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Abstract

Heterogeneity in tumor immune responses is a poorly understood yet critical parameter for 

successful immunotherapy. In two doxycycline-inducible models where oncogenic H-RasG12V is 

targeted either to the epidermal basal/stem cell layer with a Keratin14-rtTA transgene (K14Ras), or 

committed progenitor/suprabasal cells with an Involucrin-tTA transgene (InvRas) we observed 

strikingly distinct tumor immune responses. On threshold doxycycline levels yielding similar Ras 

expression, tumor latency, and numbers, tumors from K14Ras mice had an immunosuppressed 

microenvironment while InvRas tumors had a pro-inflammatory microenvironment. On a Rag1−/− 

background InvRas mice developed fewer and smaller tumors that regressed over time while 

K14Ras mice developed more tumors with shorter latency than Rag1+/+ controls. Adoptive 

transfer and depletion studies revealed that B and CD4 T cell cooperation was critical for tumor 

yield, lymphocyte polarization, and tumor immune phenotype in Rag1+/+ mice of both models. 

Coculture of tumor-conditioned B cells with CD4 T cells implicated direct contact for Th1 and 

regulatory T cell (Treg) polarization, and CD40-CD40L for Th1, Th2, and Treg generation, a 

response not observed from splenic B cells. Anti-CD40L caused regression of InvRas tumors but 

enhanced growth in K14Ras, while a CD40 agonist mAb had opposite effects in each tumor 

model. These data show that position of tumor initiating cells within a stratified squamous 

epithelial tissue provokes distinct B and CD4 T cell interactions, which establish unique tumor 

microenvironments that regulate tumor development and response to immunotherapy.
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Introduction

Heterogeneity in tumor immune responses are well documented but the underlying 

mechanisms generating distinct tumor immune phenotypes remain poorly understood. Many 

cancers develop an immunosuppressive microenvironment, dampening antitumor immunity 
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and facilitating tumor growth (1–3), whereas in others, chronic inflammation creates 

microenvironments that increase the risk of cancer development and enhance tumor growth 

(4, 5). Molecular and immune phenotyping has revealed the heterogeneity of underlying 

genetic changes and signaling pathways, which is linked to different immune signatures, 

responses to therapy, and outcomes for individual patients with the same tumor types (6–9). 

Different immune microenvironments show heterogeneity at the cellular level: Regulatory T 

cells (Tregs) (10, 11), helper T cells (Th cells) (12), B cells (13, 14), and myeloid cells (15, 

16) have been described with both tumor-suppressive and tumor-promoting properties. 

Between different tumors, this may reflect diverse interactions between multiple cell types 

within the tumor microenvironment, differences in tumor cell genetics and signaling, tumor 

type, or progression of tumors through immunoediting to escape (17). This presents 

challenges in developing immunotherapies, as patients may show improved or worsened 

prognosis depending upon relationships between the tumor and its immune 

microenvironment. Patients with melanoma (18), lung cancer (19), gastric cancer (20), renal 

cell carcinoma (21), and head and neck cancer (22, 23) have all benefited from advances in 

immune checkpoint blockade, but tumors perpetuated by chronic inflammation, such as 

colorectal carcinoma (CRC) (24), hepatocellular carcinoma (25), as well as hematological 

malignancies, benefit from reducing tumor-promoting inflammation (26).

It is not known to what extent the immune phenotype of a tumor is impacted by the initiating 

transformed cell. Most solid tumors arise from hierarchically organized epithelia comprised 

of tissue stem cells, transit amplifying cells, and differentiated cells (27, 28). Studies in 

murine models of cutaneous cancer in which c-H-Ras mutations drive tumor development 

show that carcinogen treatment or oncogene activation in different progenitor cell 

populations can give rise to distinct tumor phenotypes (29–31). We previously showed that 

benign epidermal squamous lesions with a high frequency for progression to squamous cell 

carcinoma (SCC) exhibit a gene expression pattern associated with reduced inflammation, 

relative to lesions with a low frequency for progression (32). To test if oncogene activation 

in different tumor-initiating cell populations impacts the tumor immune response, we 

generated mice with inducible expression of human H-RasG12V targeted to either basal/stem 

cells or committed progenitor/suprabasal cells of the epidermis (28). Here we show that 

within a single epithelium the same driver oncogene can generate opposite immune 

responses and response to immunotherapies, depending on the origin of the tumor initiating 

cell. These distinct immune responses of either immunosuppression or tumor-promoting 

inflammation are driven by B cell and CD4 T cell cooperation within the tumor 

microenvironment. These results offer insight into the intricacies of modulating the tumor 

immune microenvironment, and provide guidance for the application and scope of 

immunotherapeutics in cancer treatment.

Materials and Methods

Animal Studies

Tetracycline-regulated transactivators (tTA) driven by involucrin (Inv) [InvtTA (33)] 

(obtained from Dr. Julie Segre) or reverse tetracycline-regulated transactivators (rTA) driven 

by Keratin-14 (K14) [K14rTA (34)] mice (The Jackson Laboratory) were crossed with 
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homozygous tetOH-RasG12V (35) mice, (NCI Mouse Repository) producing double 

transgenic (DT) InvtTA/tetOH-RasG12V (InvRas) or K14rTA/tetOH-RasG12V (K14Ras) 

mice. Suppression of transgene expression in InvRas mice was accomplished with 10 μg/mL 

doxycycline hyclate (Sigma-Aldrich) administered ad libitum in drinking water. Tumors 

were induced in shaved 7 week old mice by reducing doxycycline to 250 ng/ml for InvRas 

mice and administration of 7.5 μg/mL doxycycline in drinking water to K14Ras mice. 

Tumors were counted and measured every 48–72 hours, and harvested 28–32 days following 

Ras induction, or if animals were moribund. To control for gender differences, when 

possible equal numbers of male and female mice were used, and all data represent results 

from both genders. Cell counts were conducted using a Cellometer Auto T4 Cell Viability 

Counter (Nexcelom Bioscience). All mice were on the FVB/n background.

