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adipogenesis via the CRL4WDTC1 E3 ligase
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Abstract

WDTC1/Adp encodes an evolutionarily conserved suppressor of lipid
accumulation. While reduced WDTC1 expression is associated with
obesity in mice and humans, its cellular function is unknown. Here,
we demonstrate that WDTC1 is a component of a DDB1-CUL4-ROC1
(CRL4) E3 ligase. Using 3T3-L1 cell culture model of adipogenesis,
we show that disrupting the interaction between WDTC1 and DDB1
leads to a loss of adipogenic suppression by WDTC1, increased
triglyceride accumulation and adipogenic gene expression. We
show that the CRL4WDTC1 complex promotes histone H2AK119
monoubiquitylation, thus suggesting a role for this complex in tran-
scriptional repression during adipogenesis. Our results identify a
biochemical role for WDTC1 and extend the functional range of the
CRL4 complex to the suppression of fat accumulation.
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Introduction

Over 50 years ago, Dr. Winifred Doane isolated and extensively

characterized a naturally derived D. melanogaster mutant, termed

adipose (adp) [1,2]. The most obvious mutant phenotype observed

was fat body hypertrophy due to excessive lipid storage. Adp is

evolutionarily conserved from files to humans as a single gene and

encodes a protein containing WD40 repeat domains and TPR motifs

[3]. The mammalian homolog of Adp is WDTC1 (WD40 and tetra-

tricopeptide repeats 1). Loss of a single Wdtc1 allele results in obese

mice with poor metabolic profiles, and conversely, transgenic

expression of Wdtc1 in fat cells yields lean mice [4]. Recently, popu-

lation studies have linked reduced WDTC1 expression to human

obesity [5,6]. Despite strong genetic evidence linking WDTC1 to

antiadipogenic function, its molecular mechanism remains

unknown.

Ubiquitin pathway plays a critical role in virtually all cellular

processes. Ubiquitylation proceeds via an enzymatic cascade where

E1 and E2 enzymes catalyze the activation and conjugation of ubiqui-

tin, while E3s confer reaction specificity through substrate recruit-

ment [7,8]. Substrates can be polyubiquitylated, which often leads

to proteasome-dependent degradation, or monoubiquitylated, which

regulates the property and thus the function of the substrate.

Comprising the largest family of E3 ligases is the cullin RING E3

ligase (CRL) complexes in which a cullin serves as the scaffold to

bind small RING finger protein ROC1 (RBX1/HRT1) through a

C-terminal domain, and a linker-substrate receptor dimer or a

substrate receptor directly via a N-terminal domain. Mammalian

cells express two cullin 4 (CUL4) proteins, CUL4A and CUL4B, that

bind damaged DNA binding (DDB1) protein. DDB1 acts as the linker

to bridge the interaction between CUL4 and a subset of DDB1

binding WD40 repeat proteins (DWDs or DCAFs for DDB1 cullin-

associated factors) which function as substrate receptors to target

specific substrates to the CRL4 E3 complexes [9–12]. The human

genome encodes an estimated ~90 DWD proteins [9], but the

functional interaction between CRL4 and DWDs remains unexplored

for the vast majority. One of predicted DWD protein is WDTC1,

raising the possibility that WDTC1 may function as a substrate

receptor of CRL4 E3 ligase to inhibit fat accumulation. This study is

aimed at determining this issue.

Results and Discussion

WDTC1 is a putative substrate receptor for CRL4 E3 ligase

Two structural features suggested that WDTC1 binds DDB1

(Fig 1A). First, WDTC1 contains two tandem DWD boxes with

conserved WDXR submotifs, the signature motif present in nearly

all WD40 proteins that bind DDB1 [9]. Second, the N-terminal

regions of vertebrate WDTC1 contain an a-helical motif termed the

H-box which is shared by several DWD proteins and some viral

proteins that bind DDB1 [13]. Although the H-box of the DWD

protein DDB2 makes a large contribution to DDB1 binding [11,13], a

mutation in the WDXR of DDB2 (R273) is found in human xero-

derma pigmentosum patients and disrupts DDB2-DDB1 binding

[14]. These observations underscore the importance and specificity

of both DWD motif and H-box in mediating DDB1 binding, thus

offering a unique opportunity for investigating the WDTC1–CRL4

interaction.
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To test whether WDTC1 and CRL4 interact in vivo, endogenous

CUL4A or CUL4B complexes were immunoprecipitated from 293T

cells, and the presence of WDTC1 in the immunoprecipitates was

determined by immunoblotting. We found that WDTC1 interacts

endogenously with both CUL4A and CUL4B (Fig 1B). We then

generated two WDTC1 mutants, one deleted the N-terminal 25

amino acid residues containing the H-box (referred to as DH) and

one substituted the arginine residues in the tandem WDXR motifs to

alanines (referred to as RARA; Fig 1A). We found that wild-type

Flag-WDTC1 coimmunoprecipitated all CRL4 subunits tested, includ-

ing DDB1, CUL4A, CUL4B, and ROC1 (Fig 1C). In contrast, deletion

of the H-box (DH) completely ablated complex formation, while the

RARA mutant showed a modest decrease in DDB1 binding and a

marked reduction in CUL4 and ROC1 binding. A superimposed struc-

ture of WDTC1 is shown in complex with CRL4 (Figs 1D and EV1).

