1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

-, HHS Public Access
«

Published in final edited form as:
JMLR Workshop Conf Proc. 2016 August ; 56: 301-318.

Doctor Al: Predicting Clinical Events via Recurrent Neural
Networks

Edward Choi and Mohammad Taha Bahadori
College of Computing Georgia Institute of Technology Atlanta, GA, USA

Andy Schuetz and Walter F. Stewart
Research Development & Dissemination Sutter Health Walnut Creek, CA, USA

Jimeng Sun
College of Computing Georgia Institute of Technology Atlanta, GA, USA

Abstract

Leveraging large historical data in electronic health record (EHR), we developed Doctor Al, a
generic predictive model that covers observed medical conditions and medication uses. Doctor Al
is a temporal model using recurrent neural networks (RNN) and was developed and applied to
longitudinal time stamped EHR data from 260K patients over 8 years. Encounter records (e.g.
diagnosis codes, medication codes or procedure codes) were input to RNN to predict (all) the
diagnosis and medication categories for a subsequent visit. Doctor Al assesses the history of
patients to make multilabel predictions (one label for each diagnosis or medication category).
Based on separate blind test set evaluation, Doctor Al can perform differential diagnosis with up to
79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great
generalizability of Doctor Al by adapting the resulting models from one institution to another
without losing substantial accuracy.

1. Introduction

A common challenge in healthcare today is that physicians have access to massive amounts
of data on patients, but little time nor tools. Intelligent clinical decision support anticipates
the information at the point of care that is specific to the patient and provider needs.
Electronic health records (EHR), now commonplace in U.S. healthcare, represent the
longitudinal experience of both patients and doctors. These data are being used with
increasing frequency to predict future events. While predictive models have been developed
to anticipate needs, most existing work has focused on specialized predictive models that
predict a limited set of outcomes. However, day-to-day clinical practice involves an
unscheduled and heterogeneous mix of scenarios and needs different prediction models in
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the hundreds to thousands. It is impractical to develop and deploy specialized models one by
one.

Leveraging large historical data in EHR, we developed Doctor Al, a generic predictive
model that covers observed medical conditions and medication uses. Doctor Al is a temporal
model using recurrent neural networks (RNN) and was developed and applied to
longitudinal time stamped EHR data. In this work, we are particularly interested in whether
historical EHR data may be used to predict future physician diagnoses and medication
orders. Applications that accurately forecast could have many uses such as anticipating the
patient status at the time of visit and presenting data a physician would want to see at the
moment. The primary goal of this study was to use longitudinal patient visit records to
predict the physician diagnosis and medication order of the next visit. As a secondary goal
we predicted the time to the patients next visit. Predicting the visit time facilitates guidance
of whether a patient may be delayed in seeking care.

The two tasks addressed in this work are different from sequence labeling tasks often seen in
natural language processing applications, e.g., part-of-speech tagging. Our proposed model,
Doctor Al, performs multilabel prediction (one for each disease or medication category)
over time while sequence labeling task predicts a single label at each step. The key challenge
was finding a flexible model that is capable of performing the multilabel prediction problem.
The two main classes of techniques have been proposed in dealing with temporal sequences:
1) continuous-time Markov chain based models (Nodelman et al., 2002; Lange et al., 2015;
Johnson and Willsky, 2013), and 2) intensity based point process modeling techniques such
as Hawkes processes (Liniger, 2009; Zhu, 2013; Choi et al., 2015). However, both classes
are expensive to compute, especially for nonlinear settings. Furthermore, they often make
strong assumptions about the data generation process which might not be valid for EHR
data. Our modeling strategy was to develop a generalized approach to representing patient
temporal healthcare experience to predict all the diagnoses, medication categories and visit
time. We used recurrent neural network (RNN), considering that RNNs have been
particularly successful for representation learning in sequential data, e.g. Graves (2013);
Graves and Jaitly (2014); Sutskever et al. (2014); Kiros et al. (2014); Zaremba and Sutskever
(2014). In particular, we make the following main contributions in this paper:

. We demonstrate how RNNSs can be used to represent the patient status and
predict diagnosis, medication order and visit time. The trained RNN is able to
achieve above 64% recall@10 and 79% recall@30 for diagnosis prediction,
showing potential to serve as a differential diagnosis assistance.