To deplete leukocytes, mice were given 500 μg of GK1.5 (anti-CD4), 5D2 (anti-CD20), 

RB6-8C5 (anti–GR-1), isotype control HB94 or anti-ragweed IgG weekly intraperitoneally 

beginning 7 days prior to tumor induction, or every other day beginning one day prior to H-

RasG12V induction (anti–GR-1). GK1.5, RB6-8C5 and HB94 hybridomas were obtained 

from ATCC, 5D2 and anti-IgG antibody were obtained from Genentech. Anti-CD40L 

(BioXCell) was injected 7 days prior to tumor induction, or upon tumor presentation, 

followed previously defined methods (36). CD40 agonist–treated mice were injected with 

100 μg FGK4.5 (BioXCell) weekly beginning at indicated days. Anti-CD40L and CD40 

agonist antibodies were tested to be free of endotoxin (< 0.002 EU/μg, BioXCell). Rag1−/− 

mice were reconstituted by retro-orbital administration of 5 million CD4 T cells or B cells 

from spleens of healthy age-matched syngenic mice (StemCell Easysep), or phosphate-

buffered saline (PBS). Studies were performed in compliance with the U.S. Department of 

Health and Human Services Guide for the Care and Use of Laboratory Animals, and after 

approval by The Pennsylvania State University Institutional Animal Care and Use 

Committee.

Flow Cytometry

Skin leukocytes were isolated as previously described (37), incubated with antibodies in 1% 

BSA/PBS at 1 × 107 cells/mL. Leukocytes were stimulated for intracellular cytokines in 

complete RPMI 1640 medium (38). Following 4% paraformaldehyde fixation, cells were 

permeabilized and stained using 0.2% Saponin/1% BSA/1x PBS at 1 × 107 cells/mL. Cells 

were analyzed using an LSRFortessa Cytometer (BD Biosciences) and FlowJo version 7. 

Myeloid cells were gated on Live CD45+, CD11b+, followed by Ly6G+/Ly6C+ for 

neutrophils, Ly6G−/Ly6C+ for MDSC, and Ly6G−/Ly6C−/F4/80+ for macrophages. CD4 T 

cells were gated on Live CD45+, CD3+, CD4+, followed by IFNγ (Th1), IL-4 (Th2), IL-17 

(Th17), or FoxP3 (Treg). B cells were gated on Live CD45+, CD19+, CD45R+, MHCII+ 

followed by CD1dhi/CD5+ (Breg), and CD40+/CD80+/CD86+ (APC+). Live cells were 

identified using LIVE/DEAD® Fixable Yellow Dead Cell Stain Kit (Life Technologies).

Protein and RNA Analysis

Protein and RNA was isolated from tumors and analyzed by immunoblotting and RT-qPCR 

respectively, as described (39), using β-actin as loading control.
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Histological Analysis

Formalin fixed sections were stained with hematoxylin and eosin using a ST5010 

Autostainer XL (Leica Biosystems). For anti-CD45 and anti-Ki67 immunohistochemistry, 

formalin fixed sections were pretreated with Tris-based antigen unmasking solution (Vector 

labs) according to manufacturer’s protocol. Antibodies were detected using 

VECTASTAIN® ImmPRESS (Vector Laboratories). Anti-keratin immunohistochemistry 

was done on ethanol-fixed sections with ImmPACT DAB (Vector Laboratories) detection 

system. For co-immunofluorescence, 7 μm frozen sections were incubated with anti-CD4 

(1:100, Biolegend) followed by IgG-Alexa Fluor® 647 (1:500, Biolegend), biotinylated anti-

CD19 (1:100, Biolegend), streptavidin-Alexa Fluor® 488 (1:500, Biolegend) using the 

Polink Double Staining System (GBI Labs). VECTASHIELD Mounting Medium with DAPI 

(Vector Laboratories) was used to visualize nuclei.

Lymphocyte Coculture

CD4 T cells and B cells were purified from spleen or tumor tissue and plated onto 24-well 

plates coated with mAbs to CD3 and CD28 (Biolegend). Lymphocytes were suspended in 

complete RPMI1640 media and CD4 T cells were added first followed by hamster IgG, anti-

CD40L, or Transwell inserts (BD Falcon®), then B cells. Cells were incubated for 7 days at 

37°C and 5%CO2 with fresh media added every 48 hours and stained for flow cytometry as 

indicated.

Suppression Assays

Negatively selected purified B cells from tumor tissue and CD4 T cells from spleens were 

cocultured seven days following staining with 2.5μM CFSE. Harvested cells were analyzed 

by flow cytometry for CFSE dilution. For MDSC suppression assays, mice were placed on 

doxycycline chow for 4 days (Bio-Serv) (K14Ras), or 7 days doxycycline removal (InvRas), 

splenocytes were stained with αCD11b, αLy6G, and αLy6C, and then sorted using a 

Cytopeia Influx Sorter (BD Biosciences). Sorted cells were incubated with stimulated naïve 

CD8 T cells for 72 hours and analyzed by flow cytometry for CFSE dilution.

Statistical Analysis

For experiments with only two groups of study, Student’s t tests were used. If three or more 

groups were compared, one-way ANOVA was used with Newman-Keuls post-analysis. All 

figures, graphs, and statistical analyses were made using GraphPad Prism 4.0. *, P < 0.05; 

**, P < 0.01; ***, P < 0.001.

Results

Distinct immune phenotypes generated by H-RasG12V expression in different epidermal 
cell populations

Papillomas at high risk or low risk for progression to SCC have distinct immune signatures 

(32). Because these tumors may arise from different initiating cells, we examined whether 

targeting oncogenic Ras to different cellular compartments of the murine epidermis, using 

inducible models of squamous tumorigenesis, altered tumor-associated immune responses. 
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These models allow for specific targeting of the activated H-RasG12V oncogene to either the 

basal/stem cell (K14Ras) or committed progenitor/suprabasal epidermal compartments (28). 