As previously reported [13], WDTC1 is anchored through its H-box

into the BPC propeller domain of DDB1. Similar to DDB2-DDB1 bind-

ing [15], the tandem WDXRs of WDTC1 are not predicted to make

direct contact with DDB1 but are solvent-exposed on the bottom

surface of the b-propeller. How these two signature arginine residues

contribute to the binding of DWDs to DDB1 is presently unclear.

We previously reported an example of a DWD protein, WDR5,

that is ubiquitylated by its cognate CRL4B and targeted for proteo-

lysis [16]. We therefore tested whether WDTC1 is a CRL4 substrate

by in vivo ubiquitylation assays. We found that WDTC1 was exten-

sively ubiquitylated, but the levels were unchanged by either DDB1

knockdown or DH mutation (Fig 1E). Further, the steady-state levels

of Flag-WDTC1 protein were largely unaltered by CUL4A or CUL4B

knockdown, while their respective substrates p21 and cyclin E were

clearly stabilized (Fig 1F), indicating that CRL4 does not regulate

WDTC1 protein stability. We noted that DDB1 depletion resulted in

a slight decrease in Flag-WDTC1, possibly due to protein instability

arising from the near loss of its primary binding partner. Together,

these results demonstrate that WDTC1 is a component of DDB1-

CUL4A/B-ROC1 complexes and likely functions as a substrate recep-

tor of CRL4 E3 ligases.

The interaction of WDTC1 with CRL4 is critical for its function in
adipogenic suppression

To determine the biological significance of the CRL4–WDTC1

interaction, we hypothesized that the fat-suppressive role of

WDTC1 is mediated through CRL4. We first examined the expres-

sion of WDTC1 and other CRL4 subunits in mouse tissues,

including multiple adipose tissues. We found that DDB1, ROC1

and at least one CUL4 are expressed in all four fat tissues, along

with readily detected expression of WDTC1 (Fig EV2A). We then

assayed the adipogenic differentiation of 3T3-L1 preadipocytes,

the well-characterized cell culture model to study adipogenesis

(Fig EV2B). Thought to closely recapitulate adipogenesis in vivo,

treating 3T3-L1 cells to an adipogenic media triggers transcrip-

tional activation of the terminal differentiation program and

morphological changes following lipogenic accumulation of

triglycerides [17].

We first confirmed that WDTC1 forms endogenous CRL4

complexes in 3T3-L1 cells (Figs 2A and EV2C). We next evaluated

the effects of disrupting the WDTC1–DDB1 interaction on WDTC1

function during adipogenesis. For this purpose, we generated stable

3T3-L1 cells that express a vector control and flag-tagged wild-type

(WT), DH, or RARA mutant WDTC1 (Fig EV2D) and verified that

their expression did not significantly alter the cell cycle distribution

(Fig EV2E). When these cells were adipogenically induced, WT

WDTC1 suppressed adipogenesis as assessed by Oil Red O staining

(ORO; Fig 2B). In striking contrast, WDTC1DH expression promoted

adipogenesis, suggesting that it may function as a dominant nega-

tive form of WDTC1. Further, the expression of WDTC1RARA mutant

also promoted adipogenesis, but at a lower efficiency than

WDTC1DH. While the WDTC1DH mutant exhibits near-complete loss

of DDB1 binding, the WDTC1RARA mutant is partially defective in

DDB1 binding, suggesting that WDTC1RARA mutant is functionally

equivalent to a hypomorphic allele. This is consistent with genetic

evidence indicating that WDTC1 exhibits dosage sensitivity [1,4].

Additionally, WDTC1 likely acts downstream of the insulin signaling

pathway as replacing insulin with the PPARc agonist rosiglitazone

did not alter the observed ORO phenotypes (Fig EV2F). Validating

the phenotypes evaluated by ORO, ectopic expression of WT

WDTC1 suppressed triglyceride accumulation, while expression of

the WDTC1DH (3.5-fold) and WDTC1RARA (2.3-fold) mutants

resulted in significantly higher triglyceride levels (Fig 2C). Further,

expression of WT WDTC1 decreased adipogenic marker expression

but WDTC1DH and WDTC1RARA mutants increased the expression of

these genes with WDTC1DH again being more effective than

WDTC1RARA (Figs 2D and EV2G). We also assessed expression of

genes regulating lipogenesis, lipolysis, and fatty acid oxidation, and

Figure 1. WDTC1 is a substrate receptor of CRL4 E3 complexes.

