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Abstract

Leveraging large historical data in electronic health record (EHR), we developed Doctor AI, a 

generic predictive model that covers observed medical conditions and medication uses. Doctor AI 

is a temporal model using recurrent neural networks (RNN) and was developed and applied to 

longitudinal time stamped EHR data from 260K patients over 8 years. Encounter records (e.g. 

diagnosis codes, medication codes or procedure codes) were input to RNN to predict (all) the 

diagnosis and medication categories for a subsequent visit. Doctor AI assesses the history of 

patients to make multilabel predictions (one label for each diagnosis or medication category). 

Based on separate blind test set evaluation, Doctor AI can perform differential diagnosis with up to 

79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great 

generalizability of Doctor AI by adapting the resulting models from one institution to another 

without losing substantial accuracy.

1. Introduction

A common challenge in healthcare today is that physicians have access to massive amounts 

of data on patients, but little time nor tools. Intelligent clinical decision support anticipates 

the information at the point of care that is specific to the patient and provider needs. 

Electronic health records (EHR), now commonplace in U.S. healthcare, represent the 

longitudinal experience of both patients and doctors. These data are being used with 

increasing frequency to predict future events. While predictive models have been developed 

to anticipate needs, most existing work has focused on specialized predictive models that 

predict a limited set of outcomes. However, day-to-day clinical practice involves an 

unscheduled and heterogeneous mix of scenarios and needs different prediction models in 
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the hundreds to thousands. It is impractical to develop and deploy specialized models one by 

one.

Leveraging large historical data in EHR, we developed Doctor AI, a generic predictive 

model that covers observed medical conditions and medication uses. Doctor AI is a temporal 

model using recurrent neural networks (RNN) and was developed and applied to 

longitudinal time stamped EHR data. In this work, we are particularly interested in whether 

historical EHR data may be used to predict future physician diagnoses and medication 

orders. Applications that accurately forecast could have many uses such as anticipating the 

patient status at the time of visit and presenting data a physician would want to see at the 

moment. The primary goal of this study was to use longitudinal patient visit records to 

predict the physician diagnosis and medication order of the next visit. As a secondary goal 

we predicted the time to the patients next visit. Predicting the visit time facilitates guidance 

of whether a patient may be delayed in seeking care.

The two tasks addressed in this work are different from sequence labeling tasks often seen in 

natural language processing applications, e.g., part-of-speech tagging. Our proposed model, 

Doctor AI, performs multilabel prediction (one for each disease or medication category) 

over time while sequence labeling task predicts a single label at each step. The key challenge 

was finding a flexible model that is capable of performing the multilabel prediction problem. 

The two main classes of techniques have been proposed in dealing with temporal sequences: 

1) continuous-time Markov chain based models (Nodelman et al., 2002; Lange et al., 2015; 

Johnson and Willsky, 2013), and 2) intensity based point process modeling techniques such 

as Hawkes processes (Liniger, 2009; Zhu, 2013; Choi et al., 2015). However, both classes 

are expensive to compute, especially for nonlinear settings. Furthermore, they often make 

strong assumptions about the data generation process which might not be valid for EHR 

data. Our modeling strategy was to develop a generalized approach to representing patient 

temporal healthcare experience to predict all the diagnoses, medication categories and visit 

time. We used recurrent neural network (RNN), considering that RNNs have been 

particularly successful for representation learning in sequential data, e.g. Graves (2013); 

Graves and Jaitly (2014); Sutskever et al. (2014); Kiros et al. (2014); Zaremba and Sutskever 

(2014). In particular, we make the following main contributions in this paper:

• We demonstrate how RNNs can be used to represent the patient status and 

predict diagnosis, medication order and visit time. The trained RNN is able to 

achieve above 64% recall@10 and 79% recall@30 for diagnosis prediction, 

showing potential to serve as a differential diagnosis assistance.

• We propose an initialization scheme for RNNs using Skip-gram embeddings 

(Mikolov et al., 2013) and show that it improves the performance of the RNN in 

both accuracy and speed.

• We empirically confirm that RNN models possess great potential for transfer 

learning across different medical institutions. This suggests that health systems 

with insufficient patient data can adopt models learned from larger datasets of 

other health systems to improve prediction accuracy on their smaller population.
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2. Related Work

In this section, we briefly review the common approaches to modeling multilabel event 

sequences with special focus on the models that have been applied to medical data. There 

are two main approaches to modeling multilabel event sequences: with or without 

discretization (binning) of time.

Discretization

When the time axis is discretized, the point process data can be converted to binary time 

series (or time series of count data if binning is coarse) and analyzed via time series analysis 

techniques (Truccolo et al., 2005; Bahadori et al., 2013; Ranganath et al., 2015). However, 

this approach is inefficient as it produces long time series whose elements are mostly zero. 

Furthermore, discretization of time introduces noise in the time stamps of visits. Finally, 

these approaches are often not able to model the duration until next event. Thus, it is 

advantageous not to discretize the data both in terms of modeling and computation.

Continuous-time models

Among the continuous-time models, there are two main techniques: continuous-time 

Markov chain based models (Foucher et al., 2007; Johnson and Willsky, 2013; Lange, 2014; 

Liu et al., 2013) and their extension using Baysian networks (Nodelman et al., 2002; Weiss 

et al., 2012) and intensity function modeling techniques such as Cox and Hawkes processes 

(Liniger, 2009; Zhou et al., 2013; Linderman and Adams, 2014; Choi et al., 2015).

Intensity function modeling techniques have been shown to have computational advantages 

over the continuous-time Markov chain based models. Moreover, modeling multilabel 

marked point processes with continuous-time Markov chains expands their state-space and 

make them even more expensive. However, Hawkes processes only depend linearly on the 

past observation times; while there are limited classes of non-linear Hawkes process (Zhu, 

2013), the temporal dynamics can be more complex. Finally, Hawkes processes are known 

to have a flat loss function near optimal value of the parameters which renders the gradient-

based learning algorithms inefficient (Veen and Schoenberg, 2008). In this paper we address 

these challenges by designing a recurrent neural network which has been shown to be 

successful in learning complex sequential patterns.

Disease progression models

There have been active research in modeling the temporal progression of diseases (Mould, 

2012). Generally, most works can be divided into two groups: works that focus on a specific 

disease and works that focus on a broader range of diseases.

Specific-purpose progression modeling—There have been many studies that focus 

on modeling the temporal progression of a specific disease based on either intensive use of 

domain-specific knowledge (De Winter et al., 2006; Ito et al., 2010; Tangri et al., 2011) or 

taking advantage of advanced statistical methods (Liu et al., 2013; Jackson et al., 2003; 

Sukkar et al., 2012; Zhou et al., 2012). Specifically, studies have been conducted on 

Alzheimer’s disease (Ito et al., 2010; Zhou et al., 2012; Sukkar et al., 2012), glaucoma (Liu 
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et al., 2013), chronic kidney disease (Tangri et al., 2011), diabetes mellitus (De Winter et al., 

2006), and abdominal aortic aneurysm (Jackson et al., 2003)

General-purpose progression modeling—Recently, Wang et al. (2014); Choi et al. 

(2015); Ranganath et al. (2015) proposed more general approaches to modeling the 

progression of wider range of diseases. As discussed earlier, Choi et al. (2015) used Hawkes 

process, and Ranganath et al. (2015) discretized time in order to model multiple patients and 

multiple diseases. Wang et al. (2014) proposed a graphical model based on Markov Jump 

Process to predict the stage progression of chronic obstructive pulmonary disease (COPD) 

and its co-morbid diseases.