When 7-week-old InvRas and K14Ras bitransgenic mice were placed on threshold doses of 

doxycycline, focal tumors arose in both groups with similar kinetics (first appearance 7–10 

days) and numbers (Fig. 1A), and expression of H-Ras and ERK1/2 (phosphorylated and 

total) (Supplementary Fig. S1A), although by 24 days the average volume of K14Ras tumors 

was greater than InvRas tumors (Fig. 1B). Immunohistochemical staining with hematoxylin 

and eosin (H&E) and anti-keratin showed that basal expression of H-RasG12V generated 

SCC), whereas suprabasal expression induced squamous papillomas (Supplementary Fig. 

S1B), similar to previous studies (29). Despite similar expression, targeting H-RasG12V to 

different cell populations within the epidermis caused distinct tumor immune responses. 

Expression of Th1- (TNFα), Th2- (IL33, thymic stromal lymphoprotein (TSLP), and 

lymphotoxin (LT)), and Th17- (IL6, TGFβ) associated genes was significantly higher in 

InvRas than K14Ras tumors. Although not statistically significant, IL12 was also more 

highly expressed in InvRas. In addition to the overall reduced level of pro-inflammatory 

cytokines, K14Ras tumors expressed more immunosuppressive cytokine IL10, although no 

differences were observed for IL35 (Fig. 1C–F).

Consistent with these cytokine signatures, InvRas tumors had significantly higher 

percentages of Th2 cells and more pro-inflammatory antigen-presenting B cells (APC+), 

whereas K14Ras tumors had significantly higher percentages and numbers of Tregs and 

Bregs (Fig. 1G–J). Tumor-infiltrating B cells from K14Ras, but not InvRas, tumors caused 

significant suppression of CD4 proliferation in coculture (Fig. 1K), confirming their specific 

regulatory capacity. No significant differences in cell numbers or percentages were observed 

in splenic T or B cells (Supplementary Fig. S1C and D). CD45 immunohistochemistry 

showed significantly more leukocytes infiltrating into InvRas tumors compared to K14Ras 

(Supplementary Fig. S2).

To rule out that differences observed in immune phenotype were indirectly the result of 

distinct tumor phenotypes, we induced strong expression of Ras in both models and 

examined the response after 5 days. High Ras expression caused neutrophil microabscesses 

in InvRas mice but not K14Ras (Supplementary Fig. S3A). Additionally, patterns of 

cytokine expression (Supplementary Fig. S3B) were distinct and circulating CD11b+ Ly6G− 

cells that could suppress CD8 T cell proliferation in vitro were significantly expanded in 

K14Ras but not InvRas mice, in agreement with increased arginase1 expression in 

hyperplastic K14Ras skin (Supplementary Fig. S3C–E). Together these results show that 

responses to oncogenic Ras are distinct at the earliest time points, even under conditions of 

supraphysiological Ras expression.

Lymphocytes promote or suppress tumor development dependent on tumor-initiating cell

To determine the specific effects of lymphocytes on Ras-driven tumor development, both 

models were crossed onto a Rag1−/− background and tumors induced as described above. 

K14RasRag1−/− mice developed a significantly greater number of tumors that grew faster 

than Rag1+/+ counterparts, with few mice surviving beyond 14 days (Fig. 2A–C). In 

contrast, tumors in InvRasRag1−/− mice began to regress 15 days after Ras induction; by 18 
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days Rag1+/+ mice had significantly more tumors, despite an initially similar tumor 

incidence. Additionally, tumors developing in InvRasRag1−/− mice were smaller on average 

than tumors from their Rag1+/+ counterparts, but variability in tumor size prevented 

statistical significance (Fig. 2D–F). The percentages of tumor-infiltrating neutrophils in 

K14Ras mice increased in the absence of lymphocytes (Fig. 2G,H), but there was a striking 

reduction in neutrophils in InvRasRag1−/− mice, leading to a change in proportion of 

myeloid cell populations within the tumor (Fig. 2I,J). Additionally, CD45 staining confirmed 

reduced leukocyte infiltration into tumors of InvRasRag1−/− mice, but increased in 

K14RasRag1−/− mice, and leukocytes infiltrated the tumor parenchyma in all models 

(Supplementary Fig. S2). When H-RasG12V was strongly induced in the epidermis of mice 

depleted of neutrophils with anti–GR-1, proliferation of basal cells was significantly reduced 

compared to isotype control (Supplementary Fig. S2), suggesting that tumor-infiltrating 

neutrophils could enhance tumor growth. Together these results suggested that 

immunoregulation in basal/stem cell Ras-driven tumors was associated with a decreased 

tumor burden whereas greater inflammation in committed progenitor/suprabasal-Ras driven 

tumors led to enhanced tumor burden.

Tumor-initiating cell drives distinct CD4 T cell – B cell interactions that determine immune 
response

The absence of lymphocytes generated opposite responses between the tumor models. We 

therefore determined which lymphocyte subsets drove the distinct tumor responses, using 

adoptive transfer of CD4, CD8, and B cells alone or in combination into Rag1−/− mice. 

Although adoptive transfer of naïve CD4 T cells or B cells alone had no significant effect on 

tumor numbers in K14RasRag1−/− mice, co-transfer of CD4 T cells with B cells reduced 

tumor numbers to Rag1+/+ levels, although suppressive effects were lost after 20 days (Fig. 