. We propose an initialization scheme for RNNs using Skip-gram embeddings
(Mikolov et al., 2013) and show that it improves the performance of the RNN in
both accuracy and speed.

. We empirically confirm that RNN models possess great potential for transfer
learning across different medical institutions. This suggests that health systems
with insufficient patient data can adopt models learned from larger datasets of
other health systems to improve prediction accuracy on their smaller population.
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2. Related Work

In this section, we briefly review the common approaches to modeling multilabel event
sequences with special focus on the models that have been applied to medical data. There
are two main approaches to modeling multilabel event sequences: with or without
discretization (binning) of time.

Discretization

When the time axis is discretized, the point process data can be converted to binary time
series (or time series of count data if binning is coarse) and analyzed via time series analysis
techniques (Truccolo et al., 2005; Bahadori et al., 2013; Ranganath et al., 2015). However,
this approach is inefficient as it produces long time series whose elements are mostly zero.
Furthermore, discretization of time introduces noise in the time stamps of visits. Finally,
these approaches are often not able to model the duration until next event. Thus, it is
advantageous not to discretize the data both in terms of modeling and computation.

Continuous-time models

Among the continuous-time models, there are two main techniques: continuous-time
Markov chain based models (Foucher et al., 2007; Johnson and Willsky, 2013; Lange, 2014;
Liu et al., 2013) and their extension using Baysian networks (Nodelman et al., 2002; Weiss
et al., 2012) and intensity function modeling techniques such as Cox and Hawkes processes
(Liniger, 2009; Zhou et al., 2013; Linderman and Adams, 2014; Choi et al., 2015).

Intensity function modeling techniques have been shown to have computational advantages
over the continuous-time Markov chain based models. Moreover, modeling multilabel
marked point processes with continuous-time Markov chains expands their state-space and
make them even more expensive. However, Hawkes processes only depend linearly on the
past observation times; while there are limited classes of non-linear Hawkes process (Zhu,
2013), the temporal dynamics can be more complex. Finally, Hawkes processes are known
to have a flat loss function near optimal value of the parameters which renders the gradient-
based learning algorithms inefficient (Veen and Schoenberg, 2008). In this paper we address
these challenges by designing a recurrent neural network which has been shown to be
successful in learning complex sequential patterns.

Disease progression models

There have been active research in modeling the temporal progression of diseases (Mould,
2012). Generally, most works can be divided into two groups: works that focus on a specific
disease and works that focus on a broader range of diseases.

Specific-purpose progression modeling—There have been many studies that focus
on modeling the temporal progression of a specific disease based on either intensive use of
domain-specific knowledge (De Winter et al., 2006; Ito et al., 2010; Tangri et al., 2011) or
taking advantage of advanced statistical methods (Liu et al., 2013; Jackson et al., 2003;
Sukkar et al., 2012; Zhou et al., 2012). Specifically, studies have been conducted on
Alzheimer’s disease (Ito et al., 2010; Zhou et al., 2012; Sukkar et al., 2012), glaucoma (Liu
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et al., 2013), chronic kidney disease (Tangri et al., 2011), diabetes mellitus (De Winter et al.,
2006), and abdominal aortic aneurysm (Jackson et al., 2003)

General-purpose progression modeling—Recently, Wang et al. (2014); Choi et al.
(2015); Ranganath et al. (2015) proposed more general approaches to modeling the
progression of wider range of diseases. As discussed earlier, Choi et al. (2015) used Hawkes
process, and Ranganath et al. (2015) discretized time in order to model multiple patients and
multiple diseases. Wang et al. (2014) proposed a graphical model based on Markov Jump
Process to predict the stage progression of chronic obstructive pulmonary disease (COPD)
and its co-morbid diseases.