One of the main challenges in using these algorithms is scalability. The datasets used in 

previous works typically contain up to a few thousands of patients and a few hundreds of 

codes. Even the largest dataset used by Ranganath et al. (2015) contains 13,180 patients and 

8,722 codes, which is significantly smaller than our dataset described in Table 1. Need for 

domain-specific knowledge is also a big challenge. For example, Wang et al. (2014) not only 

used a smaller dataset (3,705 patients and 264 codes) but also used co-morbidity information 

to improve the performance of their algorithm. Such expert knowledge is difficult to obtain 

from typical EHR data.

Deep learning models for EHR

Researchers have recently begun attempting to apply neural network based methods (or deep 

learning) to EHR to utilize its ability to learn complex patterns from data. Previous studies 

such as phenotype learning (Lasko et al., 2013; Che et al., 2015; Hammerla et al., 2015) or 

representation learning (Choi et al., 2016b,a; Miotto et al., 2016), however, have not fully 

addressed the sequential nature of EHR. Lipton et al. (2016) is especially related to our work 

in that both studies use RNN for sequence prediction. However, while Lipton et al. (2016) 

uses regular times series of real-valued variables collected from ICU patients to predict 

diagnosis codes, we use discrete medical codes (e.g. diagnosis, medication, procedure) 

extracted from longitudinal patient visit records. Also, in each visit we make a prediction 

about predict diagnosis, medication order in the next visit and and the time to next visit.

3. Cohort

Population and source of data

The source population for this study was primary care patients from Sutter Health Palo Alto 

Medical Foundation. Sutter Health is a large primary care and multispecialty group practice 

that has used an Epic Systems Corporation EHR for more than a decade. The dataset was 

extracted from a density sampled case-control study for heart failure. The dataset consists of 

de-identified encounter orders, medication orders, problem list records and procedure orders.

Data processing

As inputs, we use ICD-9 codes, medication codes, and procedure codes. We extracted ICD-9 

codes from encounter records, medication orders, problem list records and procedure orders. 

Generic Product Identifier (GPI) medication codes and CPT procedure codes were extracted 
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from medication orders and procedure orders respectively. All codes were timestamped with 

the patients visit time. If a patient received multiple codes in a single visit, those codes were 

given the same timestamp. We excluded patients that made less than two visits. The resulting 

dataset consists of 263,706 patients who made on average 54.61 visits per person.

Grouping medical codes

There are more about 11,000 unique ICD-9 codes and 18,000 GPI medication codes in the 

dataset, many of which are very granular. For example, pulmonary tuberculosis (ICD-9 code 

011) is divided into 70 subcategories (ICD-9 code 011.01, 011.02, …, 011.95, 011.96). 

Simply knowing that a patient is likely to have pulmonary tuberculosis is enough to increase 

the doctor’s awareness of the severity of the clinical situation. Therefore, to predict 

diagnosis and medication order, we grouped codes into higher-order categories to reduce the 

feature set and information overload. For the diagnosis codes, we use the 3-digit ICD-9 

codes, yielding 1183 unique codes. For the medication codes, we use the Generic Product 

Identifier Drug Class, which groups the medication codes into 595 unique groups. The label 

yi we use in the following sections represents the 1,778-dimensional vector (i.e., 1183 + 595) 

for the grouped diagnosis codes and medication codes.

4. Methods

This section describes the RNN model for multilabel point processes. We will also describe 

how we predict diagnosis, medication order and visit time using the RNN model.

Problem setting

For each patient, the observations are drawn from a multilabel point process in the form of 

(ti, xi) for i = 1, …, n. Each pair represents an event, such as an ambulatory care visit, during 

which multiple medical codes such as ICD-9 diagnosis codes, procedure codes, or 

medication codes are documented in the patient record. The multi-hot label vector xi ∈ {0, 

1}p represents the medical codes assigned at time ti, where p denotes the number of unique 

medical codes. At each timestamp, we may extract higher-level codes for prediction 

purposes and denote it by yi, see the details in Section 3. The number of events for each 

patient may differ.

Gated Recurrent Units Preliminaries

Specifically, we implemented our RNN with Gated Recurrent Units (GRU). Although Long 

Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997; Graves et al., 2009) has 

drawn much attention from many researchers, GRU has recently shown to have similar 

performance as LSTM, while employing a simpler architecture (Chung et al., 2014). In order 

to precisely describe the network used in this work, we reiterate the mathematical 

formulation of GRU as follows:
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where zi and ri respectively represent the update gate and the reset gate,  the intermediate 

memory unit, hi the hidden layer, all at timestep ti. A detailed description of GRU is 

provided in Appendix A.

Description of neural network architecture

Our goal is to learn an effective vector representation for the patient status at each timestamp 

ti. Using effective patient representations, we are interested in predicting diagnosis and 

medication categories in the next visit yi+1 and the time duration until the next visit di+1 = 

ti+1 − ti. Finally, we would like to perform all these steps jointly in a single supervised 

learning scheme. We use RNN to learn such patient representations, treating the hidden layer 

as the representation for the patient status and use it for the prediction tasks.

The proposed neural network architecture (Figure 1) receives input at each timestamp ti as 

the concatenation of the multi-hot input vector xi of the multilabel categories and the 

duration di since the last event. In our datasets, the input dimension is as large as 40, 000. 

Thus, the next layer projects the input to a lower dimensional space. Then, we pass the lower 

dimensional vector through RNN (implemented with GRU in our study). We can also stack 

multiple layers of RNN to increase the representative power of the network. Finally, we use 

a Softmax layer to predict the diagnosis codes and the medication codes, and a rectified 

linear unit (ReLU) to predict the time duration until next visit.

For predicting the diagnosis codes and the medication codes at each timestep ti, a Softmax 

layer is stacked on top of the GRU, using the hidden layer hi as the input: 

. For predicting the time duration until the next visit, a 

rectified linear unit (ReLU) is placed on top of the GRU, again using the hidden layer hi as 

the input: . The objective of training our model is to learn 

the weights W{z,r,h,code}, U{z,r,h}, b{z,r,h,code}, wtime and btime. The values of all W’s and U’s 

were initialized to orthonormal matrices using singular value decomposition of matrices 

generated from the normal distribution (Saxe et al., 2013). The initial value of wtime was 

chosen from the uniform distribution between −0.1 and 0.1. All b’s and btime were initialized 

to zeros. The joint loss function consists of the cross entropy for the code prediction and the 

squared loss for the time duration prediction, as described below for a single patient:

As mentioned above, the multi-hot vectors xi of almost 40,000 dimensions are first projected 

to a lower dimensional space, then put into the GRU. We employed two different approaches 

for this: (1) We put an extra layer of a certain size between the multi-hot input xi and the 

GRU, and call it the embedding layer. We denote the weight matrix between the multi-hot 

input vector and the embedding layer as Wemb. Then we learn the weight Wemb as we train 

the entire model. (2) We initialize the weight Wemb with a matrix generated by Skip-gram 

algorithm (Mikolov et al., 2013), then refine the weight Wemb as we train the entire model. 
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This can be seen as using the pre-trained Skip-gram vectors as the input to the RNN and 

fine-tuning them with the joint prediction task. The brief description of learning the Skip-

gram vectors from the EHR is provided in Appendix B. The first and second approach can 

be formulated as follows:

(1)

(2)

where [·, ·] is the concatenation operation used for appending the time duration to the multi-

hot vector  to make it an input vector to the GRU.

5. Results

We now describe the details of our experiments in the proposed RNN approach to 

forecasting the future clinical events. The source code of Doctor AI is publicly available at 

https://github.com/mp2893/doctorai.