3A). Adoptive transfer of CD4 T cells or B cells into InvRasRag1−/− mice suppressed tumor 

development, whereas co-transfer restored a tumor-promoting phenotype similar to Rag1+/+ 

mice until day 20 (Fig. 3B). Adoptive transfer of CD8 T cells or co-transfer of CD8 with B 

cells reduced tumor numbers in K14Ras and InvRasRag1−/− mice, but this was not 

statistically significant compared to Rag1−/−. Although co-transferred K14Ras mice had 

fewer tumors, epidermal hyperplasia was more pronounced and mice became moribund 

more quickly, suggesting that this was not a protective immune response. CD8 T cells 

caused an overall suppression of both Bregs and APC+ subsets, inconsistent with 

phenotypes observed in Rag1+/+ mice (Supplementary Fig. S4A–D), suggesting that CD8 T 

cells have little overall impact on determining the Rag1+/+ immune responses in either 

model. Supporting the opposing functions of lymphocytes in these two tumor models, 

depletion of either CD4 T cells or B cells from K14RasRag1+/+ mice resulted in a similar 

increase in tumor number, whereas depletion from InvRasRag1+/+ mice resulted in 

suppression of tumor formation (Fig. 3C and D). Together these data suggest that the nascent 

tumor microenvironment programs CD4 T and B cells towards distinct cooperating 

phenotypes that either suppress (K14Ras) or enhance (InvRas) tumor development.

To test this, we examined the phenotype of tumor infiltrating lymphocytes (TILs) in tumors 

from mice receiving CD4 T and B cells alone or together. TILs from CD4 T-cell transfers 

into K14RasRag1−/− mice were skewed towards a pro-inflammatory Th1 phenotype with 
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reduced Tregs, whereas co-transfer restored Th1 and Tregs to Rag1+/+ levels (Fig. 3E). In 

contrast, TILs from CD4 T-cell transfers into InvRasRag1−/− mice exhibited polarization 

towards Tregs, with slightly reduced percentages of Th1 cells. Importantly, co-transfer 

caused a minor increase in Th1 cells and a significant increase in Th17 cells, but reduced 

Tregs (Fig. 3F). Co-transfer of B and CD4 T cells selectively restored expression of CD4 

associated genes to Rag1+/+ levels of each model. Co-transfer into K14RasRag1−/− mice 

reduced expression of IL12, IL33, TSLP, and IL35 in tumors, whereas co-transfer into 

InvRasRag1−/− mice completely restored IL33 and IL35 expression. IL12 expression was 

higher and TSLP expression was lower than Rag1+/+ in co-transferred tumors but not 

statistically different from Rag1+/+. IL1β expression was not significantly affected by co-

transfer (Supplementary Fig. S5A–E). Co-transfer also regulated the phenotype of B-cell 

TILs (TILBs) in opposite directions: B cells transferred into K14RasRag1−/− mice had 

increased APC+ percentages, whereas co-transfer restored APC+ B cells to that of Rag1+/+ 

tumors (Fig. 3G). In contrast, co-transfer into InvRasRag1−/− mice decreased the percentage 

of Bregs compared to B-cell transfer, although APC+ B cells were not affected (Fig. 3H). 

These altered lymphocyte phenotypes had pronounced effects on tumor-infiltrating 

neutrophils. Only co-transfer of CD4 T and B cells could reduce neutrophil percentages to 

that of Rag1+/+ levels in K14RasRag1−/−, and recover neutrophils in InvRasRag1−/− (Fig. 3I 

and J), likely the result of the recovery and suppression of Tregs, respectively. The 

percentage of dendritic cell (DC) subsets within the skin draining lymph nodes or skin 

differed little between K14Ras and InvRas mice, except for plasmacytoid DC and CD11b− 

DC, but these were not closely correlated with the overall immunophenotype, as InvRas 

tumors had fewer pro-inflammatory plasmacytoid dendritic cells and K14Ras tumors had 

fewer immunoregulatory CD11b− lymphoid dendritic cells (Supplementary Fig. S6A–J), 

indicating that the polarizing effect could not be carried out by dendritic cells alone, and that 

B cell presence was necessary for proper CD4 T cell polarization. These results indicate that 

CD4 T cells and B cells cooperated to produce an immunosuppressive microenvironment in 

K14Ras mice that constrained tumor outgrowth, whereas cooperation in InvRas mice 

resulted in a pro-inflammatory microenvironment supporting tumor growth.

Divergent polarization of CD4 T cells required direct contact and CD40/CD40L interaction

Transferred B cells in both models were largely present within tumors, but not in secondary 

lymphoid nodes (Supplementary Fig. S7), which prompted us to hypothesize that B cells 

largely affect CD4 T-cell polarization within the tumor microenvironment. To test the effects 

of tumor-conditioned B cells on CD4 polarization, we cocultured TILB or splenic B cells 

from tumor bearing mice or healthy controls with anti-CD3/CD28–stimulated naïve CD4 T 

cells from nontransgenic mice. K14Ras TILBs polarized naïve CD4 T cells towards Treg 

and away from Th2, whereas InvRas TILB facilitated Th2, but not Treg, polarization. 

Splenic B cells from tumor-bearing mice had a distinct phenotype, suppressing both Treg 

and Th1 polarization relative to stimulated controls, but this was not different from B cells of 

nontransgenic mice. These results suggested that the specific polarization of CD4 T cells by 

B cells required conditioning by the tumor microenvironment (Fig. 4A–D). Co-

immunofluorescence showed these cells in direct contact within the tumor parenchyma of 

both models, indicating a potential mechanism for interaction within the tumor 

microenvironment (Fig. 4E,F). We did not observe any tertiary lymphoid structures within 
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tumors of either model, as others have previously reported (13, 40, 41), although this may be 

due to differences in model systems or time-course.

To determine if direct contact was needed for polarization, stimulated naïve CD4 T cells 

were separated from tumor-conditioned B cells of either K14Ras or InvRas mice using 

transwell inserts. K14Ras tumor-conditioned B cells significantly increased the overall 

percentage of Tregs, but did not affect pro-inflammatory subsets. Additionally, when direct 

contact was blocked, the percentage of Th1 cells increased and Tregs significantly 

decreased. These data suggest that direct contact from K14Ras TILBs could polarize naïve 

CD4 T cells towards a Treg phenotype and away from Th1 (Fig. 5A–D). In contrast, 

blocking contact from InvRas TILB caused a decrease in Th1 and Th17 cells, and a 

significant increase in Tregs (Fig. 5A–D). Preventing direct contact had no effect on the 

ability of InvRas TILB to polarize Th2 cells.