One of the main challenges in using these algorithms is scalability. The datasets used in
previous works typically contain up to a few thousands of patients and a few hundreds of
codes. Even the largest dataset used by Ranganath et al. (2015) contains 13,180 patients and
8,722 codes, which is significantly smaller than our dataset described in Table 1. Need for
domain-specific knowledge is also a big challenge. For example, Wang et al. (2014) not only
used a smaller dataset (3,705 patients and 264 codes) but also used co-morbidity information
to improve the performance of their algorithm. Such expert knowledge is difficult to obtain
from typical EHR data.

Deep learning models for EHR

3. Cohort

Researchers have recently begun attempting to apply neural network based methods (or deep
learning) to EHR to utilize its ability to learn complex patterns from data. Previous studies
such as phenotype learning (Lasko et al., 2013; Che et al., 2015; Hammerla et al., 2015) or
representation learning (Choi et al., 2016b,a; Miotto et al., 2016), however, have not fully
addressed the sequential nature of EHR. Lipton et al. (2016) is especially related to our work
in that both studies use RNN for sequence prediction. However, while Lipton et al. (2016)
uses regular times series of real-valued variables collected from ICU patients to predict
diagnosis codes, we use discrete medical codes (e.g. diagnosis, medication, procedure)
extracted from longitudinal patient visit records. Also, in each visit we make a prediction
about predict diagnosis, medication order in the next visit and and the time to next visit.

Population and source of data

The source population for this study was primary care patients from Sutter Health Palo Alto
Medical Foundation. Sutter Health is a large primary care and multispecialty group practice
that has used an Epic Systems Corporation EHR for more than a decade. The dataset was
extracted from a density sampled case-control study for heart failure. The dataset consists of
de-identified encounter orders, medication orders, problem list records and procedure orders.

Data processing

As inputs, we use ICD-9 codes, medication codes, and procedure codes. We extracted ICD-9
codes from encounter records, medication orders, problem list records and procedure orders.
Generic Product Identifier (GPI) medication codes and CPT procedure codes were extracted
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from medication orders and procedure orders respectively. All codes were timestamped with
the patients visit time. If a patient received multiple codes in a single visit, those codes were

given the same timestamp. We excluded patients that made less than two visits. The resulting
dataset consists of 263,706 patients who made on average 54.61 visits per person.

Grouping medical codes

There are more about 11,000 unique 1CD-9 codes and 18,000 GPI medication codes in the
dataset, many of which are very granular. For example, pulmonary tuberculosis (ICD-9 code
011) is divided into 70 subcategories (ICD-9 code 011.01, 011.02, ..., 011.95, 011.96).
Simply knowing that a patient is likely to have pulmonary tuberculosis is enough to increase
the doctor’s awareness of the severity of the clinical situation. Therefore, to predict
diagnosis and medication order, we grouped codes into higher-order categories to reduce the
feature set and information overload. For the diagnosis codes, we use the 3-digit ICD-9
codes, yielding 1183 unique codes. For the medication codes, we use the Generic Product
Identifier Drug Class, which groups the medication codes into 595 unique groups. The label
y;we use in the following sections represents the 1,778-dimensional vector (i.e., 1183 + 595)
for the grouped diagnosis codes and medication codes.

4. Methods

This section describes the RNN model for multilabel point processes. We will also describe
how we predict diagnosis, medication order and visit time using the RNN model.

Problem setting

For each patient, the observations are drawn from a multilabel point process in the form of
(¢ x) for i=1, ..., n. Each pair represents an event, such as an ambulatory care visit, during
which multiple medical codes such as ICD-9 diagnosis codes, procedure codes, or
medication codes are documented in the patient record. The multi-hot label vector x; € {0,
1}7 represents the medical codes assigned at time #; where p denotes the number of unique
medical codes. At each timestamp, we may extract higher-level codes for prediction
purposes and denote it by y,, see the details in Section 3. The number of events for each
patient may differ.