A Domain structure of human WDTC1 with locations of the H-box and WDXR motifs indicated. Alignment of WDTC1 H-box motifs in different species (boxed in gray)
and bolded orange represents key residues contacting DDB1 [13]. Alignment of DWD boxes in different DWD proteins (bottom right) with WDXR submotif indicated;
tandem DWD boxes are shown for WDTC1 only.

B Endogenous CUL4A and CUL4B complexes were isolated from 293T cell lysates by immunoprecipitation (IP), and associated proteins were detected by
immunoblotting (IB). Mock includes beads only control.

C Flag-tagged WT and mutant WDTC1 proteins were transiently expressed in 293T cells. Flag-WDTC1 complexes were immunoprecipitated with anti-FLAG, and their
associated proteins were detected by immunoblotting as indicated; EV, empty vector control.

D Top, the modeled structure of WDTC1 in complex with CRL4 (PDB 4A0K); WDTC1 superimposition was based on its H-box (PDB 317N). WDTC1 domains are
rendered in same colors as linear domain structure in (A); WDXR arginines were rendered in dark blue ball-and-stick. Bottom, schematic summarizing results
presented in (C).

E 293T cells were transfected with HA-ubiquitin along with various combinations of plasmid and siRNA as indicated. Transfected cells were lysed under denaturing
conditions to obtain whole-cell extracts (WCE) and immunoprecipitated with anti-FLAG. WDTC1 ubiquitylation was evaluated by immunoblotting as indicated.

F 293T cells transiently expressing Flag-WDTC1 were transfected with scramble (scrm) siRNA or siRNAs against DDB1, CUL4A, and CUL4B. Flag-WDTC1 levels and
knockdown efficiency were assessed by immunoblotting as indicated.

Source data are available online for this figure.
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found modest alterations that are likely due to altered adipogenesis

in cells expressing WT or mutant WDTC1 proteins (Fig EV2H). The

expression of WT WDTC1 resulted in a modest reduction in the

expression of genes linked to lipogenesis (Fasn, Dgat1, and Dgat2),

lipolysis (Agtl) and b-oxidation of long-chain fatty acids (Cpt2),

while the expression of WDTC1DH led to opposite changes in the

expression of these genes. Together, these results support the idea

that the CRL4 interaction is critically important for WDTC1 function

in the negative regulation of adipogenesis.

CRL4 binding mutants of WDTC1 cannot rescue WDTC1 function

To further validate the functional link between WDTC1 and CRL4 in

the suppression of 3T3-L1 adipogenesis, we sought to study the

effect of CUL4 knockdown on 3T3-L1 adipogenesis (Fig EV3A). The

depletion of CUL4A resulted in a hyperproliferation phenotype,

while CUL4B depletion resulted in a cell cycle defect and reduced

cell proliferation (Fig EV3B and C). Oil Red O staining indicates that

while 3T3-L1 adipogenesis was enhanced by CUL4A depletion, it

was substantially inhibited by CUL4B depletion (Fig EV3D). It is

presently unclear to us why the knockdown of Cul4a and Cul4b has

opposite effects on 3T3-L1 adipogenesis. However, the function of

CUL4A in promoting adipogenesis needs to be cautiously interpreted

as it is likely that multiple distinct CRL4A complexes are assembled

in 3T3-L1 cells.

To more specifically demonstrate the function of CUL4–WDTC1

interaction in the suppression of 3T3-L1 adipogenesis, we there-

fore carried out rescue experiments. Utilizing a lentiviral knock-

down-rescue vector strategy [18], we engineered 3T3-L1 cells to

simultaneously knockdown endogenous Wdtc1 by shRNA and

ectopically re-express shRNA-resistant WDTC1 encoding either WT

or DDB1-binding mutants DH or RARA to levels comparable to

endogenous WDTC1 (Fig 3A). We found that knocking down

Wdtc1 dramatically enhanced 3T3-L1 differentiation as assayed by

ORO (Fig 3B), triglyceride accumulation (Fig 3C), and adipogenic

gene expression (Fig 3D). While the re-expression of WT WDTC1

almost completely rescued the loss of adipogenic suppression in

all three assays, adding back either DH or RARA mutants failed to
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Figure 2. WDTC1 suppresses adipogenesis in a CRL4-dependent manner.

A 3T3-L1 preadipocytes were adipogenically induced, and lysates were prepared from cells collected at indicated days. Endogenous WDTC1 interaction with CRL4
subunits was evaluated by immunoprecipitation with anti-WDTC1 followed by immunoblot analyses with the indicated antibodies. Fatty acid synthase (FAS) levels
were monitored to evaluate induction.

B–D 3T3-L1 stable cells expressing vector control (EV), Flag-tagged WT or mutant WDTC1 proteins were adipogenically induced. Adipogenesis was assessed by Oil Red O
staining (ORO) (B); plate (top) and microscopic (bottom) views, 0.1 mm scale bar. Triglyceride levels were quantified by an enzymatic assay (C). Adipogenic gene
expression was evaluated by RT–qPCR analysis (D).