The CD40/CD40L pathway is critical for the establishment of humoral responses as 

perpetuated by Th2/B cell interactions, is implicated in immune responses to several 

cancers, and is a potential target for immune checkpoint blockade (42). To test if CD40/

CD40L interactions were important for TILB effects on CD4 polarization, a CD40L 

blocking antibody (MR-1, BioXcell) was included in coculture assays. Blockade of CD40/

CD40L between K14Ras TILBs and naïve stimulated CD4 T cells caused a significant 

increase in percentage of Th1 and Th2 cells and simultaneously decreased the percentage of 

Tregs, with little effect on Th17 (Fig. 5E–H). In contrast, blockade of CD40/CD40L from 

InvRas TILBs caused a marked increase in Treg differentiation and a slight, but not 

statistically significant, reduction in all pro-inflammatory CD4 subsets (Fig. 5E–H). Thus, 

the effects on CD4 polarization caused by blockade of direct cell-cell contact with transwell 

inserts was likely due to inhibition of CD40/CD40L interactions between TILBs and CD4 T 

cells. We conclude that CD40/CD40L interactions were the primary mechanism by which 

CD4 T cells and B cells interacted within the tumor microenvironment to orchestrate the 

Th1/Treg balance, and that Th2 polarization by InvRas TILB was a direct result of CD40 

ligation.

Tumor initiating cell governs in vivo responses to therapeutic antibodies targeting CD40/
CD40L

Given the distinct tumor immune responses generated by targeting H-RasG12V to different 

epidermal cell populations, and divergent effects of CD40/CD40L blockade on TILB 

polarization of CD4 T cells, we examined how in vivo blockade of CD40/CD40L would 

affect tumor development. In a pretreatment protocol, mice were given anti-CD40L seven 

days prior to H-RasG12V induction, and were given weekly boosters as described (35). In 

anti-CD40L–treated K14Ras mice, tumor numbers were slightly elevated compared to 

isotype control injected mice (Fig. 6A). In contrast, anti-CD40L pretreatment significantly 

reduced the number of tumors that developed in InvRas mice (Fig. 6B). To determine the 

effect of CD40 blockade in a therapeutic setting, mice were injected with anti-CD40L or 

isotype control antibody after tumors became palpable on either day 14 or day 11 for 

K14Ras and InvRas mice respectively. Under these conditions, tumor numbers were not 

significantly affected over time in either tumor model (Fig. 6C,D). Anti-CD40L treatment 
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significantly altered tumor growth in opposite directions. In K14Ras mice, anti-CD40L 

caused a 10-fold greater increase in tumor volume relative to initial tumor volume compared 

to isotype control injected mice (200-fold increase versus 20-fold increase) (Fig. 6E). In 

contrast, anti-CD40L injection in tumor bearing InvRas mice prevented further tumor 

growth or caused regression after an initial period of growth. Continuous tumor growth (70-

fold over starting volume on day 22) was only observed in isotype control injected mice 

(Fig. 6F). The decrease in fold change in InvRas isotype control mice from day 22 to day 24 

occurred due to sacrifice of moribund mice at day 22 for humane endpoints.

CD40 agonist antibodies are in clinical trials as therapeutic antibodies (43). To determine if 

opposite tumor responses would also occur when CD40 was activated, K14Ras or InvRas 

mice were injected with FGK4.5, a CD40 agonist mAb, after tumors had developed. CD40 

agonist mAb significantly reduced the number of tumors in K14Ras mice, but had no effect 

on tumor number in InvRas (Fig. 6G,H). Furthermore, and in contrast to treatment with anti-

CD40L, tumors in CD40 agonist treated K14Ras mice grew much more slowly compared to 

isotype control with only a 10-fold increase in volume compared to 60-fold for isotype 

control relative to starting volume (Fig. 6I). In contrast, tumors from InvRas mice treated 

with CD40 agonist had on average a 190-fold increase in tumor volume relative to starting 

volume, as compared to 50-fold increases in isotype controls at study end (Fig. 6J). Together 

these data show that the specific tumor immune microenvironment could alter the direction 

of response to therapeutic antibodies.

Discussion

Here we show that oncogenic HRasG12V expression within cell types with distinct fates in 

the differentiation hierarchy of the epidermis generated highly divergent immune responses 

that promoted or suppressed tumor development. When expressed in the basal/stem cell or 

committed progenitor/suprabasal compartments, oncogenic Ras caused either an 

immunosuppressive Treg dominated, or pro-inflammatory Th2 dominated, 

microenvironment; B cell–driven Treg or Th1/2 polarization via CD40/CD40L ligation; and 

anti-CD40L–mediated promotion or suppression of tumor development. Although the 

models utilize an inducible system and therefore likely have higher expression of Ras than 

mutations of the endogenous locus, we have titered doxycycline to threshold doses that give 

focal tumor development and similar expression of oncogenic Ras and activation of 

downstream signaling. The mechanism by which these distinct immune responses are 

generated is not clear. Given the distinct location and properties of dendritic cell subsets in 

the skin, differential activation of one or more subsets in response to Ras expression in 

keratinocytes is a possibility, although we did not observe differences between the tumor 

models in DC subsets in the skin draining lymph nodes shortly after induction of Ras. 

Differential activation or polarization of skin resident γδ T cells, previously shown to play 

an important role in squamous tumor development (44), could also be important. 

Keratinocytes themselves are known to produce inflammatory mediators such as CD40 (45), 

TNFα, and multiple interleukins that can mediate both pro and antitumor inflammation (46). 