Gated Recurrent Units Preliminaries

Specifically, we implemented our RNN with Gated Recurrent Units (GRU). Although Long
Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997; Graves et al., 2009) has
drawn much attention from many researchers, GRU has recently shown to have similar
performance as LSTM, while employing a simpler architecture (Chung et al., 2014). In order
to precisely describe the network used in this work, we reiterate the mathematical
formulation of GRU as follows:

Z; =0 (WziL'Z'-‘rUzhl;l—ﬁ-bz)
r; =0 (WT-:B¢+U,-hi,1+b7-)
iLZ' =tanh (Wya;+r; o Uyh;_1+by)
h; :ziohi,l—l-(l —Zi)OfLi
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where z;and rjrespectively represent the update gate and the reset gate, p, the intermediate
memory unit, h;the hidden layer, all at timestep #;. A detailed description of GRU is
provided in Appendix A.

Description of neural network architecture

Our goal is to learn an effective vector representation for the patient status at each timestamp
t;. Using effective patient representations, we are interested in predicting diagnosis and
medication categories in the next visit y;.1 and the time duration until the next visit djq =
tx1 — L. Finally, we would like to perform all these steps jointly in a single supervised
learning scheme. We use RNN to learn such patient representations, treating the hidden layer
as the representation for the patient status and use it for the prediction tasks.

The proposed neural network architecture (Figure 1) receives input at each timestamp #;as
the concatenation of the multi-hot input vector x; of the multilabel categories and the
duration g@jsince the last event. In our datasets, the input dimension is as large as 40, 000.
Thus, the next layer projects the input to a lower dimensional space. Then, we pass the lower
dimensional vector through RNN (implemented with GRU in our study). We can also stack
multiple layers of RNN to increase the representative power of the network. Finally, we use
a Softmax layer to predict the diagnosis codes and the medication codes, and a rectified
linear unit (ReLU) to predict the time duration until next visit.

For predicting the diagnosis codes and the medication codes at each timestep ¢, a Softmax
layer is stacked on top of the GRU, using the hidden layer h;as the input:

Y1 =softmax (WcodeThiJFbcade). For predicting the time duration until the next visit, a
rectified linear unit (ReLU) is placed on top of the GRU, again using the hidden layer h,as

the input: diy1=max (wm:meThﬁmea 0). The objective of training our model is to learn
the weights Wz 14, codeys Uiz rhip Dzrh.codeyr Weime @nd Dyime. The values of all W’s and U’s
were initialized to orthonormal matrices using singular value decomposition of matrices
generated from the normal distribution (Saxe et al., 2013). The initial value of Wy, was
chosen from the uniform distribution between —0.1 and 0.1. All b’s and by, were initialized
to zeros. The joint loss function consists of the cross entropy for the code prediction and the
squared loss for the time duration prediction, as described below for a single patient:

n—1

N N 1 A 2
L (W, U, b, Wiime, biime) = {(yi+1l09(yi+l)+(1 —Yir1)log(l — 9;11)) +§Hdi+1 - di+1||2}

i=1

As mentioned above, the multi-hot vectors x; of almost 40,000 dimensions are first projected
to a lower dimensional space, then put into the GRU. We employed two different approaches
for this: (1) We put an extra layer of a certain size between the multi-hot input x,;and the
GRU, and call it the embedding layer. We denote the weight matrix between the multi-hot
input vector and the embedding layer as W5 Then we learn the weight W, as we train
the entire model. (2) We initialize the weight W, with a matrix generated by Skip-gram
algorithm (Mikolov et al., 2013), then refine the weight W, as we train the entire model.
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This can be seen as using the pre-trained Skip-gram vectors as the input to the RNN and
fine-tuning them with the joint prediction task. The brief description of learning the Skip-
gram vectors from the EHR is provided in Appendix B. The first and second approach can
be formulated as follows:

hgl): [taIlh($iTWeerb+be'mb)a dz] (1)

2

W= 2" W, di] @)

where [, -] is the concatenation operation used for appending the time duration to the multi-

hot vector hz(l) to make it an input vector to the GRU.