5.1 Experiment Setup

For training all models including the baselines, we used 85% of the patients as the training 

set and 15% as the test set. We trained the RNN models for 20 epochs (i.e., 20 iterations 

over the entire training data) and then evaluated the final performance against the test set. To 

avoid overfitting, we used dropout between the GRU layer and the prediction layer (i.e. code 

prediction and time duration prediction). Dropout was also used between GRU layers if we 

were using a multilayer GRU. We also applied norm-2 regularization on both Wcode and 

wtime. Both regularization coefficients were set to 0.001. The size of the hidden layer hi of 

the GRU was set to 2000 to guarantee a sufficient expressive power. After running sets of 

preliminary experiments where we tried the size from 100 to 2000, we noticed that the code 

prediction performance started to saturate around 1600~1800. All models were implemented 

with Theano (Bastien et al., 2012) and trained on a machine equipped with two Nvidia Tesla 

K80 GPUs.

We train total four different variation of Doctor AI as follows,

• RNN-1: RNN with a single hidden layer initialized with a random orthogonal 

matrix for Wemb.

• RNN-2: RNN with two hidden layers initialized with a random orthogonal 

matrix for Wemb.

• RNN-1-IR: RNN using a single hidden layer initialized embedding matrix Wemb 

with the Skip-gram vectors trained on the entire dataset.
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• RNN-2-IR: RNN with two hidden layers initialized embedding matrix Wemb 

with the Skip-gram vectors trained on the entire dataset. dataset.

5.2 Evaluation metrics

The performance of algorithms in predicting diagnoses and medication codes was evaluated 

using the Top-k recall defined as:

Top-k recall mimics the behavior of doctors conducting differential diagnosis, where doctors 

list most probable diagnoses and treat patients accordingly to identify the patient status. 

Therefore, a machine with a high Top-k recall translates to a doctor with an effective 

diagnostic skill. This makes Top-k recall an attractive performance metric for our problem.

We select the maximum k to be 30 to evaluate the performance of the models not only for 

simple cases but also for complex cases. Near 50.7% of the patients have been assigned with 

more than 10 diagnosis and medication codes at least once. Since it is those complex cases 

that are of interest to predict and analyze, we choose k to be large enough (i.e., 3 times of the 

mean).

Coefficient of determination—(R2) was used to evaluate the predictive performance of 

regression and forecasting algorithms. It compares the accuracy of the prediction with 

respect to the simple prediction by mean of the target variable.

Because time to the next visit can be highly skewed, we measure the R2 performance of the 

algorithms in predicting log(di) to lower the impact of anomalous long durations in the 

performance metric. In the same spirit, we train all models to predict the logarithm of the 

time duration between visits.

5.3 Baselines

We compare our model against several baselines as described below. Some of the existing 

techniques based on continuous-time Markov chain and latent space models were not 

scalable enough to be trained using the entire dataset in a reasonable amount of time; thus 

comparison is not feasible.

Frequency baselines—We compare our algorithms against simple baselines that are 

based on experts’ intuition about the dynamics of events in clinical settings. The first 

baseline uses a patient’s medical codes in the last visit as the prediction for the current visit. 

This baseline is competitive when the status of a patient with a chronic condition stabilizes 

over time. We enhanced this baseline using the top-k most frequent labels observed in visits 
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prior to the current visits. In the experiments we observe that the baseline of top-k most 

frequent labels is quite competitive.

Logistic and Neural Network time series models—A common way to perform 

prediction task is to use xi−1 to predict the codes in the next visit xi using logistic regression 

or multilayer perceptron (MLP). To enhance the baseline further, we can use the data from L 
time lags before and aggregate them xi−1 + xi−2 + , +xi−L for some duration L to create the 

features for prediction of xi. Similarly, we can have a model that predicts the time until next 

visit using rectified linear units (ReLU) as the output activation. We set the lag L = 5 so that 

the logistic regression and MLP can use information from maximum five past visits. The 

details of MLP design are described in Appendix C.

5.4 Prediction performance

Table 2 compares the results of different algorithms with RNN based Doctor AI. We report 

the results in three settings: when we are interested in (1) predicting only diagnosis codes 

(Dx), (2) predicting only medication codes (Rx), and (3) jointly predicting Dx codes, Rx 

codes, and the time duration to next visit. The results confirm that the proposed approach is 

able to outperform the baseline algorithms by a large margin. Note that the recall values for 

the joint task are lower than those for Dx code prediction or Rx code prediction because the 

hypothesis space is larger for the joint prediction task.

The superior performance of RNN based approaches can be attributed to the efficient 

representation that they learn for patients at each visit (Bengio et al., 2013; Schmidhuber, 

2015). RNNs are able to learn succinct feature representations of patients by accumulating 

the relevant information from their history and the current set of codes, which outperformed 

hand-picked features of frequency baselines.

Table 2 confirms that learning patient representation with RNN is easier with the input 

vectors that are already efficient representations of the medical codes. The RNN trained with 

the Skip-gram vectors (denoted by RNN-IR) consistently outperforms the RNN that learns 

the weight matrix Wemb directly from the data, with only one exception, the medication 

prediction Recall@30, although the differences are insignificant. The results also confirm 

that having multiple layers when using RNN improves its ability to learn more efficient 

representations. The results also indicate that a single layer RNN might have enough 

representative power to capture the dynamics of medications, and adding more layers may 

not improve the performance.

The results also indicate that our approach significantly improves the accuracy of predicting 

the time duration until the next visit compared to the baselines. However, the absolute value 

of R2 metric shows that accurate prediction of time intervals remains as a challenge. We 

believe achieving significantly better time prediction without extra features should be 

difficult because the timing of a clinical visit can be a ected by many personal factors such 

as financial status, location of residence, means of transportation, and life style, to name a 

few. Thus, without such sensitive personal information, which is rarely included in the EHR, 

accurate prediction of time intervals should be unlikely.
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5.5 Understanding the behavior of the network

To study the applicability of our model in a real-world setting where patients have varying 

length of medical records, we conducted an additional experiment to study the relationship 

between the length of the patient medical history and the prediction performance. To this 

end, we selected 5,800 patients from the test set who had more than 100 visits. We used the 

best performing model to predict the diagnosis codes at visits at different times and found 

the mean and standard error of recall across the selected patients. Figure 2a shows the result 

of the experiment. We believe that the increase in performance can be due to two reasons: 

(1) RNN is able to learn a better estimate of the patient status as it sees longer patient 

records and (2) Visits are correlated with poor health. Those with high visit count are more 

likely to be severely ill, and therefore their future is easier to predict.

Another experiment was conducted to understand the behavior of the network by giving 

synthetic inputs. We chose hypertension (ICD-9 code 401.9) as an example of a frequently 

observed diagnosis, and Klinefelter’s syndrome (ICD-9 code 758.7) as an example of an 

infrequent diagnosis. We created two synthetic patients who respectively have 200 visits of 

401.9 and 758.7. Then we used the best performing model to predict the diagnosis codes for 

the next visits. Figure 2b shows contrasting patterns: when the input is one of the frequent 

codes such as hypertension, the network quickly learns a more specific set of output codes as 

next disease. When we select an infrequent code like Klinefelter’s syndrome as the input, the 

network’s output is more diverse and mostly the frequently observed codes. The top 30 

codes after convergence shown in Table 4 in Appendix D confirm the disparity of the 

diversity of the predicted codes for the two cases.

5.6 Knowledge transfer across hospitals

As we observed from the previous experiments, the dynamics of clinical events are complex, 

which requires models with a high representative power. However, many institutions have 

not yet collected large scale datasets, and training such models could easily lead to 

overfitting. To address this challenge, we resort to the recent advances in domain adaptation 

techniques for deep neural networks (Mesnil et al., 2012; Bengio, 2012; Yosinski et al., 

2014; Hoffman et al., 2014).

