiling studies of multiple cancers have revealed a plethora of genomic 

aberrations whose functional significance in driving the respective cancers remains largely 

unknown. This has resulted in the need for biologically savvy computational approaches [1] 

that can integrate multiple genomic measurements of cancer tissues to identify functional 

genomic aberrations that underlie cancer development and progression.

One computational approach involves assessment of an enrichment score that captures the 

deviation from random representation of a predefined set of genes within a ranked gene list 

associated with the cancer phenotype [2]. While this approach identifies functional genomic 

alterations, it does not explicitly incorporate regulatory relationships amongst genes. 

Subsequent approaches [3-5] also incorporated these regulatory networks to capture 

signaling programs that may be driving cancer progression. These methods integrate well-
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curated biological pathway databases with genomic measurements into a unified modeling 

framework to estimate activity levels of network nodes associated with tissue-level 

phenotypes. Such network-based inference of pathway-level activities has also been used to 

evaluate if specific mutations are functionally deregulating pathways [6]. These approaches 

mainly rely on the following assumptions: a) the pathway networks accurately and fully 

capture the cellular mechanisms across tissue types, b) that the influence of regulatory 

parents nodes on the downstream gene expression is equal and c) the relation between the 

gene expression and epigenetic information is linear. These assumptions underestimate the 

complexities and heterogeneity inherent in the biology of cancer.

We develop an integrative model that incorporates multi-omics measurements, including 

RNAseq-based gene expression, array-based DNA methylation (epigenetic) and SNP-array 

based somatic copy-number alterations (sCNA), and biological pathway network 

information to build a gene-gene regulatory influence network. Briefly, a non-linear 

Bayesian model is learned to predict the expression level of any given gene using its own 

sCNA and methylation data along with upstream regulatory influences inferred from 

biological pathway networks. The learned model is then used to identify genes whose 

measured expression levels show significant and abnormal deviations from the predictions, 

thus allowing for the discovery of somatic mutations that functionally alter gene regulation.

II. Method Overview

The proposed algorithm consists of several sequential steps to identify and report potential 

somatic aberrations driving deregulated genes. The first step is to build a tree for each gene 

that captures the relationship of the gene's expression levels with its own genomic (e..g. 

copy-number) and epigenetic (e.g. DNA methylation) status as well as its upstream 

transcriptional regulators (e.g. gene families and protein complexes). The gene of interest 

resides in the root node and the leaves of the tree represent all of the genes that potentially 

regulate its transcription either directly or indirectly through intermediate signaling partners. 

In the second step, we train a non-linear function to predict the gene expression level of the 

gene of interest by incorporating the molecular measurements associated with the leaves. 

The parameters of the non-linear function are estimated using a Bayesian inference method 

incorporating a novel depth penalization mechanism to capture the potentially stronger 

regulatory impact of nodes closer to the root node in the tree. The third and final step 

calculates relative inconsistency scores between the predicted and observed expression levels 

for each gene and reports deregulated genes. A subsequent analysis identifies the potential 

drivers of the gene deregulations arising from somatic mutations targeting the gene or its 

upstream transcriptional regulators.

Regulatory Tree Construction

In order to identify the genes that regulate the target gene expression level, we build a tree 

for each target gene by integrating information from well-curated pathway databases 

including NCI-PID, Biocarta, and Reactome similar to the PARADIGM framework [3].

The network consists of multiple node types and regulatory interactions (Fig. 1). In order to 

develop the regulatory tree for each gene we start with a specific target gene and traverse 

Razi et al. Page 2

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



upstream along the pathway networks and capture the regulatory genes (referred to as 

regulators hereafter for brevity) along with their depth (defined as the number of links to the 

root node) to the root node (Fig. 1), using a depth-first traversal algorithm, collecting all 

nodes based on the following rules:

i) At depth = 1, we exclude the post-transcriptional modifiers of the root node.

ii) When we include a gene as a regulator and passing to the next level of 

regulators, we exclude transcriptional regulators of that gene since their effects 

are already captured by the gene's expression level.

iii) We terminate traversing a branch once we reach a predefined maximum depth 

level dmax or we reach an abstract process node, since the nodes connected via 

abstract nodes may not have real pairwise causal impacts.

iv) If we meet a leaf node via multiple disjoint paths, the shortest path is considered.

v) We also include the gene of interest's epigenetic (DNA methylation) and somatic 

copy-number measurements as two additional nodes directly connected to the 

root node.