Data information: In (C, D), bars represent the mean � SEM from 3 independent experiments. *P < 0.05, **P < 0.005, significant change compared to EV control.
Statistical significance was analyzed by paired two-tailed Student’s t-tests.

Source data are available online for this figure.
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rescue the adipogenic defects resulting from the depletion of

endogenous Wdtc1. Consistent with its partial disruption of DDB1

binding, the RARA mutant exhibited a weaker phenotype than the

DH mutant, supporting the interpretation that the RARA mutant

represents a hypomorphic form of WDTC1, while the DH mutant

acts as a dominant negative. Collectively, these results demon-

strate a strong parallel between CRL4WDTC1 complex formation

and WDTC1 function, underscoring the critical importance of the

CRL4–WDTC1 interaction to the observed adipogenic suppression

by WDTC1.

CRL4WDTC1 promotes histone H2AK119 ubiquitylation

To gain insight into the mechanism by which CRL4WDTC1 suppresses

adipogenesis, we carried out two independent coupled immuno-

precipitation and mass spectrometry (IP-mass spec) analyses of

WDTC1 complexes in 3T3-L1 cells. Validating the IP-mass spec anal-

yses, several known CRL4WDTC1 components were identified,

including DDB1, CUL4B, CUL4A, ROC1, and all nine subunits of

COP9 signalosome subunits (Fig EV4A). One potential novel

WDTC1-interacting protein is fatty acid synthase (FAS), a critical

and positive regulator of lipid accumulation. We hypothesized that

regulation of FAS by the CRL4WDTC1 complex may contribute to the

antiadipogenic action of WDTC1. We therefore characterized the

interaction between WDTC1 and FAS and performed preliminary

characterization of a few other candidates as well. However, our

data showed that CRL4WDTC1 E3 ligase does not appear to regulate

FAS steady-state protein levels and reached similar conclusions for

other candidates we examined such as HDAC3 and PPARc-2
(Fig EV4B–D).

We then investigated the possibility that histone H2A is a

CRL4WDTC1 substrate. This was inspired in part by the established
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Figure 3. CRL4 binding mutants of WDTC1 cannot rescue WDTC1 knockdown phenotype.

A Schematic of WDTC1 knockdown-rescue lentiviral vector (top). 3T3-L1 preadipocytes were lentivirally transduced to generate stable cells expressing a non-specific
(NS) shRNA control, shWDTC1 targeting endogenous Wdtc1 mRNA, or cells simultaneously expressing shWDTC1 and shRNA-resistant WDTC1; bottom, confirmation
of knockdown and WDTC1 ectopic expression.

B–D 3T3-L1 stable cells described in (A) were adipogenically induced. Their adipogenic potential was assessed by ORO (B), triglyceride quantitation (C), and adipogenic
gene expression (D).

Data information: In (C, D), bars represent the mean � SEM from 3 independent experiments. *P < 0.05, **P < 0.005, significant change compared to NS control.
Statistical significance was analyzed by paired two-tailed Student’s t-tests.

Source data are available online for this figure.
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role of H2AK119 monoubiquitylation (referred to as H2AK119ub1

hereafter) as a key transcription repressive mechanism in the

control of development and differentiation, and also because it has

been demonstrated that the antiadipogenic function of WDTC1 is

lost upon nuclear exclusion and WDTC1 physically interacts with

ectopically expressed histones [4]. Further, ectopic WDTC1 expres-

sion is associated with reduced adipogenic marker expression

(Fig 2D; [4]).

We first examined the subcellular distribution of Flag-WDTC1

and found that while it is abundantly recovered in the cytosolic

fraction, it is also clearly present in the nuclear fractions, and in

the MNase-digested chromatin fraction (Fig 4A). We then

performed immunoprecipitation experiments with nuclear extracts

and demonstrated that WDTC1 associated with H2A, as well as

H2B and H3 (Fig 4B). In this experiment, we noted that WDTC1

interacted with H2A, but not the presumably monoubiquitylated

form of H2A, an observation that is consistent with the possibility

that CRL4WDTC1 catalyzes H2AK119ub1. Chromatin coimmuno-

precipitation assay confirmed the binding between WDTC1 and

nucleosomal histones in vivo at physiologic levels (Fig EV4E).