We now describe the details of our experiments in the proposed RNN approach to
forecasting the future clinical events. The source code of Doctor Al is publicly available at
https://github.com/mp2893/doctorai.

5.1 Experiment Setup

For training all models including the baselines, we used 85% of the patients as the training
set and 15% as the test set. We trained the RNN models for 20 epochs (/.e., 20 iterations
over the entire training data) and then evaluated the final performance against the test set. To
avoid overfitting, we used dropout between the GRU layer and the prediction layer (/.e. code
prediction and time duration prediction). Dropout was also used between GRU layers if we
were using a multilayer GRU. We also applied norm-2 regularization on both W, and
Wyime Both regularization coefficients were set to 0.001. The size of the hidden layer h; of
the GRU was set to 2000 to guarantee a sufficient expressive power. After running sets of
preliminary experiments where we tried the size from 100 to 2000, we noticed that the code
prediction performance started to saturate around 1600~1800. All models were implemented
with Theano (Bastien et al., 2012) and trained on a machine equipped with two Nvidia Tesla
K80 GPUs.

We train total four different variation of Doctor Al as follows,

. RNN-1: RNN with a single hidden layer initialized with a random orthogonal
matrix for W

. RNN-2: RNN with two hidden layers initialized with a random orthogonal
matrix for We.

. RNN-1-IR: RNN using a single hidden layer initialized embedding matrix Wy
with the Skip-gram vectors trained on the entire dataset.

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.
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. RNN-2-1R: RNN with two hidden layers initialized embedding matrix W,
with the Skip-gram vectors trained on the entire dataset. dataset.

5.2 Evaluation metrics

The performance of algorithms in predicting diagnoses and medication codes was evaluated
using the Top-k recall defined as:

#of true positives in the top k predictions

top — k recall=
P #of true positives

Top-k recall mimics the behavior of doctors conducting differential diagnosis, where doctors
list most probable diagnoses and treat patients accordingly to identify the patient status.
Therefore, a machine with a high Top-k recall translates to a doctor with an effective
diagnostic skill. This makes Top-k recall an attractive performance metric for our problem.

We select the maximum Kk to be 30 to evaluate the performance of the models not only for
simple cases but also for complex cases. Near 50.7% of the patients have been assigned with
more than 10 diagnosis and medication codes at least once. Since it is those complex cases
that are of interest to predict and analyze, we choose k to be large enough (i.e., 3 times of the
mean).

Coefficient of determination—(/2) was used to evaluate the predictive performance of
regression and forecasting algorithms. It compares the accuracy of the prediction with
respect to the simple prediction by mean of the target variable.

Z(yi - Cgi)2
R2:1 1 —
(Y —7i)

2

Because time to the next visit can be highly skewed, we measure the /2 performance of the
algorithms in predicting log(a)) to lower the impact of anomalous long durations in the
performance metric. In the same spirit, we train all models to predict the logarithm of the
time duration between visits.

5.3 Baselines

We compare our model against several baselines as described below. Some of the existing
techniques based on continuous-time Markov chain and latent space models were not
scalable enough to be trained using the entire dataset in a reasonable amount of time; thus
comparison is not feasible.

Frequency baselines—We compare our algorithms against simple baselines that are
based on experts’ intuition about the dynamics of events in clinical settings. The first
baseline uses a patient’s medical codes in the last visit as the prediction for the current visit.
This baseline is competitive when the status of a patient with a chronic condition stabilizes
over time. We enhanced this baseline using the top- 4 most frequent labels observed in visits
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prior to the current visits. In the experiments we observe that the baseline of top-4 most
frequent labels is quite competitive.

Logistic and Neural Network time series models—A common way to perform
prediction task is to use x 1 to predict the codes in the next visit x;using logistic regression
or multilayer perceptron (MLP). To enhance the baseline further, we can use the data from L
time lags before and aggregate them x—1 + x—p +, +X~_ for some duration L to create the
features for prediction of x,. Similarly, we can have a model that predicts the time until next
visit using rectified linear units (ReLU) as the output activation. We set the lag L = 5 so that
the logistic regression and MLP can use information from maximum five past visits. The
details of MLP design are described in Appendix C.