Thus, the tree construction algorithm reports the genes whose expression levels regulate the 

root gene's expression along with their corresponding depth parameters.

A. Learning Gene Regulatory Functions

Here we train a function that predicts the target gene expression level based on 

measurements of the nodes in the regulatory network. We use the following regression 

model for gene g using a training set of n normal and cancer samples:

(1)

where  is a n × p data matrix composed of two parts including  (the target 

gene's DNA methylation and sCNA measurements) and  the expression levels of the P 
regulators identified in Step 1. 1n is a one column vector of size n, βg is the regression 

coefficients of size p × 1 and ϵ is the Gaussian distributed model noise with zero-mean and 

identity covariance matrix. yg represents values of the target gene expression levels across 

the n training samples. Finally, μg is the expected value of target gene's expression level. We 

omit subscript g hereafter for notation convenience.

Considering the fact that the pathway networks are not tissue specific and may involve 

pathway links that are absent or loosely connected in a specific tissue type, the model 

parameters βi are expected to be sparse. The second consideration is possibly non-linear 

relationships between the measurements. Therefore, we apply non-linear transformation to 

the data prior to developing our regression model. We used a centered sigmoid function 

 to capture the sensitivity around the mean value and a soft-
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thresholding function  to account for the impact of 

extreme values. We have applied the element-wise non-linear extension 

 only to Xs, hence increasing the number of 

predictors compared to the number of regulators. It is notable, that if the actual underlying 

function is linear, the coefficients of the nonlinear terms tend to zero in the proposed model.

Thirdly, to account for closer regulators having a greater impact on the target gene 

expression, we therefore extended the Bayesian lasso scheme to include a depth penalization 

mechanism in addition to the non-linear terms.

We used the following prior construction:

(2)

The proposed Bayesian hierarchical generative model is desired over optimization-based 

sparse regression models such as LASSO, RIDGE and ELASTIC NET, since it provides a 

full posterior distribution of the model parameters. Moreover, we can easily incorporate any 

prior knowledge such as depth information to the model. While this leads to additional 

computation costs for sampling, it occurs only once during the training phase.

In the above formulations, the model parameters β are conditionally normal distributed 

around zero with variances that are controlled by three sets of hyper-parameters , 

where σ2 controls the global shrinkage,  accounts for the local shrinkage using the 

exponential prior and ki enforces the link depth impact. To provide more flexibility and a 

closed-form posterior, we assign a Gamma prior distribution for  such 

that the standard deviation of βi is inversely proportional to the corresponding link depth di 

(i.e. , where c is a normalizing term to ensure , which is 

obtained by setting ). Therefore, we only have one free hyper-parameter aki 
for ki prior distribution and the second parameter bki is automatically obtained from 

. We note that . Setting aki to small values provides 

higher variance for ki and hence is less formative, while large values of aki provides low 

variance reflecting a high certainty about the network topology and the fact that node pairs 

with shorter paths are associated with higher influences to one another. In this case, the 
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gamma distribution approaches a Gaussian distribution concentrated around di. We choose 

the large value of aki = 10 to highlight on the significance of the underlying biological 

network.

Using the conjugate priors in (2) and applying Bayes rule results in the following closed 

form conditional distribution for the model parameters as in [7], where the details of 

derivations are omitted for brevity.