Notably, the DDB1 binding mutant, WDTC1DH, retained histone

binding activity, indicating that histone binding is independent of

CRL4 binding. Because WDTC1DH mutant disrupts DDB1 binding

and thus disrupts probable ubiquitylation activity, and appears to

functionally antagonize WDTC1 during adipogenesis, we took

advantage of this mutant to investigate the effect of WDTC1

expression on histone H2AK119ub1 levels. We examined the

global level of H2AK119ub1 in preadipocyte and induced 3T3-L1

cells stably expressing either a vector control, WT WDTC1 or

WDTC1DH mutant (Fig 4C). We did not detect a notable change in

H2AK119ub1 levels among these cell lines in the preadipocyte

state. In contrast, expression of WT WDTC1 resulted in a modest,

but significant and reproducible, increase in H2AK119ub1 while

WDTC1DH expression caused a slight decrease of H2AK119ub1.

This result suggests that WDTC1-promoted H2AK119ub1 is linked

to adipogenesis and is dependent on the association with the CRL4

E3 complex.

To test whether H2AK119 is a direct target of CRL4WDTC1 E3

ligase, we performed in vitro ubiquitylation assays. We affinity-

purified Flag-tagged WT WDTC1 or WDTC1DH complexes from

293T cells and confirmed the presence of CRL4 components in the

WT, but not DH, WDTC1 eluted fraction (Fig 4D, left). Recombinant

H2A was incubated with purified WDTC1 complexes and reaction

products were resolved by SDS–PAGE, followed by immunoblotting

with H2AK119ub1 antibodies. The results show that H2A is robustly

ubiquitylated by WT WDTC1, but not WDTC1DH complexes

(Figs 4D, right, and EV4F), demonstrating that H2A was a specific

substrate of CRL4WDTC1 in this in vitro system. We noted that

multiple ubiquitylated H2A forms were detected, perhaps due to

the high efficiency nature of in vitro ubiquitylation reactions. To

confirm that K119 residue is the primary target of CRL4WDTC1,

wild-type H2A and its mutants, H2AK118R and H2AK119R, were

tested in in vitro ubiquitylation assays (Fig 4E). While disrupting

the K118 residue had very little effect, K119R mutation resulted

in a substantial loss of H2A ubiquitylation by the CRL4WDTC1 E3

ligase. These results collectively suggest that CRL4WDTC1 promotes

H2AK119ub1 in vitro and in vivo in an adipocyte lineage-specific

manner.

The most extensively characterized H2A E3 ligase is the RING1A/B

of PRC1 complex which plays a critical and evolutionarily conserved

role in developmental control in flies and mammals. It has been

unclear whether and how a single E3 ligase regulates different

biological processes that involve epigenetic silencing, especially

when considering the abundance of H2AK119ub1 in cells (5–15% of

total H2A). Two reports support the latter possibility, 2A-HUB

(DZIP3/hRUL138) that mediates selective repression of a specific set

of chemokine genes in macrophages [19] and CRL4BRBBP4/7 that

collaborates with PRC2 to repress various genes involved in cell

growth and migration [20]. Our study supports the possibility that

in addition to the historic PRC1, there may exist additional

H2AK119 E3 ligases that function in epigenetic repression.

Multiple lines of genetic evidence from Drosophila, C. elegans,

and mouse, and human epidemiology, have linked the function of

WDTC1/Adp to the negative regulation of adipogenesis and fat

metabolism. In this study, we demonstrate that the regulation of

adipogenesis by WDTC1 requires its assembly into a CRL4 E3 ligase

complex. A recent RNAi screen in Drosophila identified 47 genes

which, when silenced, produced flies with high body fat (so-called

antiobesity genes) [21]. Among them are Cul4 and Csn4, which

encodes a subunit of the COP9 signalosome that functions to acti-

vate CRL E3 ligases. These new findings provide additional support

for the function of CRL4WDCT1 as a negative regulator of adipogene-

sis and fat formation.

Materials and Methods

Plasmids

The human WDTC1 (NM_015023.4) coding sequence was PCR-

amplified from a HepG2 cDNA library and cloned into pENTRTM/

D-TOPO (Invitrogen) to generate a WDTC1 entry vector. WDTC1DH

was subcloned from pENTR-WDTC1 and WDTC1RARA was gener-

ated by sequential QuikChange site-directed mutagenesis (Strata-

gene) to pENTR-WDTC1. WDTC1 entry vectors were recombined

with Gateway-adapted destination vectors (kind gift of Dr. K. I.

Nakayama) p3XFLAG for transient and pMX-FLAG-puro for stable

expressions. To generate WDTC1 knockdown-rescue vectors,

shRNAs targeting mouse Wdtc1 and shRNA refractory human

WDTC1 coding sequences were cloned into pLL-5.5-IRES-EGFP

(kind gift of Dr. J. Bear), as described previously [18,22]. Mouse

Cul4a and Cul4b shRNA sequences were designed using BLOCK-IT

RNAi tool (Invitrogen) and cloned into pMKO.1-puro retroviral

vector for stable knockdown of respective mRNAs in 3T3-L1 cells.

All plasmids were sequence-verified, and shRNA oligos are listed in

Table EV1.