5.4 Prediction performance

Table 2 compares the results of different algorithms with RNN based Doctor Al. We report
the results in three settings: when we are interested in (1) predicting only diagnosis codes
(Dx), (2) predicting only medication codes (Rx), and (3) jointly predicting Dx codes, Rx
codes, and the time duration to next visit. The results confirm that the proposed approach is
able to outperform the baseline algorithms by a large margin. Note that the recall values for
the joint task are lower than those for Dx code prediction or Rx code prediction because the
hypothesis space is larger for the joint prediction task.

The superior performance of RNN based approaches can be attributed to the efficient
representation that they learn for patients at each visit (Bengio et al., 2013; Schmidhuber,
2015). RNNs are able to learn succinct feature representations of patients by accumulating
the relevant information from their history and the current set of codes, which outperformed
hand-picked features of frequency baselines.

Table 2 confirms that learning patient representation with RNN is easier with the input
vectors that are already efficient representations of the medical codes. The RNN trained with
the Skip-gram vectors (denoted by RNN-IR) consistently outperforms the RNN that learns
the weight matrix W, directly from the data, with only one exception, the medication
prediction Recall@30, although the differences are insignificant. The results also confirm
that having multiple layers when using RNN improves its ability to learn more efficient
representations. The results also indicate that a single layer RNN might have enough
representative power to capture the dynamics of medications, and adding more layers may
not improve the performance.

The results also indicate that our approach significantly improves the accuracy of predicting
the time duration until the next visit compared to the baselines. However, the absolute value
of A2 metric shows that accurate prediction of time intervals remains as a challenge. We
believe achieving significantly better time prediction without extra features should be
difficult because the timing of a clinical visit can be a ected by many personal factors such
as financial status, location of residence, means of transportation, and life style, to name a
few. Thus, without such sensitive personal information, which is rarely included in the EHR,
accurate prediction of time intervals should be unlikely.
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5.5 Understanding the behavior of the network

To study the applicability of our model in a real-world setting where patients have varying
length of medical records, we conducted an additional experiment to study the relationship
between the length of the patient medical history and the prediction performance. To this
end, we selected 5,800 patients from the test set who had more than 100 visits. We used the
best performing model to predict the diagnosis codes at visits at different times and found
the mean and standard error of recall across the selected patients. Figure 2a shows the result
of the experiment. We believe that the increase in performance can be due to two reasons:
(1) RNN is able to learn a better estimate of the patient status as it sees longer patient
records and (2) Visits are correlated with poor health. Those with high visit count are more
likely to be severely ill, and therefore their future is easier to predict.

Another experiment was conducted to understand the behavior of the network by giving
synthetic inputs. We chose hypertension (ICD-9 code 401.9) as an example of a frequently
observed diagnosis, and Klinefelter’s syndrome (ICD-9 code 758.7) as an example of an
infrequent diagnosis. We created two synthetic patients who respectively have 200 visits of
401.9 and 758.7. Then we used the best performing model to predict the diagnosis codes for
the next visits. Figure 2b shows contrasting patterns: when the input is one of the frequent
codes such as hypertension, the network quickly learns a more specific set of output codes as
next disease. When we select an infrequent code like Klinefelter’s syndrome as the input, the
network’s output is more diverse and mostly the frequently observed codes. The top 30
codes after convergence shown in Table 4 in Appendix D confirm the disparity of the
diversity of the predicted codes for the two cases.

5.6 Knowledge transfer across hospitals

As we observed from the previous experiments, the dynamics of clinical events are complex,
which requires models with a high representative power. However, many institutions have
not yet collected large scale datasets, and training such models could easily lead to
overfitting. To address this challenge, we resort to the recent advances in domain adaptation
techniques for deep neural networks (Mesnil et al., 2012; Bengio, 2012; Yosinski et al.,
2014; Hoffman et al., 2014).