Although the ERK1/2 MAPK pathway was activated similarly in both models, it is possible 

that other Ras effector pathways are differentially engaged in keratinocytes, leading to 

divergent expression of immunoregulatory genes and pathways. That distinct cytokine 
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expression and immune responses occurred rapidly in the epidermis following induction of 

strong Ras expression supports the idea that the distinct tumor immune phenotypes observed 

reflects distinct properties of the tumor-initiating cell rather than a consequence of tumor 

stage or histology. Nevertheless, these results, together with our previous study showing that 

chemically induced tumors with a high-risk and low-risk for progression to SCC had distinct 

immune signatures (32), suggest that heterogeneity in human cancer immune phenotypes 

within single tissues could reflect the location of the cancer-initiating cell or cancer stem cell 

within the stem cell hierarchy of the tissue.

As no lymphocyte was able to restore a Rag1+/+ tumor phenotype when transferred to 

K14Ras or InvRas Rag1−/− mice, we co-transferred either CD4 or CD8 T cells with B cells 

into Rag1−/− mice of each model. In K14Ras mice, CD8 plus B cell co-transfer caused fewer 

tumors, due to a generalized epidermal hyperplasia but with rapid mortality, whereas in 

InvRas mice co-transfer was unable to restore tumor development. CD4 T and B cell co-

transfers restored Rag1+/+ tumor numbers in both models, without a generalized epidermal 

hyperplasia, suggesting that the interactions between these two subsets were critical for the 

observed immunosuppressive and tumor promoting immune responses. Both CD4 T cells 

and B cells have been extensively studied in a number of human cancers and mouse models, 

with each having distinct pro and antitumor functions. Tregs have a controversial role in 

SCC. They inhibit antitumor responses through CTLA-4, CD25, CD39, CD73, IL10, and 

TGFβ in a tumor antigen–specific manner (47), and also increase growth and metastasis 

directly through RANK signaling (48). On the other hand, Tregs are associated with 

improved prognosis in SCC, as higher Treg counts in early stage oral SCC are associated 

with improved survival and decreased lymph node metastasis (47). Bregs display fewer 

surface CD20 molecules, causing anti-CD20 administration to enrich for Bregs within the 

total B cell repertoire (49). Although Tregs and Bregs are most commonly associated with 

tumor escape (13), we find that the predominant Treg and Breg immunosuppressive 

phenotype found in the K14Ras tumors was associated with suppression of tumor 

outgrowth, in agreement with previous reports in both mouse and human SCC (50–52). The 

likely mechanism for this tumor suppression is through inhibition of neutrophils that 

enhance proliferation of transformed keratinocytes, as CD4 T and B cell co-transfer 

significantly reduced percentages of tumor-infiltrating neutrophils. Tregs improve clinical 

outcome in many hematological cancers including follicular lymphoma, diffuse large B cell 

lymphoma, and Hodgkin lymphoma (53). Additionally, Th2 cells are also associated with 

tumor escape in pancreatic, mammary, and colitis-associated cancers, specifically attributed 

to IL13 (54), IL4- and IL10-inducing M2 macrophages (55), and TGFβ and IL5 (56), 

respectively. We find that Th2 cells predominate in a pro-inflammatory setting that promotes 

tumor formation.

Although the cross-polarizing roles of CD4 T cells and B cells has been previously reported 

(13), we have now directly compared these interactions in a stratified squamous epithelium, 

comparing tumors of stem and differentiated cell origins. We show that direct interaction and 

cross polarization between CD4 T and B cells through CD40/CD40L is essential for 

establishment of both tumor immune phenotypes. Adoptive transfer studies showed that both 

lymphocytes were needed to reproduce the tumor immune phenotype of Rag1+/+ mice. 

These results also suggest that APC function of innate leukocytes such as dendritic cells is 

Podolsky et al. Page 10

Cancer Immunol Res. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not sufficient to polarize CD4 T cells or B cells towards the immune phenotype seen in 

Rag1+/+ mice. Specific depletion of these lymphocytes enhanced tumor numbers in K14Ras 

and suppressed in InvRas mice. However, although CD4 T cells could be fully depleted, 

anti-CD20 depletion enriched for Bregs, as shown by others (49) (data not shown), 

suggesting that simple disruption of the CD4 and B cell dynamic results in perturbation of 

the Rag1+/+ tumor response.

Co-transferred B cells were found only in tumor tissue and not inguinal lymph nodes, 

indicating a localized immune response (Supplementary Fig. S7). In many models, including 

mouse and human SCC, tertiary lymphoid structures are found within the tumor 

microenvironment, acting as a surrogate localized lymph node (13, 40, 41). We did not 

observe lymphoid structures within tumor tissue of either mouse model, and lymphocytes 

appeared to be localized within the tumor parenchyma. Supporting the idea that the critical 

interaction between B and T cells occurred within the tumor, we found that only B cells 

from tumor tissue, but not splenic B cells of tumor-bearing mice, could specifically polarize 

CD4 T cells in coculture towards the Rag1+/+ phenotype. The specific tumor 

microenvironment was critical for determining the ability and direction of naïve CD4 

polarization by TILBs. Although direct contact in coculture was essential for TILB 

polarization of Tregs and Th1 cells, prevention of contact had no effect on Th2 percentages, 

compared to coculture controls. Blockade of CD40L showed similar results as transwell 

inserts, but also inhibited B cell effects on Th2 polarization. Activated B cells can secrete 

soluble CD40 (57), thus although direct cell contact is necessary for polarizing signals of 

Th1 and Tregs, it is possible that Th2 polarization is influenced by B cell–derived CD40. B 

cells can both promote or suppress tumor formation by acting as plasma cells, APCs, or 

Bregs, secreting TGFβ, IL10, IL4, and other interleukins to modulate pro and anti-

inflammatory CD4 and CD8 T cells (13). Specific downstream mechanisms beyond CD40/

CD40L were not determined in these studies, however alternative local cytokine expression 

by B cells are the most likely mechanism driving the direction of CD40-induced CD4 

polarization. The CD40/CD40L costimulatory pathway both enhances and prolongs contact 

between CD4 T cells and B cells, inducing upregulation of CD80 and CD86 (58). It is likely 

that by inhibiting this pathway, tumor-promoting pro-inflammatory responses were blocked 

in InvRas pretreatment protocols, leading to the significant decrease in tumor number. 