Cell transfections, retroviral and lentiviral infections

293T cells were transfected at 1:3 plasmid-to-reagent ratio using

Fugene 6 transfection reagent (Promega) for transient overexpres-

sion or transfected with 50 nM of siRNA for knockdown using Lipo-

fectamine 2000 reagent (Invitrogen) according to manufacturers’

protocols. Cells were incubated for 72 h for knockdown by siRNA;

siRNA sequences were described previously [23] and listed in

Table EV1. For retroviral or lentiviral production, 293T cells were
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Figure 4. CRL4WDTC1 E3 ligase promotes H2AK119 ubiquitylation.

A Induced 3T3-L1 cells stably expressing Flag-WDTC1 were subjected to subcellular fractionation. Aliquots of total cell extract (TCE) and subcellular fractions were
analyzed by immunoblot as indicated; fraction purity was assessed by a-tubulin and histone H3 antibodies.

B Chromatin-enriched nuclear extracts from 293T cells cotransfected with Flag-WDTC1 and HA-tagged core histones were immunoprecipitated (IP) with anti-FLAG and
immunoblotted (IB) as indicated. The probable H2AK119ub1 band detected in the nuclear extract is indicated by an asterisk.

C Soluble chromatin extracts were prepared from preadipocyte or induced 3T3-L1 cells stably expressing control (EV) and Flag-WDTC1 proteins. H2A monoubi-
quitylation was detected by H2AK119ub1-specific antibody and total H2A served as a loading control. Relative intensity represents ratio of H2AK119ub1 over total
H2A signal normalized to EV control.

D Affinity-purified Flag-WDTC1 wild-type and mutant DH complexes from 293T cells were the source of E3 ligase in in vitro ubiquitylation assays. Copurification of
CRL4 E3 ligase proteins was confirmed by immunoblotting and Coomassie Blue staining (left panels). In vitro ubiquitylation assays of recombinant H2A were
performed in the presence of the indicated proteins. Reaction products were resolved by SDS–PAGE, and ubiquitylated H2A was detected by anti-H2AK119ub1 (right
panel).

E In vitro ubiquitylation assays were performed with purified wild-type and mutant histone proteins as substrates. H2A ubiquitylation was assessed by immunoblotting
with anti-ubiquitin and various antibodies as indicated.

Data information: In (C), bars represent the mean � SD from 2 (preadipocyte) or 3 (induced) independent experiments. *P < 0.05, significant change compared to EV
control. Statistical significance (induced only) was analyzed by paired two-tailed Student’s t-tests.

Source data are available online for this figure.
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cotransfected with various plasmids for viral packaging as described

[24]. For WDTC1 knockdown-rescue transfections, rescue vector

plasmids were cotransfected with shRNA alone plasmids (2:1) for

more complete knockdown of endogenous Wdtc1 mRNA. Viral

media was collected 48 h post-transfection at two 12-h intervals,

syringe-filtered through 0.45-lm filter, and polybrene (8 lg/ml)-

supplemented. Preconfluent 3T3-L1 preadipocytes were infected

with the viral media twice within a 24-h interval. Cells were split to

maintain preconfluency. Retrovirally transduced cells were selected

with 4 lg/ml puromycin and maintained in selection media until

adipogenic induction. Lentivirally transduced pLL-5.5-IRES-EGFP

cells were visually selected for > 90% of cells with EGFP expres-

sion.

Antibodies, immunoprecipitation, and immunoblotting

A rabbit polyclonal antibody (Abgent, AP4944b) and a rabbit mono-

clonal antibody (Abcam, ab174294, [25]) were used to detect

WDTC1. DDB1, CUL4A, and ROC1 antibodies were generated by

our laboratory as described previously [23], and all other antibodies

used in this study are commercially available and listed in

Table EV2. Cells were lysed on ice with a NP-40 lysis buffer [50 mM

Tris (pH 8.0), 150 mM NaCl, 10% glycerol, 1 mM EDTA, and

0.1% NP-40] supplemented with HaltTM (Thermo Sci.) protease/

phosphatase inhibitor cocktail (PPIC). For immunoprecipitation

experiments, clarified lysates prepared from Flag-WDTC1 expressing

cells were immunoprecipitated by anti-FLAG M2 affinity gel (Sigma)

overnight at 4°C. Immunoprecipitates were washed 3–5 times in

lysis buffer with rotation, eluted by boiling in Laemmli buffer,

resolved by SDS–PAGE, transferred to PVDF membrane (Millipore),

and detected by immunoblotting with indicated antibodies.

Immunoblotting was performed following standard protocols; blots

were cut into strips to allow probing of the same gel with multiple

antibodies when possible. Blots were developed using an ECL

reagent (GE Amersham). Protein band densitometry analyses were

performed using ImageJ software (U.S. National Institutes of

Health).