A different dataset, MIMIC Il, which is a publicly available clinical dataset collected from
ICU patients over 7 years of observation, was chosen to conduct the experiment. This dataset
differs from the Sutter dataset in that it consists of demographically and diagnostically
different patients. The number of patients who made at least two visits is 2,695, and the
number of unique diagnosis code (3-digit ICD-9 code) is 767, which is a subset of the Sutter
dataset. From the dataset, we extracted sequences of 3-digit ICD-9 codes. We chose 2,290
patients for training, 405 for testing. We chose the 2-layer RNN with 1000 dimensional
hidden layer, and performed two experiments: 1) We trained the model only on the MIMIC
Il dataset. 2) We initialized the coefficients of the model with the values learned from the 3-
digit ICD-9 sequences of the Sutter data, then we refined the coefficients with the MIMIC |1
dataset. Figure 3 shows the vast improvement of the prediction performance induced by the
knowledge transfer from the Sutter data.
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6. Conclusion

In this work, we proposed Doctor Al system, which is a RNN-based model that can learn
efficient patient representation from a large amount of longitidinal patient records and
predict future events of patients. We tested Doctor Al on a large real-world EHR datasets,
which achieved 79.58% recall@30 and significantly outperformed many baselines. We have
also shown that the patient’s visit count and the rarity of medical codes highly influence the
performance. We have also demonstrated that knowledge learned from one hospital could be
adapted to another hospital. The empirical analysis by a medical expert confirmed that
Doctor Al not only mimics the predictive power of human doctors, but also provides
diagnostic results that are clinically meaningful.

One limitation of Doctor Al is that, in medical practice, incorrect predictions can sometimes
be more important than correct predictions as they can degrade patient health. Also,
although Doctor Al has shown that it can mimic physicians’ average behavior, it would be
more useful to learn to perform better than average. We set as our future work to address
these issues so that Doctor Al can provide practical help to physicians in the future.

Appendix A: Description of Gated Recurrent Units

(®)

“ P Element-wise Addition

N~ - H []:

H — Values are directly propagated
i i

1
o _’E W =3 (® Element-wise multiplication
] i
]
1
1

===+ Values are modified by weights

Figure 4.
Architecture of GRU

We first reiterate the mathematical formulation of GRU so that the reader can see Figure 4
and the formulations together.

z; =0 (szl+Uzh7,1+bz)
r; =0 (WT$¢+Urhi,1+br)
ibi =tanh (Wya;+r; o Uyh;_1+by)
h; ZZiOhl;l—l-(l —Zi)OiLi

Figure 4 depicts the architecture of the GRU, where x;, z;and r;respectively represent the

input, update gate and the reset gate, p, the intermediate memory unit, h;the hidden layer,
all at timestep . Wy, W, W,, Uy, U, U, are the weight matrices to be learned. Note that the
bias vectors by, b,, b,are omitted in Figure 4.
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The outstanding difference between the classical RNN (Elman Network) and GRU is that
the previous hidden layer h; and the current input x;do not directly change the value of the
current hidden layer h;. Instead, they change the values of both gates z;, r;and the

intermediate memory unit p.. Then the current hidden layer h;is updated by 7, and z; Due
to the o function, both gates z;and r;have values between 0 and 1. Therefore if the reset gate

ris close to zero, the intermediate memory unit f,, will disregard the past values of the
hidden layer h. If the update gate z;is close to one, the current hidden layer h;will
disregard the current input x;, and retain the value from the previous timestep h;.

Simply put, the reset gate allows the hidden layer to drop any information that is not useful
in making a prediction, and the updated gate controls how much information from the
previous hidden layer should be propagated to the current hidden layer. This characteristic of
GRU is especially useful as it is not easy to identify information essential to predicting the
future diagnosis, medication or the time duration until the next visit.