(3)

where  is the set of all variables and ‘\’ is exclusion 

operator. N(.), N−1(.), GA(.), GA−1(.) denote the Gaussian, inverse Gaussian, Gamma and 

inverse Gamma distributions.

There are several ways to set the regularization parameter λ including cross validation or 

expectation maximization. In this work, we used a gamma prior for λ ~ GA(aλ, bλ) and 

included it as an additional step in the Gibbs sampler.

B. Inconsistency Analysis

Comparison of the observed gene expression measurement  with the predicted value, 

(the maximum a posteriori MAP estimate) for a given cancer sample determines the level 

inconsistency for gene g.

We note that the predictive distribution for the RNA expression of gene g for each new test 

sample  is obtained by marginalizing out the model parameters from the conditional 

posterior distribution for given input :

(4)

where ,  are the samples of the model parameters for gene g obtained from the N 
iterations of Gibbs sampling.

Consequently, the Z-score and the equivalent Log Likelihood of the consistency level of 

gene g in the new sample is obtained using the following equations:
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where the mean  and variance  are provided by the Gibbs sampler.

III. Results

In this section, we first provide prediction results for sample genes that have valid regulatory 

connections in the pathway network and are known to be highly associated with cancer. 

RNA-seq based gene expression, DNA Methylation using the Illumina Infinium Methylation 

assays and sCNA profiles using Affymetrix SNP arrays were obtained using The Cancer 

Genome Atlas portal for a breast cancer dataset, containing 111 normal and 1079 cancer 

samples.

We compared the results of our proposed Bayesian method with state-of-the-art 

optimization-based sparse regression models including LASSO, RIDGE and Elastic-Net 

Regressions with solutions based on Coordinate Descent [8]. The Minimum Square Error 

(MSE) ratio  and, State Error Rate (SER) obtained by mapping the observed and 

predicted values to three (low, neutral and overexpressed) states, are presented across 

frameworks in Table 1. The results for all models are derived from a test dataset independent 

of the training set.

From Table 1, we see that the proposed method outperforms the state of the art sparse 

regression models with the additional advantage of providing full posterior distribution for 

the gene expression level required for subsequent inconsistency analysis. Another 

observation from Table 1 is that all models show higher predictability on the test set of 

normal samples despite the fact that the number of cancer samples used for model training is 

larger than the normal samples. This reveals that the functional states of gene expression in 

normal tissues are more consistent with their upstream regulatory networks than in cancer 

tissues. We further highlight the utility of our proposed method using two genes (ERBB2 

and PTEN) of high import in breast cancer.

ERBB2 is highly expressed in a subset of breast cancers due to sCNAs. Our model 

appropriately captures this non-linear effect (Fig. 2), by automatically assigning high values 

for the coefficient associated with the soft-thresholding function of sCNA, reflecting the fact 

that variations around zero in sCNA values correspond to measurement noise.

On the other hand, inactivation of the gene PTEN is functionally important in breast cancer 

due to its essential role in down-regulation the PI3K pathway, a key mechanism of resistance 

to anti-HER2 therapy. Fig. 3 shows that a subset of breast cancers with significantly lower 

observed gene expression levels of PTEN as predicted by our model's integration of sCNA 

and regulatory networks. It is also notable that some cancer samples show significant 
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inconsistency with the predictions. We hypothesize that these inconsistencies are likely 

associated with somatic mutations affecting either PTEN or its regulatory network. We 

therefore count all non-silent mutations affecting either PTEN or its regulators for each of 

the cancer samples scaled by their absolute inconsistency levels. In order to apply the same 

concept of depth-penalization, we penalize the count of mutations with (α)di,g, where (0 < α 
< 1) is an arbitrary penalization factor and di,g, is the depth of the regulatory gene i to the 

target gene g = PTEN. In general, the functional impact of mutations in gene h on the 

expression of gene g, denoted by fg(h) is calculated as:

where Pg is the set of regulatory ancestor genes of gene g, Mj is the set of genes mutated in 

sample j,  is the inconsistency score of gene g at sample j and 1(.) is the indicator function. 