3T3-L1 differentiation, Oil Red O staining, and triglyceride assay

3T3-L1 cells were cultured and differentiated as described previ-

ously [26]. 3T3-L1 preadipocytes were cultured in DMEM supple-

mented with 1× penicillin–streptomycin solution (Corning) and

10% (v/v) fetal calf serum (Colorado Serum Co.). To induce dif-

ferentiation, 2 day post-confluent 3T3-L1 cells (day 0) were

treated with an induction media containing 1 mM dexamethasone,

0.5 mM isobutylmethylxanthine (IBMX), and 1 lg/ml insulin (all

from Sigma) in 10% fetal bovine serum supplemented DMEM.

Two days later, induction media was replaced with 1 lg/ml

insulin only for the duration of the experiment and media was

changed every 2 days. A schematic summarizing 3T3-L1 differen-

tiation with time points indicated for different experimental proce-

dures is shown (Fig EV2B). To stain lipid droplets, cells were

fixed in 3.7% buffered formaldehyde and stained with 0.3% Oil

Red O. Triglyceride levels were measured with the Triglyceride

Quantitation Kit and manufacturer’s protocol (BioVision), and

levels were normalized to sample protein concentrations by BCA

assay (Thermo Sci.).

Real-time quantitative PCR

Total RNA was isolated from cells using Trizol (Invitrogen) and

purified to remove residual phenol/chloroform using RNAeasy

Mini cleanup (Qiagen). First-strand cDNA was synthesized with

800 ng of RNA using Superscript II reverse transcriptase kit

(Invitrogen). Quantitative PCR (qPCR) was performed in dupli-

cate using 1 ll of cDNA and SYBR Green PCR master mix

(Applied Biosystems) in an Applied Biosystems 7900HT Fast

Real-Time PCR system. Gene expression was normalized to TPB

levels and analyzed by DDCt method. qPCR primers for Wdtc1

and SREBP1c were generated using Primer-BLAST (NCBI), and all

other primers were reported previously [27,28] and listed in

Table EV1.

Subcellular fractionation and chromatin extraction

Cell fractionation and soluble chromatin extraction by MNase diges-

tion was performed as described previously [29]. Pelleted 3T3-L1

cells (8 × 106) were resuspended and incubated on ice for 5 min in

200 ll buffer A [10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM

MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT and HaltTM PPIC]

plus 0.1% Triton X-100. Nuclei were recovered in pellet 1 (P1) after

centrifugation (4 min, 1,300 g, 4°C), and the supernatant (S1) was

further clarified by centrifugation to obtain cytosolic fraction (S2).

For nucleoplasmic fraction, P1 pellet was washed once in buffer A

and lysed in 100 ll buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM

DTT, and HaltTM PPIC), and centrifuged and the supernatant was

recovered (S3). For chromatin-enriched fraction, P1 pellet was

resuspended in buffer A and treated with 2 U MNase (1 min, 37°C)

and centrifuged; treated nuclei were then lysed in 100 ll buffer B

and the chromatin fraction was recovered in the supernatant (S3) of

MNase treated nuclei. Immunoprecipitation with soluble chromatin

extracts prepared by DNase treatment was performed as described

previously [30].

In vivo and in vitro ubiquitylation assays

In vivo ubiquitination assays were performed as described previ-

ously [31]. For the detection of ubiquitylated WDTC1 in vivo, 293T

cells were first transfected with HA-ubiquitin, split ~10 h later,

transfected again with various combinations of plasmids and

siRNAs at 24 h post-HA-ubiquitin transfection to minimize varia-

tions in HA-ubiquitin expression across plates. At 67 h post-siRNA

transfection, cells were treated with MG132 (10 lM) and collected

5 h later. Cells were lysed under denaturing conditions in 1% SDS

buffer [50 mM Tris (pH 7.5), 0.5 mM EDTA, 1% SDS, 1 mM DTT]

by boiling for 10 min, and clarified lysate was immunoprecipitated

in 0.1% SDS by 10-fold dilution with NP-40 buffer. Flag-tagged

WDTC1 was immunoprecipitated by anti-FLAG M2 agarose beads,

resolved by SDS–PAGE, and ubiquitylated WDTC1 was detected by

immunoblotting with anti-HA antibodies. For in vitro ubiquityla-

tion assays, WDTC1 immunocomplexes were purified from tran-

siently transfected 293T cells expressing either Flag-WDTC1-WT or

Flag-WDTC1-DH. Flag-tagged WDTC1 was immunoprecipitated

with anti-FLAG M2 agarose beads overnight on a rotator at 4°C.