Although our results show the importance of this pathway in regulating polarization both in 
vivo and in vitro, the studies in mice utilized global CD40L blockade or CD40 activation. 

While the results agree with our hypothesis, we cannot rule out that blockade or activation of 

dendritic cell and keratinocyte-based CD40 could have occurred and impacted the observed 

effects on tumor formation. However, the lack of differences in dendritic cell activity, and 

the inability for Rag1−/− mice to specifically polarize CD4 T cells or B cells in single 

adoptive transfers, suggests that neither keratinocytes nor dendritic cells could specifically 

polarize these lymphocytes, as Rag1+/+ phenotypes were only observed with both CD4 T 

cells and B cells simultaneously present.

Our results show that the composition and functionality of the tumor immune 

microenvironment influence the response to therapeutic mAbs. Treatment of preexisting 

basal/stem cell derived tumors with anti-CD40L enhances tumor growth, whereas CD40 

agonist treatment prevents new formation and growth of existing tumors. In contrast, 
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treatment of committed progenitor/suprabasal derived tumors with anti-CD40L inhibits 

tumor growth, but a CD40 agonist enhances growth of established tumors. CD40 agonist and 

antagonist mAbs such as dacetuzumab (Seattle Genetics) and lucatumumab (Novartis) (59) 

have been tested in human cancer patients with chronic lymphatic leukemia, multiple 

myeloma, and non-Hodgkin’s lymphoma, and approximately 20% of patients with 

melanoma or pancreatic carcinoma treated with CP-870,893,0 (Pfiser/VLST), a CD40 

agonist mAb (43), responded. CD40 agonist Chi Lob 7/4 (University of Southampton) was 

tested in lymphomas and advanced solid tumors, but stable disease was found to be the best 

response (43). With the success of immunotherapy with anti-PD1 and anti-CTLA4, as well 

as novel checkpoint targets in development, our results recommend specifically examining 

the tumor immune microenvironment prior to administration, as it may be possible to 

understand why some patients fail to respond, to predict the efficacy of specific 

immunotherapeutic drugs, to determine which single or combination of immunotherapeutics 

will be most effective in specific patients, and which may exacerbate conditions and allow 

tumor escape.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. H-RasG12V expression in different epidermal layers determines distinct tumor 
phenotypes and immune responses
Tumor counts (A) and tumor volume (B) in K14Ras and InvRas mice at indicated days after 

Ras induction. (A: K14Ras n = 45, InvRas n = 30. B: K14Ras n = 8, InvRas n = 10). (C–F) 

Relative expression of specific cytokines by qPCR in whole tumor tissue associated with 

Th1 (C), Th2 (D), Th17 (E), and Treg (F) cells. (C: K14Ras n = 8,16,5,15, InvRas n = 

6,12,5,6. D: K14Ras n = 16,16,5,8, InvRas n = 12,12,5,6. E: K14Ras n = 8,16, InvRas n = 

6,12. F: K14Ras n = 14,16, InvRas n = 10,10). Samples below detection level were not used 

in analysis. (G–J) Analysis of tumor-infiltrating CD4 T cell counts (G), and CD4 

percentages (H), tumor-infiltrating B cell counts (I), and B cell percentages (J) in K14Ras 

and InvRas tumors. Counts were determined using a Cellometer Auto T4 Cell Viability 

Counter (Nexcelom Bioscience), and quantified using FlowJo software. Counts represent n = 

12 for CD4 T cells, n = 11 for B cells. Percentages represent n ≥ 15 per group. (K) Analysis 

of CD4 T cell proliferation following 7 day coculture with tumor-conditioned B cells of 

K14Ras or InvRas mice. CFSE was analyzed by flow cytometry. Stimulated control baseline 

set to 100%, and significance is calculated against stimulated control group. n = 6 per group 

(2×3).
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Figure 2. Lymphocytes have opposing effects on tumor development dependent on tissue 
compartment of H-RasV12G expression
Tumor counts (A), tumor volume (B), and representative gross phenotype at end stages (C) 

of K14RasRag1+/+ and K14RasRag1−/− mice at indicated days after Ras induction. (A: 

K14RasRag1+/+ n = 45, K14RasRag1−/− n = 28. B: n = 8 per group). Tumor counts (D) 

Tumor Volume (E) and representative gross phenotype at end stages (F) of InvRasRag1+/+ 

and InvRasRag1−/− mice at indicated days after Ras induction. (D: InvRasRag1+/+ n = 30, 

InvRasRag1−/− n = 27. E: InvRasRag1+/+ n = 10, InvRasRag1−/− n = 6). (G and H) Analysis 

of tumor-infiltrating myeloid cell counts (G), and myeloid percentages (H) in 

K14RasRag1+/+ or K14RasRag1−/− mice. (G: K14RasRag1+/+ n = 12, K14RasRag1−/− n = 

12. H: K14RasRag1+/+ n = 30, K14RasRag1−/− n = 15). (I and J) Analysis of tumor-

infiltrating myeloid cell counts (I), and myeloid percentages (J) in InvRasRag1+/+ or 

InvRasRag1−/− mice. (I: InvRasRag1+/+ n = 12, InvRasRag1−/− n = 4. J: InvRasRag1+/+ n = 

21, InvRasRag1−/− n = 18). Counts were determined using a Cellometer Auto T4 Cell 