A different dataset, MIMIC II, which is a publicly available clinical dataset collected from 

ICU patients over 7 years of observation, was chosen to conduct the experiment. This dataset 

differs from the Sutter dataset in that it consists of demographically and diagnostically 

different patients. The number of patients who made at least two visits is 2,695, and the 

number of unique diagnosis code (3-digit ICD-9 code) is 767, which is a subset of the Sutter 

dataset. From the dataset, we extracted sequences of 3-digit ICD-9 codes. We chose 2,290 

patients for training, 405 for testing. We chose the 2-layer RNN with 1000 dimensional 

hidden layer, and performed two experiments: 1) We trained the model only on the MIMIC 

II dataset. 2) We initialized the coefficients of the model with the values learned from the 3-

digit ICD-9 sequences of the Sutter data, then we refined the coefficients with the MIMIC II 

dataset. Figure 3 shows the vast improvement of the prediction performance induced by the 

knowledge transfer from the Sutter data.
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6. Conclusion

In this work, we proposed Doctor AI system, which is a RNN-based model that can learn 

efficient patient representation from a large amount of longitidinal patient records and 

predict future events of patients. We tested Doctor AI on a large real-world EHR datasets, 

which achieved 79.58% recall@30 and significantly outperformed many baselines. We have 

also shown that the patient’s visit count and the rarity of medical codes highly influence the 

performance. We have also demonstrated that knowledge learned from one hospital could be 

adapted to another hospital. The empirical analysis by a medical expert confirmed that 

Doctor AI not only mimics the predictive power of human doctors, but also provides 

diagnostic results that are clinically meaningful.

One limitation of Doctor AI is that, in medical practice, incorrect predictions can sometimes 

be more important than correct predictions as they can degrade patient health. Also, 

although Doctor AI has shown that it can mimic physicians’ average behavior, it would be 

more useful to learn to perform better than average. We set as our future work to address 

these issues so that Doctor AI can provide practical help to physicians in the future.

Appendix A: Description of Gated Recurrent Units

Figure 4. 
Architecture of GRU

We first reiterate the mathematical formulation of GRU so that the reader can see Figure 4 

and the formulations together.

Figure 4 depicts the architecture of the GRU, where xi, zi and ri respectively represent the 

input, update gate and the reset gate,  the intermediate memory unit, hi the hidden layer, 

all at timestep ti. Wh, Wz, Wr, Uh, Uz, Ur are the weight matrices to be learned. Note that the 

bias vectors bh, bz, br are omitted in Figure 4.

Choi et al. Page 11

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The outstanding difference between the classical RNN (Elman Network) and GRU is that 

the previous hidden layer hi−1 and the current input xi do not directly change the value of the 

current hidden layer hi. Instead, they change the values of both gates zi, ri and the 

intermediate memory unit . Then the current hidden layer hi is updated by  and zi. Due 

to the σ function, both gates zi and ri have values between 0 and 1. Therefore if the reset gate 

ri is close to zero, the intermediate memory unit  will disregard the past values of the 

hidden layer hi−1. If the update gate zi is close to one, the current hidden layer hi will 

disregard the current input xi, and retain the value from the previous timestep hi−1.

Simply put, the reset gate allows the hidden layer to drop any information that is not useful 

in making a prediction, and the updated gate controls how much information from the 

previous hidden layer should be propagated to the current hidden layer. This characteristic of 

GRU is especially useful as it is not easy to identify information essential to predicting the 

future diagnosis, medication or the time duration until the next visit.

Appendix B: Learning the Skip-gram vectors from the EHR

Learning efficient representations of medical codes (e.g. diagnosis codes, medication codes, 

and procedure codes) may lead to improved performance of many clinical applications. We 

specifically used Skip-gram Mikolov et al. (2013) to learn real-valued multidimensional 

vectors to capture the latent representation of medical codes from the EHR.

We processed the private dataset so that diagnosis codes, medication codes, procedure codes 

are laid out in a temporal order. If there are multiple codes at a single visit, they were laid 

out in a random order. Then using the context window size of 5 to the left and 5 to the right, 

and applying Skip-gram, we were able to project diagnosis codes, medication codes and 

procedure codes into the same lower dimensional space, where similar or related codes are 

embedded close to one another. For example, hypertension, obesity, hyperlipidemia all share 

similar values compared to pneumonia or bronchitis. The trained Skip-gram vectors are then 

plugged into RNN so that a multi-hot vector can be converted to vector representations of 

medical codes.

Appendix C: Details of the training procedure of multilayer perceptron

We use a multilayer perceptron with a hidden layer of width 2,000. We apply L2 

regularization to all of the weight matrices. The activation functions in the first and output 

layers are selected to be tanh and softmax functions respectively. For prediction of time 

intervals, we used rectified linear units.

Appendix D: Case study

The detailed results are shown in Table 3. To take a closer look at the performance of Doctor 

AI, in Table 3 (in Appendix D) we list the predicted, true, and historical diagnosis codes for 

five visits of different patients. The blue items represent the correct predictions. The results 

are promising and show that, given the history of the patient, the Doctor AI can predict the 

true diagnostic codes. The results highly mimic the way a human doctor will interpret the 
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disease predictions from the history. For all five of the cases shown in Table 3, the set of 

predicted diseases contain most, if not all of the true diseases. For example, in the first case, 

the top 3 predicted diseases match the true diseases. A human doctor would likely predict 

similar diseases to the ones predicted with Doctor AI, since old myocardial infarction and 

chronic ischemic heart disease can be associated with infections and diabetes (Stevens et al., 

1978).

In the fourth case, visual disturbances can be associated with migraines and essential 

hypertension (Keith et al., 1939). Further, essential hypertension may be linked to cognitive 

function (Kuusisto et al., 1993), which plays a role in anxiety disorders and dissociative and 

somatoform disorders. Regarding codes that are guessed incorrectly with the fourth case, 

they can still be plausible given the history. For example, cataracts, and disorders of 

refraction and accommodation could have been guessed based on a history of visual 

disturbances, as well as strabismus and disorders of binocular eye movements. Allergic 

rhinitis could have been guessed, because there was a history of allergic rhinitis. In 

summary, Doctor AI is able to very accurately predict the true diagnoses in the sample 

patients. The results are promising and should motivate future studies involving the 

application of Doctor AI on different datasets exhibiting other populations of patients.

Choi et al. Page 13

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ta
b

le
 3

C
om

pa
ri

so
n 

of
 th

e 
di

ag
no

se
s 

by
 D

oc
to

r 
A

I 
an

d 
th

e 
tr

ue
 f

ut
ur

e 
di

ag
no

se
s.