Immunocomplexes were washed three times in lysis buffer and

twice in TBS followed by elution with molar excess of Flag peptide
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(Sigma). Ubiquitylation reactions were performed according to

manufacturer’s protocol using an ubiquitin conjugation kit (Enzo

Life Sci.). In 50 ll reaction volume, unless noted otherwise in fig-

ure, 100 nM of either WT or DH immunocomplexes as the source

of E3 and 200 nM of human recombinant histone H2A substrate

(New England Biolabs) were combined with a ubiquitylation buffer

containing 100 nM E1, 1 lM E2-UbcH5c, 1 lM human recombi-

nant WT ubiquitin or ubiquitin Mutant No K (Boston Biochem),

1 U inorganic pyrophosphatase, 1 mM DTT, and 5 mM Mg-ATP.

Reactions were incubated at 37°C for 30 min and terminated by

addition of SDS sample buffer. Reaction products were resolved by

SDS–PAGE and detected by immunoblotting with either anti-

H2AK119ub1 or anti-ubiquitin antibodies.

Mass spectrometry

WDTC1-associated proteins were isolated from 3T3-L1 preadipo-

cytes and induced adipocytes stably expressing Flag-WDTC1-WT

and Flag-WDTC1-DH proteins by FLAG affinity purification, and

cells transfected with an empty vector (EV) served as contamina-

tion controls for Flag immunoprecipitation. For analyses of inter-

acting proteins in preadipocytes, WDTC1-WT and WDTC1-DH
complexes were purified from ten 15-cm plates at day 0. For

analyses of interacting proteins in induced adipocytes, day 0

preadipocytes were induced to differentiate and 2 days post-induc-

tion, WDTC1 complexes were purified from five (WT) or ten

(DH) 15-cm plates; twice the number of cells were used in the

purification of WDTC1-DH complexes due to its lower stable

expression compared to WDTC1-WT. Cell pellets were lysed for

30 min on a rotating platform at 4°C in NP-40 lysis buffer

[50 mM Tris (pH 8.0), 150 mM NaCl, 10% glycerol, 1 mM

EDTA, and 0.1% NP-40] supplemented with HaltTM PPIC. Cell

extracts were clarified by centrifugation, and the soluble fractions

were incubated with anti-FLAG M2 agarose beads (Sigma) over-

night on a rotating platform at 4°C. Immunoprecipitated proteins

were washed ten times by inverting tubes in 10-ml wash

volumes; five times in NP-40 buffer followed by five times in

PBS. Protein complexes were eluted with 50 ll of 3XFLAG peptide

(200 lg/ml) for 5 min by shaking (800 rpm) on a Thermo-

mixer (Eppendorf) at 37°C; each sample was eluted three times

and fractions were combined in a single tube on ice. A small

amount of total purified protein (~2–5%) was resolved by SDS–

PAGE and visualized by either silver staining or Coomassie Blue

staining for confirmation. Eluted fractions were either in solution

digested (preadipocytes) or in-gel digested (induced cells) at 37°C

using trypsin (Promega). Digested peptides were desalted and

purified by C18 resin (C18 columns or C18 Zip-Tip from Pierce or

Millipore, respectively) following manufacturers’ instructions.

The identities of eluted proteins were determined by mass spectro-

metry analyses carried out at the UNC Proteomics Technology

Development Core Facility using a LTQ-Velos-Orbitrap (Thermo

Sci.) mass spectrometer coupled to a 2D nano-ultra-liquid

chromatography system (Eksigent). The data were processed

using MaxQuant software, and the MS/MS data sets were

searched against UniProt mouse database. Processed data for Flag-

WDTC1-WT and Flag-WDTC1-DH interacting proteins were

manually sorted against contaminating proteins identified in EV

control samples.

Sequence alignment

WDTC1 protein sequences from Homo sapiens (Hs), Mus musculus

(Ms), Xenopus laevis (Xl), Danio rerio (Dr), Drosophila melanogaster

(Dm), Caenorhabditis elegans (Ce), and Arabidopsis thaliana (At)

were aligned to compare H-box sequence similarity in different

species. Sequences were aligned using CLUSTAL 2.1 multiple

sequence alignment tool.

Molecular modeling of WDTC1 and CRL4WDTC1

Modeling was performed at the University of North Carolina R. L.

Juliano Structural Bioinformatics Core. For modeling WDTC1, suit-

able templates for the H-box, WD40, and TPR domains of WDTC1

were identified using HHpred [32]. Three template structures were

utilized as follows: WDTC1 H-box in complex with DDB1 (PDB

3I7N; [13]), DDB2 in complex with CRL4 (PDB 4A0K; [15]), and

TPR domains of Sgt2 (PDB 3SZ7; [33]). The Hbox and WD40

domains were modeled simultaneously using the Modeller soft-

ware package [34] and two template structures: PDB ID 3I7N and

PDB: 4A0K. The TPR domains were modeled separately based on

the template structure of Sgt2, a TPR structure from Aspergillus

fumigatus (PDB ID 3SZ7). The model of the WDTC1-CRL4

complex was based on the structure of the DDB2-CRL4 complex

(PDB ID 4A0K) with WDTC1 superimposed on and then replacing

DDB2. The TPR domains were manually moved to a location near

their insertion within the beta-propeller. Models were rendered

using Pymol.

Expanded View for this article is available online.
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