The role of denominator is to .

The functional impact of somatic mutations on the deregulation of gene PTEN is depicted in 

Fig. 4, revealing that the inconsistencies in PTEN expression are highly associated with 

mutations in TP53, PTEN, PIK3CA, MAP3K1 and MAP2K4. The higher impact of TP53 

mutations versus PIK3CA is particularly interesting given that PIK3CA is mutated more 

often than TP53 (387 samples versus 333 samples respectively). We observe that MAP3K1 

and MAP2K4 mutations, previously shown to be associated with luminal breast cancers [9], 

impact PTEN inactivation, thus providing an intriguing nexus between these genes in driving 

a key subtype of breast cancers. We also calculate the relative impact of protein-truncating 

and other non-synonymous mutations after normalizing to their absolute counts on the 

inconsistency score for PTEN. The model determines that the two kinds of mutations have 

similar impact when they affect any of the regulatory genes of PTEN while the protein-

truncating mutations in PTEN have an outsize impact on its deregulation, consistent with 

nonsense-mediated decay of PTEN mRNA. These findings highlight the capability of our 

modeling framework to capture the expected impact of somatic mutations in a gene on its 

own expression level, while also enabling the discovery of the functional effects of 

mutations in upstream regulatory genes.

IV. Conclusions

We have developed a novel Bayesian approach that integrates multi-omics data with prior 

biological knowledge derived from pathway annotation databases. Our approach captures 

the non-linear and heterogeneous influence of both upstream regulatory genes as well as 

epigenetic alterations on target gene expression levels. Furthermore, the inconsistency score 

estimated by our model quantifies the impact of somatic mutations potentially driving 

deregulation of gene expression in cancer samples. Our framework provides a new toolkit 

for cancer biologists to identify novel driver mutations in cancer through the integrative 

analysis of multi-omics cancer profiles.
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Fig. 1. 
An example of a tree (dmax = 3) generated using the regulatory interactions derived from 

pathway databases for a sample gene PPP3CA. Node types are denoted as Genes (ovals), 

Protein complexes (rectangles), gene families (pentagon), abstract concepts (hexagon). The 

edges are colored according to their regulatory function with protein activation (red), 

transcriptional regulation (blue), component of protein complex (black) and gene family 

member (grey). The root node's epigenetic and sCNA measurements (rounded rectangles), 

considered as additional regulatory parents, are connected by green arrows. The nodes 

chosen as regulators are marked ( ) along with their depths.
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Fig. 2. 
The observed and predicted relationship between sCNA and gene expression for ERBB2 in 

normal and cancer samples. The coefficient corresponding to f2(sCNA) dominates the other 

predictors of the model for ERBB2, with .
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Fig. 3. 
Predicted versus observed expression levels of PTEN. Cancer samples ( ) show widespread 

inconsistency as compared to normal samples ( ).
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Fig. 4. 
The Impact of somatic mutations in the upstream regulatory subnetwork of PTEN on its 

gene expression inconsistency. Depth penalization parameter is set to α = ½. The bars show 

the relative degree of association of mutations in genes (horizontal-axis) on the level of 

inconsistency between the observed PTEN gene expression level and its predicted value. The 

impact is divided between protein truncating mutations (blue) and other missense mutations 

(yellow) normalized by their counts in the respective genes.
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Table I

Prediction accuracy for the proposed method in comparison with the benchmark optimization-based sparse 

regression models

Method
Test on Normal Samples Test on Cancer Samples

MSE SER MSE SER

LSE 0.4028 0.1156 0.6102 0.2774

Lasso 0.332 0.0638 0.4867 0.1481

Ridge 0.3987 0.0848 0.5415 0.1997

Elastic-NET (0.5) 0.3469 0.0758 0.493 0.1667

PROPOSED 0.2797 0.0534 0.4688 0.1406
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