P
re

di
ct

ed
T

ru
e

H
is

to
ry

IC
D

9
D

es
cr

ip
ti

on
IC

D
9

D
es

cr
ip

ti
on

IC
D

9
D

es
cr

ip
ti

on

41
2

V
58

41
4

27
2

25
0

58
5

42
8

28
5

V
04

V
76

O
ld

 m
yo

ca
rd

ia
l i

nf
ar

ct
io

n
E

nc
ou

nt
er

 f
or

 o
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 p

ro
ce

du
re

s
O

th
er

 f
or

m
s 

of
 c

hr
on

ic
 is

ch
em

ic
 h

ea
rt

 d
is

ea
se

D
is

or
de

rs
 o

f 
lip

oi
d 

m
et

ab
ol

is
m

D
ia

be
te

s 
m

el
lit

us
C

hr
on

ic
 k

id
ne

y 
di

se
as

e 
(C

K
D

)
H

ea
rt

 f
ai

lu
re

O
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 a

ne
m

ia
s

N
ee

d 
fo

r 
pr

op
hy

la
ct

ic
 v

ac
ci

n.
 a

nd
 in

oc
ul

. a
ga

in
st

 c
er

ta
in

 d
is

ea
se

s
Sp

ec
ia

l s
cr

ee
ni

ng
 f

or
 m

al
ig

na
nt

 n
eo

pl
as

m
s

41
4

41
2

V
58

O
th

er
 f

or
m

s 
of

 c
hr

on
ic

 is
ch

em
ic

 h
ea

rt
 

di
se

as
e

O
ld

 m
yo

ca
rd

ia
l i

nf
ar

ct
io

n
E

nc
ou

nt
er

 f
or

 o
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 

pr
oc

ed
ur

es

46
5

25
0

36
6

V
58

36
2

A
cu

te
 u

pp
er

 r
es

pi
ra

to
ry

 in
fe

c.
 o

f 
m

ul
tip

le
 o

r 
un

sp
ec

. 
si

te
s

D
ia

be
te

s 
m

el
lit

us
C

at
ar

ac
t

E
nc

ou
nt

er
 f

or
 o

th
er

 a
nd

 u
ns

pe
ci

fi
ed

 p
ro

ce
du

re
s

O
th

er
 r

et
in

al
 d

is
or

de
rs

V
07

47
7

78
0

40
1

78
6

49
3

30
0

46
1

53
0

71
9

N
ee

d 
fo

r 
is

ol
at

io
n 

an
d 

ot
he

r 
pr

op
hy

la
ct

ic
 m

ea
su

re
s

A
lle

rg
ic

 r
hi

ni
tis

G
en

er
al

 s
ym

pt
om

s
E

ss
en

tia
l h

yp
er

te
ns

io
n

Sy
m

pt
om

s 
in

vo
lv

in
g 

re
sp

ir
at

or
y 

sy
st

em
A

st
hm

a
A

nx
ie

ty
, d

is
so

ci
at

iv
e 

an
d 

so
m

at
of

or
m

 d
is

or
de

rs
A

cu
te

 s
in

us
iti

s
D

is
ea

se
s 

of
 e

so
ph

ag
us

O
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 d

is
or

de
rs

 o
f 

jo
in

t

V
07

40
1

78
6

78
2

N
ee

d 
fo

r 
is

ol
at

io
n 

an
d 

ot
he

r 
pr

op
hy

la
ct

ic
 

m
ea

su
re

s
E

ss
en

tia
l h

yp
er

te
ns

io
n

Sy
m

pt
om

s 
in

vo
lv

in
g 

re
sp

ir
at

or
y 

sy
st

em
Sy

m
pt

om
s 

in
vo

lv
in

g 
sk

in
 a

nd
 o

th
er

 
in

te
gu

m
en

ta
ry

 ti
ss

ue

78
2

47
7

V
07

56
4

40
1

Sy
m

pt
om

s 
in

vo
lv

in
g 

sk
in

 a
nd

 o
th

er
 in

te
gu

m
en

ta
ry

 
tis

su
e

A
lle

rg
ic

 r
hi

ni
tis

N
ee

d 
fo

r 
is

ol
at

io
n 

an
d 

ot
he

r 
pr

op
hy

la
ct

ic
 m

ea
su

re
s

Fu
nc

tio
na

l d
ig

es
tiv

e 
di

so
rd

er
s,

 n
ot

 e
ls

ew
he

re
 c

la
ss

if
ie

d
E

ss
en

tia
l h

yp
er

te
ns

io
n

45
3

V
58

71
9

V
12

V
43

72
9

71
5

73
3

72
6

45
1

O
th

er
 v

en
ou

s 
em

bo
lis

m
 a

nd
 th

ro
m

bo
si

s
E

nc
ou

nt
er

 f
or

 o
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 p

ro
ce

du
re

s
O

th
er

 a
nd

 u
ns

pe
ci

fi
ed

 d
is

or
de

rs
 o

f 
jo

in
t

Pe
rs

on
al

 h
is

to
ry

 o
f 

ce
rt

ai
n 

ot
he

r 
di

se
as

es
O

rg
an

 o
r 

tis
su

e 
re

pl
ac

ed
 b

y 
ot

he
r 

m
ea

ns
O

th
er

 d
is

or
de

rs
 o

f 
so

ft
 ti

ss
ue

s
O

st
eo

ar
th

ro
si

s 
an

d 
al

lie
d 

di
so

rd
er

s
O

th
er

 d
is

or
de

rs
 o

f 
bo

ne
 a

nd
 c

ar
til

ag
e

Pe
ri

ph
er

al
 e

nt
he

so
pa

th
ie

s 
an

d 
al

lie
d 

sy
nd

ro
m

es
Ph

le
bi

tis
 a

nd
 th

ro
m

bo
ph

le
bi

tis

71
5

V
12

71
9

V
58

O
st

eo
ar

th
ro

si
s 

an
d 

al
lie

d 
di

so
rd

er
s

Pe
rs

on
al

 h
is

to
ry

 o
f 

ce
rt

ai
n 

ot
he

r 
di

se
as

es
O

th
er

 a
nd

 u
ns

pe
ci

fi
ed

 d
is

or
de

rs
 o

f 
jo

in
t

E
nc

ou
nt

er
 f

or
 o

th
er

 a
nd

 u
ns

pe
ci

fi
ed

 
pr

oc
ed

ur
es

45
3

95
6

V
43

O
th

er
 v

en
ou

s 
em

bo
lis

m
 a

nd
 th

ro
m

bo
si

s
In

ju
ry

 to
 p

er
ip

he
ra

l n
er

ve
(s

) 
of

 p
el

vi
c 

gi
rd

le
 a

nd
 lo

w
er

 
lim

b
O

rg
an

 o
r 

tis
su

e 
re

pl
ac

ed
 b

y 
ot

he
r 

m
ea

ns

47
7

78
0

30
0

40
1

34
6

36
6

V
43

36
7

36
8

27
2

A
lle

rg
ic

 r
hi

ni
tis

G
en

er
al

 s
ym

pt
om

s
A

nx
ie

ty
, d

is
so

ci
at

iv
e 

an
d 

so
m

at
of

or
m

 d
is

or
de

rs
E

ss
en

tia
l h

yp
er

te
ns

io
n

M
ig

ra
in

e
C

at
ar

ac
t

O
rg

an
 o

r 
tis

su
e 

re
pl

ac
ed

 b
y 

ot
he

r 
m

ea
ns

D
is

or
de

rs
 o

f 
re

fr
ac

tio
n 

an
d 

ac
co

m
m

od
at

io
n

V
is

ua
l d

is
tu

rb
an

ce
s

D
is

or
de

rs
 o

f 
lip

oi
d 

m
et

ab
ol

is
m

40
1

78
0

34
6

30
0

E
ss

en
tia

l h
yp

er
te

ns
io

n
G

en
er

al
 s

ym
pt

om
s

M
ig

ra
in

e
A

nx
ie

ty
, d

is
so

ci
at

iv
e 

an
d 

so
m

at
of

or
m

 
di

so
rd

er
s

78
2

47
7

69
2

36
8

37
8

Sy
m

pt
om

s 
in

vo
lv

in
g 

sk
in

 a
nd

 o
th

er
 in

te
gu

m
en

ta
ry

 
tis

su
e

A
lle

rg
ic

 r
hi

ni
tis

C
on

ta
ct

 d
er

m
at

iti
s 

an
d 

ot
he

r 
ec

ze
m

a
V

is
ua

l d
is

tu
rb

an
ce

s
St

ra
bi

sm
us

 a
nd

 o
th

er
 d

is
or

de
rs

 o
f 

bi
no

cu
la

r 
ey

e 
m

ov
em

en
ts

Choi et al. Page 14

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P
re

di
ct

ed
T

ru
e

H
is

to
ry

IC
D

9
D

es
cr

ip
ti

on
IC

D
9

D
es

cr
ip

ti
on

IC
D

9
D

es
cr

ip
ti

on

42
8

42
7

27
2

40
1

78
6

18
5

25
0

41
4

78
8

42
4

H
ea

rt
 f

ai
lu

re
C

ar
di

ac
 d

ys
rh

yt
hm

ia
s

D
is

or
de

rs
 o

f 
lip

oi
d 

m
et

ab
ol

is
m

E
ss

en
tia

l h
yp

er
te

ns
io

n
Sy

m
pt

om
s 

in
vo

lv
in

g 
re

sp
ir

at
or

y 
sy

st
em

M
al

ig
na

nt
 n

eo
pl

as
m

 o
f 

pr
os

ta
te

D
ia

be
te

s 
m

el
lit

us
O

th
er

 f
or

m
s 

of
 c

hr
on

ic
 is

ch
em

ic
 h

ea
rt

 d
is

ea
se

Sy
m

pt
om

s 
in

vo
lv

in
g 

ur
in

ar
y 

sy
st

em
O

th
er

 d
is

ea
se

s 
of

 e
nd

oc
ar

di
um

25
0

40
2

42
8

27
2

42
7

D
ia

be
te

s 
m

el
lit

us
H

yp
er

te
ns

iv
e 

he
ar

t d
is

ea
se

H
ea

rt
 f

ai
lu

re
D

is
or

de
rs

 o
f 

lip
oi

d 
m

et
ab

ol
is

m
C

ar
di

ac
 d

ys
rh

yt
hm

ia
s

46
6

42
8

78
6

78
5

25
0

A
cu

te
 b

ro
nc

hi
tis

 a
nd

 b
ro

nc
hi

ol
iti

s
H

ea
rt

 f
ai

lu
re

Sy
m

pt
om

s 
in

vo
lv

in
g 

re
sp

ir
at

or
y 

sy
st

em
Sy

m
pt

om
s 

in
vo

lv
in

g 
ca

rd
io

va
sc

ul
ar

 s
ys

te
m

D
ia

be
te

s 
m

el
lit

us

Choi et al. Page 15

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ta
b

le
 4

C
om

pa
ri

so
n 

of
 th

e 
di

ag
no

se
s 

by
 D

oc
to

r 
A

I 
fo

r 
a 

fr
eq

ue
nt

 a
nd

 a
n 

in
fr

eq
ue

nt
 d

is
ea

se
 c

od
e 

af
te

r 
20

0 
tim

e 
st

ep
.