Viability Counter (Nexcelom Bioscience), and quantified using FlowJo software.
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Figure 3. CD4 T Cells and B Cells cooperate in K14Ras and InvRas mice to produce protective 
and tumor-promoting immune responses, respectively
(A and B) Tumor counts in adoptively transferred K14RasRag1−/− (A) and InvRasRag1−/− 

(B) mice at indicated days after Ras induction. K14RasRag1+/+, K14RasRag1−/−, 
InvRasRag1+/+, and InvRasRag1−/− mice from previous figures included as reference. (A: n 
= 45, 28, 12, 13, and 18. B: n = 30, 27, 12, 12, and 12). (C and D) Tumor counts in CD4 and 

CD20-depleted mice of K14Ras (C) and InvRas (D) mice at indicated days after Ras 

induction. K14RasRag1+/+, K14RasRag1−/−, InvRasRag1+/+, and InvRasRag1−/− mice from 

previous figures included as reference. (C: n = 45, 28, 12, and 13. D: n = 35, 27, 12, and 18). 

(E and F) Analysis of tumor-infiltrating CD4 percentages in K14Ras (E) and InvRas (F) 
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adoptive transfer experiments into Rag1−/− mice. (E: n ≥ 11 for all groups. F: n ≥ 7 for all 

groups). (G and H) Analysis of tumor-infiltrating B cell percentages in K14Ras (G) and 

InvRas (H) adoptive transfer experiments into Rag1−/− mice. (G: n ≥ 6 for all groups. H: n ≥ 

6 for all groups). (I and J) Analysis of tumor-infiltrating myeloid percentages in K14Ras (I) 

and InvRas (J) adoptive transfer experiments into Rag1−/− mice. (I: n ≥ 11 for all groups. J: n 
≥ 6 for all groups). Unless otherwise indicated, significance was calculated compared to 

Rag1+/+ mice.
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Figure 4. Direct contact between CD4 T cells and tumor-conditioned B cells is essential for CD4 
T cell polarization and phenotype
(A–D) Analysis of CD4 percentages following 7-day coculture with control splenic B cells 

from healthy mice, splenic B cells from tumor-bearing K14Ras or InvRas mice, or B cells 

from tumor tissue of K14Ras or InvRas mice, examining Treg (A), Th2 (B), Th1 (C), and 

Th17 (D) cells. Unstimulated and stimulated controls n = 18 (6 biological replicates × 3 

technical replicates), Control B cells n = 9 (3 biological replicates × 3 technical replicates), 

K14Ras splenic B cells n = 6 (3 biological replicates × 2 technical replicates), InvRas 

splenic B cells n = 9 (3 biological replicates × 3 technical replicates), Tumor B cells 

minimum n = 24 (8 biological replicates × 3 technical replicates) maximum n = 36 (12 

biological replicates × 3 technical replicates). Unless otherwise indicated, significance was 

calculated compared to stimulated control group. (E and F) Immunofluorescence 

examination of CD4 (Red), CD19 (Green), DAPI (Blue), and composite of representative 

K14Ras (E) and InvRas (F) tumors. Arrows indicate CD4 and B Cells in direct contact. 

Magnification: 10x.
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Figure 5. CD4 T-cell polarization by tumor-conditioned B cells is reliant on direct cell contact 
and CD40 signaling
(A–D) Analysis of CD4 percentages following 7-day coculture with B Cells from tumor 

tissue of K14Ras or InvRas mice with or without transwell inserts examining Treg (A), Th2 

(B), Th1 (C), and Th17 (D). Unstimulated and Stimulated controls n = 18 (6 biological 

replicates × 3 technical replicates) and Tumor B cells minimum n = 24 (8 biological 

replicates × 3 technical replicates) maximum n = 36 (12 biological replicates × 3 technical 

replicates) from Fig. 4 included as reference. Transwell insert groups minimum n = 24 (8 

biological replicates × 3 technical replicates), maximum n = 36 (12 biological replicates × 3 

technical replicates). (E–H) Analysis of CD4 percentages following 7-day coculture with B 

Cells from tumor tissue of K14Ras or InvRas mice with or without Anti-CD40L examining 

Treg (E), Th2 (F), Th1 (G), and Th17 (H). Unstimulated and Stimulated controls n = 18 (6 

biological replicates × 3 technical replicates) from Fig. 4 included as reference. Isotype 
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control and Anti-CD40L groups minimum n = 24 (8 biological replicates × 3 technical 

replicates), maximum n = 36 (12 biological replicates × 3 technical replicates). Unless 

otherwise indicated, significance was calculated compared to stimulated control group.
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Figure 6. Continuous stimulation through CD40/CD40L is required for a sustained anti-tumor 
immune response
(A and B) Tumor counts in isotype control and anti-CD40L pretreatment injected K14Ras 

(A) and InvRas (B) mice at indicated days after Ras induction. (A: isotype n = 17, anti-

CD40L n = 18, B: isotype n = 15, anti-CD40L n = 16). (C and D) Tumor counts in isotype 

control and anti-CD40L therapeutic protocol injected K14Ras (C) and InvRas (D) mice at 

indicated days after Ras induction. Arrows indicate day of first treatment. (C: isotype n = 8, 

anti-CD40L n = 7, D: isotype n = 7, anti-CD40L n = 8). (E and F) Average fold increase in 

tumor volume from starting measurements at indicated days of therapeutically injected 
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K14Ras (E) and InvRas (F) mice. Arrows indicate day of first treatment. (G and H) Tumor 

counts in Isotype control and CD40 Agonist injected K14Ras (G) and InvRas (H) mice at 

indicated days after Ras induction. Arrows indicate day of first treatment. (G: isotype n = 6, 

anti-CD40L n = 5, H: isotype n = 5, anti-CD40L n = 6). Average fold increase in tumor 

volume from starting measurements in CD40 Agonist protocols at indicated days of K14Ras 

(I) and InvRas (J) mice. Arrows indicate day of first treatment.
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