Appendix B: Learning the Skip-gram vectors from the EHR

Learning efficient representations of medical codes (e.g. diagnosis codes, medication codes,
and procedure codes) may lead to improved performance of many clinical applications. We
specifically used Skip-gram Mikolov et al. (2013) to learn real-valued multidimensional
vectors to capture the latent representation of medical codes from the EHR.

We processed the private dataset so that diagnosis codes, medication codes, procedure codes
are laid out in a temporal order. If there are multiple codes at a single visit, they were laid
out in a random order. Then using the context window size of 5 to the left and 5 to the right,
and applying Skip-gram, we were able to project diagnosis codes, medication codes and
procedure codes into the same lower dimensional space, where similar or related codes are
embedded close to one another. For example, hypertension, obesity, hyperlipidemia all share
similar values compared to pneumonia or bronchitis. The trained Skip-gram vectors are then
plugged into RNN so that a multi-hot vector can be converted to vector representations of
medical codes.

Appendix C: Details of the training procedure of multilayer perceptron

We use a multilayer perceptron with a hidden layer of width 2,000. We apply L,
regularization to all of the weight matrices. The activation functions in the first and output
layers are selected to be tanh and softmax functions respectively. For prediction of time
intervals, we used rectified linear units.

Appendix D: Case study

The detailed results are shown in Table 3. To take a closer look at the performance of Doctor
Al, in Table 3 (in Appendix D) we list the predicted, true, and historical diagnosis codes for
five visits of different patients. The blue items represent the correct predictions. The results
are promising and show that, given the history of the patient, the Doctor Al can predict the
true diagnostic codes. The results highly mimic the way a human doctor will interpret the
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disease predictions from the history. For all five of the cases shown in Table 3, the set of
predicted diseases contain most, if not all of the true diseases. For example, in the first case,
the top 3 predicted diseases match the true diseases. A human doctor would likely predict
similar diseases to the ones predicted with Doctor Al, since old myocardial infarction and
chronic ischemic heart disease can be associated with infections and diabetes (Stevens et al.,
1978).

In the fourth case, visual disturbances can be associated with migraines and essential
hypertension (Keith et al., 1939). Further, essential hypertension may be linked to cognitive
function (Kuusisto et al., 1993), which plays a role in anxiety disorders and dissociative and
somatoform disorders. Regarding codes that are guessed incorrectly with the fourth case,
they can still be plausible given the history. For example, cataracts, and disorders of
refraction and accommaodation could have been guessed based on a history of visual
disturbances, as well as strabismus and disorders of binocular eye movements. Allergic
rhinitis could have been guessed, because there was a history of allergic rhinitis. In
summary, Doctor Al is able to very accurately predict the true diagnoses in the sample
patients. The results are promising and should motivate future studies involving the
application of Doctor Al on different datasets exhibiting other populations of patients.
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This diagram shows how we have applied RNNs to solve the problem of forecasting of next
visits’ time and the codes assigned during each visit. The first layer simply embeds the high-
dimensional input vectors in a lower dimensional space. The next layers are the recurrent
units (here two layers), which learn the status of the patient at each timestamp as a real-

valued vector. Given the status vector, we use two dense layers to generate the codes

observed in the next timestamp and the duration until next visit.
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Figure 2.
Characterizing behavior of the trained network: (a) Prediction performance of Doctor Al as

it sees a longer history of the patients. (b) Change in the perplexity of response to a frequent
code (hypertension) and an infrequent code (Klinefelter’s syndrome).
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Figure 3.
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The impact of pre-training on improving the performance on smaller datasets. In the first
experiment, we first train the model on a small dataset (red curve). In the second experiment,

we pre-train the model on our large dataset and use it for initializing the training of the

smaller dataset. This procedure results in more than 10% improvement in the performance.
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Table 1
Basic statistics of the the clinical records dataset.
# of patients 263,706 | Total # of codes 38,594
Avg. # of visits 54.61 Total # of 3-digit Dx codes 1,183
Avg. # of codes per visit 3.22 # of top level Rx codes 595
Max # of codes per visit 62 Avg. duration between visits | 76.12 days
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