H
yp

er
te

ns
io

n
K

lin
ef

el
te

r’
s 

sy
nd

ro
m

e

IC
D

9
D

es
cr

ip
ti

on
IC

D
9

D
es

cr
ip

ti
on

40
1

E
ss

en
tia

l h
yp

er
te

ns
io

n
27

2
D

is
or

de
rs

 o
f 

lip
oi

d 
m

et
ab

ol
is

m

27
2

D
is

or
de

rs
 o

f 
lip

oi
d 

m
et

ab
ol

is
m

V
70

G
en

er
al

 m
ed

ic
al

 e
xa

m
in

at
io

n

78
6

Sy
m

pt
om

s 
in

vo
lv

in
g 

re
sp

ir
at

or
y 

sy
st

em
 a

nd
 o

th
er

 c
he

st
 s

ym
pt

om
s

V
04

N
ee

d 
fo

r 
pr

op
hy

la
ct

ic
 v

ac
ci

na
tio

n 
an

d 
in

oc
ul

at
io

n 
ag

ai
ns

t c
er

ta
in

 d
is

ea
se

s

V
06

N
ee

d 
fo

r 
pr

op
hy

la
ct

ic
 v

ac
ci

na
tio

n 
an

d 
in

oc
ul

at
io

n 
ag

ai
ns

t c
om

bi
na

tio
ns

 o
f 

di
se

as
es

73
0

O
st

eo
m

ye
lit

is
, p

er
io

st
iti

s,
 a

nd
 o

th
er

 in
fe

ct
io

ns
 in

vo
lv

in
g 

bo
ne

79
0

N
on

sp
ec

if
ic

 f
in

di
ng

s 
on

 e
xa

m
in

at
io

n 
of

 b
lo

od
78

0
G

en
er

al
 s

ym
pt

om
s

V
76

Sp
ec

ia
l s

cr
ee

ni
ng

 f
or

 m
al

ig
na

nt
 n

eo
pl

as
m

s
78

3
Sy

m
pt

om
s 

co
nc

er
ni

ng
 n

ut
ri

tio
n,

 m
et

ab
ol

is
m

, a
nd

 d
ev

el
op

m
en

t

V
04

N
ee

d 
fo

r 
pr

op
hy

la
ct

ic
 v

ac
ci

na
tio

n 
an

d 
in

oc
ul

at
io

n 
ag

ai
ns

t c
er

ta
in

 d
is

ea
se

s
29

5
Sc

hi
zo

ph
re

ni
c 

di
so

rd
er

s

V
70

G
en

er
al

 m
ed

ic
al

 e
xa

m
in

at
io

n
V

76
Sp

ec
ia

l s
cr

ee
ni

ng
 f

or
 m

al
ig

na
nt

 n
eo

pl
as

m
s

78
0

G
en

er
al

 s
ym

pt
om

s
14

1
M

al
ig

na
nt

 n
eo

pl
as

m
 o

f 
to

ng
ue

27
6

D
is

or
de

rs
 o

f 
fl

ui
d,

 e
le

ct
ro

ly
te

, a
nd

 a
ci

d-
ba

se
 b

al
an

ce
V

06
N

ee
d 

fo
r 

pr
op

hy
la

ct
ic

 v
ac

ci
na

tio
n 

an
d 

in
oc

ul
at

io
n 

ag
ai

ns
t c

om
bi

na
tio

ns
 o

f 
di

se
as

es

78
2

Sy
m

pt
om

s 
in

vo
lv

in
g 

sk
in

 a
nd

 o
th

er
 in

te
gu

m
en

ta
ry

 ti
ss

ue
25

0
D

ia
be

te
s 

m
el

lit
us

26
8

V
ita

m
in

 D
 d

ef
ic

ie
nc

y
78

2
Sy

m
pt

om
s 

in
vo

lv
in

g 
sk

in
 a

nd
 o

th
er

 in
te

gu
m

en
ta

ry
 ti

ss
ue

71
9

O
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 d

is
or

de
rs

 o
f 

jo
in

t
78

6
Sy

m
pt

om
s 

in
vo

lv
in

g 
re

sp
ir

at
or

y 
sy

st
em

 a
nd

 o
th

er
 c

he
st

 s
ym

pt
om

s

42
7

C
ar

di
ac

 d
ys

rh
yt

hm
ia

s
20

8
L

eu
ke

m
ia

 o
f 

un
sp

ec
if

ie
d 

ce
ll 

ty
pe

38
0

D
is

or
de

rs
 o

f 
ex

te
rn

al
 e

ar
40

1
E

ss
en

tia
l h

yp
er

te
ns

io
n

25
0

D
ia

be
te

s 
m

el
lit

us
79

0
N

on
sp

ec
if

ic
 f

in
di

ng
s 

on
 e

xa
m

in
at

io
n 

of
 b

lo
od

59
9

O
th

er
 d

is
or

de
rs

 o
f 

ur
et

hr
a 

an
d 

ur
in

ar
y 

tr
ac

t
28

0
Ir

on
 d

ef
ic

ie
nc

y 
an

em
ia

s

V
72

Sp
ec

ia
l i

nv
es

tig
at

io
ns

 a
nd

 e
xa

m
in

at
io

ns
60

7
D

is
or

de
rs

 o
f 

pe
ni

s

78
9

O
th

er
 s

ym
pt

om
s 

in
vo

lv
in

g 
ab

do
m

en
 a

nd
 p

el
vi

s
28

1
O

th
er

 d
ef

ic
ie

nc
y 

an
em

ia
s

72
9

O
th

er
 d

is
or

de
rs

 o
f 

so
ft

 ti
ss

ue
s

V
03

N
ee

d 
fo

r 
pr

op
hy

la
ct

ic
 v

ac
ci

na
tio

n 
an

d 
in

oc
ul

at
io

n 
ag

ai
ns

t b
ac

te
ri

al
 d

is
ea

se
s

68
2

O
th

er
 c

el
lu

lit
is

 a
nd

 a
bs

ce
ss

33
2

Pa
rk

in
so

n’
s 

di
se

as
e

V
03

N
ee

d 
fo

r 
pr

op
hy

la
ct

ic
 v

ac
ci

na
tio

n 
an

d 
in

oc
ul

at
io

n 
ag

ai
ns

t b
ac

te
ri

al
 d

is
ea

se
s

25
5

D
is

or
de

rs
 o

f 
ad

re
na

l g
la

nd
s

72
4

O
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 d

is
or

de
rs

 o
f 

ba
ck

79
9

O
th

er
 il

l-
de

fi
ne

d 
an

d 
un

kn
ow

n 
ca

us
es

 o
f 

m
or

bi
di

ty
 a

nd
 m

or
ta

lit
y

V
58

E
nc

ou
nt

er
 f

or
 o

th
er

 a
nd

 u
ns

pe
ci

fi
ed

 p
ro

ce
du

re
s 

an
d 

af
te

rc
ar

e
24

4
A

cq
ui

re
d 

hy
po

th
yr

oi
di

sm

27
8

O
ve

rw
ei

gh
t, 

ob
es

ity
 a

nd
 o

th
er

 h
yp

er
al

im
en

ta
tio

n
V

58
E

nc
ou

nt
er

 f
or

 o
th

er
 a

nd
 u

ns
pe

ci
fi

ed
 p

ro
ce

du
re

s 
an

d 
af

te
rc

ar
e

V
82

Sp
ec

ia
l s

cr
ee

ni
ng

 f
or

 o
th

er
 c

on
di

tio
ns

15
1

M
al

ig
na

nt
 n

eo
pl

as
m

 o
f 

st
om

ac
h

V
65

O
th

er
 p

er
so

ns
 s

ee
ki

ng
 c

on
su

lta
tio

n
29

4
Pe

rs
is

te
nt

 m
en

ta
l d

is
or

de
rs

 d
ue

 to
 c

on
di

tio
ns

 c
la

ss
if

ie
d 

el
se

w
he

re

Choi et al. Page 16

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H
yp

er
te

ns
io

n
K

lin
ef

el
te

r’
s 

sy
nd

ro
m

e

IC
D

9
D

es
cr

ip
ti

on
IC

D
9

D
es

cr
ip

ti
on

58
5

C
hr

on
ic

 k
id

ne
y 

di
se

as
e 

(C
K

D
)

V
72

Sp
ec

ia
l i

nv
es

tig
at

io
ns

 a
nd

 e
xa

m
in

at
io

ns

27
4

G
ou

t
34

4
O

th
er

 p
ar

al
yt

ic
 s

yn
dr

om
es

V
49

O
th

er
 c

on
di

tio
ns

 in
ue

nc
in

g 
he

al
th

 s
ta

tu
s

14
6

M
al

ig
na

nt
 n

eo
pl

as
m

 o
f 

or
op

ha
ry

nx

Choi et al. Page 17

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Bahadori, Mohammad Taha, Liu, Yan, Xing, Eric P. Fast structure learning in generalized stochastic 
processes with latent factors. KDD. 2013:284–292.

Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Bergstra, James, Goodfellow, Ian J., Bergeron, 
Arnaud, Bouchard, Nicolas, Bengio, Yoshua. Theano: new features and speed improvements. Deep 
Learning and Unsupervised Feature Learning NIPS 2012 Workshop. 2012

Bengio, Yoshua. Deep learning of representations for unsupervised and transfer learning. Unsupervised 
and Transfer Learning Challenges in Machine Learning. 2012; 7:19.

Bengio, Yoshua, Courville, Aaron, Vincent, Pierre. Representation learning: A review and new 
perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2013; 35(8):1798–
1828.

Che, Zhengping, Kale, David, Li, Wenzhe, Bahadori, Mohammad Taha, Liu, Yan. Deep computational 
phenotyping. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining; ACM; 2015. p. 507-516.

Choi, Edward, Du, Nan, Chen, Robert, Song, Le, Sun, Jimeng. Constructing disease network and 
temporal progression model via context-sensitive hawkes process. ICDM. 2015

Choi, Edward, Bahadori, Mohammad Taha, Searles, Elizabeth, Coffey, Catherine, Sun, Jimeng. Multi-
layer representation learning for medical concepts. KDD. 2016a

Choi, Youngduk, Chiu, Chill I., Sontag, David. Learning low-dimensional representations of medical 
concepts. AMIA CRI. 2016b

Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun, Bengio, Yoshua. Empirical evaluation of gated 
recurrent neural networks on sequence modeling. 2014. arXiv preprint arXiv:1412.3555

De Winter, Willem, DeJongh, Joost, Post, Teun, Ploeger, Bart, Urquhart, Richard, Moules, Ian, 
Eckland, David, Danhof, Meindert. A mechanism-based disease progression model for comparison 
of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying 
type 2 diabetes mellitus. Journal of pharmacokinetics and pharmacodynamics. 2006; 33(3):313–
343. [PubMed: 16552630] 

Foucher, Yohann, Giral, Magali, Soulillou, Jean-Paul, Daures, Jean-Pierre. A semi-markov model for 
multistate and interval-censored data with multiple terminal events. application in renal 
transplantation. Statistics in medicine. 2007; 26(30):5381–5393. [PubMed: 17987670] 

Graves, Alex. Generating sequences with recurrent neural networks. 2013. arXiv preprint arXiv:
1308.0850

Graves, Alex, Jaitly, Navdeep. Towards end-to-end speech recognition with recurrent neural networks. 
ICML. 2014:1764–1772.

Graves, Alex, Liwicki, Marcus, Fernández, Santiago, Bertolami, Roman, Bunke, Horst, Schmidhuber, 
Jürgen. A novel connectionist system for unconstrained handwriting recognition. PAMI. 2009

Hammerla, Nils Yannick, Fisher, James, Andras, Peter, Rochester, Lynn, Walker, Richard, Plötz, 
Thomas. Pd disease state assessment in naturalistic environments using deep learning. AAAI. 
2015:1742–1748.

Hochreiter, Sepp, Schmidhuber, Jürgen. Long short-term memory. Neural computation. 1997

Hoffman, Judy, Guadarrama, Sergio, Tzeng, Eric S., Hu, Ronghang, Donahue, Jeff, Girshick, Ross, 
Darrell, Trevor, Saenko, Kate. Lsda: Large scale detection through adaptation. Advances in Neural 
Information Processing Systems. 2014:3536–3544.

Ito, Kaori, Ahadieh, Sima, Corrigan, Brian, French, Jonathan, Fullerton, Terence, Tensfeldt, Thomas, 
Alzheimer’s Disease Working Group. et al. Disease progression meta-analysis model in 
alzheimer’s disease. Alzheimer’s & Dementia. 2010; 6(1):39–53.

Jackson, Christopher H., Sharples, Linda D., Thompson, Simon G., Duffy, Stephen W., Couto, 
Elisabeth. Multistate markov models for disease progression with classification error. JRSS-D. 
2003

Johnson, Matthew J., Willsky, Alan S. Bayesian nonparametric hidden semi-markov models. The 
Journal of Machine Learning Research. 2013; 14(1):673–701.

Choi et al. Page 18

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keith, Norman M., Wagener, Henry P., Barker, Nelson W. Some different types of essential 
hypertension: their course and prognosis. The American Journal of the Medical Sciences. 1939; 
197(3):332–343.

Kiros, Ryan, Salakhutdinov, Ruslan, Zemel, Richard S. Unifying visual-semantic embeddings with 
multimodal neural language models. 2014. arXiv preprint arXiv:1411.2539

Kuusisto, Johanna, Koivisto, Keijo, Mykkäanen, L., Helkala, Eeva-Liisa, Vanhanen, Matti, Hänninen, 
T., Pyörälä, K., Riekkinen, Paavo, Laakso, Markku. Essential hypertension and cognitive function. 
the role of hyperinsulinemia. Hypertension. 1993; 22(5):771–779. [PubMed: 8225537] 

Lange, Jane. PhD thesis. 2014. Latent Continuous Time Markov Chains for Partially-Observed 
Multistate Disease Processes. 

Lange, Jane M., Hubbard, Rebecca A., Inoue, Lurdes YT., Minin, Vladimir N. A joint model for 
multistate disease processes and random informative observation times, with applications to 
electronic medical records data. Biometrics. 2015; 71(1):90–101. [PubMed: 25319319] 

Lasko, Thomas A., Denny, Joshua C., Levy, Mia A. Computational phenotype discovery using 
unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS one. 2013; 
8(6):e66341. [PubMed: 23826094] 

Linderman, Scott, Adams, Ryan. Discovering latent network structure in point process data. ICML. 
2014:1413–1421.

Liniger, Thomas Josef. PhD thesis, Diss. Eidgenössische Technische Hochschule ETH Zürich; 2009. 
Multivariate hawkes processes. Nr. 18403, 2009

Lipton, Zachary C., Kale, David C., Elkan, Charles, Wetzell, Randall. Learning to diagnose with lstm 
recurrent neural networks. 2016

Liu, Yu-Ying, Ishikawa, Hiroshi, Chen, Mei, Wollstein, Gadi, Schuman, Joel S., Rehg, James M. 
Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden 
markov model. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013. 
2013:444–451.

Mesnil, Grégoire, Dauphin, Yann, Glorot, Xavier, Rifai, Salah, Bengio, Yoshua, Goodfellow, Ian J., 
Lavoie, Erick, Muller, Xavier, Desjardins, Guillaume, Warde-Farley, David, et al. Unsupervised 
and transfer learning challenge: a deep learning approach. ICML Unsupervised and Transfer 
Learning. 2012; 27:97–110.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S., Dean, Jeff. Distributed representations 
of words and phrases and their compositionality. NIPS. 2013

Miotto, Riccardo, Li, Li, Kidd, Brian A., Dudley, Joel T. Deep patient: an unsupervised representation 
to predict the future of patients from the electronic health records. Scientific Reports. 2016; 
6(26094)

Mould DR. Models for disease progression: new approaches and uses. Clinical Pharmacology & 
Therapeutics. 2012; 92(1):125–131. [PubMed: 22617225] 

Nodelman, Uri, Shelton, Christian R., Koller, Daphne. UAI. Morgan Kaufmann Publishers Inc.; 2002. 
Continuous time bayesian networks; p. 378-387.

Ranganath, Rajesh, Perotte, Adler, Elhadad, Noémie, Blei, David M. The survival filter: Joint survival 
analysis with a latent time series. UAI. 2015

Saxe, Andrew M., McClelland, James L., Ganguli, Surya. Exact solutions to the nonlinear dynamics of 
learning in deep linear neural networks. 2013. arXiv preprint arXiv:1312.6120

Schmidhuber, Jürgen. Deep learning in neural networks: An overview. Neural Networks. 2015; 61:85–
117. [PubMed: 25462637] 

Stevens, Victor J., Rouzer, Carol A., Monnier, Vincent M., Cerami, Anthony. Diabetic cataract 
formation: potential role of glycosylation of lens crystallins. PNAS. 1978; 75(6):2918–2922. 
[PubMed: 275862] 

Sukkar, Rafid, Katz, Edward, Zhang, Yanwei, Raunig, David, Wyman, Bradley T. Disease progression 
modeling using hidden markov models. EMBC. 2012

Sutskever, Ilya, Vinyals, Oriol, Le, Quoc VV. Sequence to sequence learning with neural networks. 
NIPS. 2014:3104–3112.

Choi et al. Page 19

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tangri, Navdeep, Stevens, Lesley A., Griffith, John, Tighiouart, Hocine, Djurdjev, Ognjenka, Naimark, 
David, Levin, Adeera, Levey, Andrew S. A predictive model for progression of chronic kidney 
disease to kidney failure. Jama. 2011; 305(15):1553–1559. [PubMed: 21482743] 

Truccolo, Wilson, Eden, Uri T., Fellows, Matthew R., Donoghue, John P., Brown, Emery N. A point 
process framework for relating neural spiking activity to spiking history, neural ensemble, and 
extrinsic covariate effects. Journal of neurophysiology. 2005; 93(2):1074–1089. [PubMed: 
15356183] 

Veen, Alejandro, Schoenberg, Frederic P. Estimation of space–time branching process models in 
seismology using an em–type algorithm. JASA. 2008; 103(482):614–624.

Wang, Xiang, Sontag, David, Wang, Fei. Unsupervised learning of disease progression models. KDD. 
2014

Weiss, Jeremy, Natarajan, Sriraam, Page, David. Multiplicative forests for continuous-time processes. 
Advances in neural information processing systems. 2012:458–466.

Yosinski, Jason, Clune, Jeff, Bengio, Yoshua, Lipson, Hod. How transferable are features in deep 
neural networks? Advances in Neural Information Processing Systems. 2014:3320–3328.

Zaremba, Wojciech, Sutskever, Ilya. Learning to execute. 2014. arXiv preprint arXiv:1410.4615

Zhou, Jiayu, Liu, Jun, Narayan, Vaibhav A., Ye, Jieping. Modeling disease progression via fused 
sparse group lasso. KDD. 2012:1095–1103. [PubMed: 25309808] 

Zhou, Ke, Zha, Hongyuan, Song, Le. Learning social infectivity in sparse low-rank networks using 
multi-dimensional hawkes processes. AISTATS. 2013:641–649.

Zhu, Lingjiong. PhD thesis. New York University; 2013. Nonlinear Hawkes Processes. 

Choi et al. Page 20

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
This diagram shows how we have applied RNNs to solve the problem of forecasting of next 

visits’ time and the codes assigned during each visit. The first layer simply embeds the high-

dimensional input vectors in a lower dimensional space. The next layers are the recurrent 

units (here two layers), which learn the status of the patient at each timestamp as a real-

valued vector. Given the status vector, we use two dense layers to generate the codes 

observed in the next timestamp and the duration until next visit.
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Figure 2. 
Characterizing behavior of the trained network: (a) Prediction performance of Doctor AI as 

it sees a longer history of the patients. (b) Change in the perplexity of response to a frequent 

code (hypertension) and an infrequent code (Klinefelter’s syndrome).
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Figure 3. 
The impact of pre-training on improving the performance on smaller datasets. In the first 

experiment, we first train the model on a small dataset (red curve). In the second experiment, 

we pre-train the model on our large dataset and use it for initializing the training of the 

smaller dataset. This procedure results in more than 10% improvement in the performance.
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Table 1

Basic statistics of the the clinical records dataset.

# of patients 263,706 Total # of codes 38,594

Avg. # of visits 54.61 Total # of 3-digit D× codes 1,183

Avg. # of codes per visit 3.22 # of top level R× codes 595

Max # of codes per visit 62 Avg. duration between visits 76.12 days
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