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Anionic lipids and the maintenance of membrane electrostatics in eukaryotes
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ABSTRACT
A wide range of signaling processes occurs at the cell surface through the reversible association of proteins
from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of
specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical
landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature
in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid
packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the
identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic
phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic
field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the
role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and
differences that were found in different eukaryotic cells.
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The inner leaflet of the plasma membrane (PM) of animal cells is
composed of about 20% of anionic lipids that provide negative
charges (electric field estimated at 5V/cm) giving the potential to
permanently or transiently attract cytosolic cationic molecules,
including peripheral membrane proteins.1 The concept of an elec-
trostatic potential driven by membrane surface charges (MSC) was
postulated long ago by biophysicists.2 However tools to sense this
predicted feature were only developed during the last decade via
the generation of genetically encoded biosensors (Fig. 1).3-7 These
biosensors, whichwill be referred asMSC-probes thereafter, consist
of cationic peptides or folded protein domains that transiently asso-
ciate with anionic phospholipids based on their negative charges
and irrespective of their head group (Fig. 1B).3,4,7 When fused to a
fluorescent protein, these MSC-probes label strictly the cytosolic
face of the plasma membrane in all eukaryotic cell type analyzed
including yeast, plant and mammalian cells3,4,8-10 (Fig. 2C). This
common feature highlights a unique signature of the plasmamem-
brane as the most anionic membrane in cells. This particular
plasmamembrane property is paramount to localize signaling pro-
teins, including for example small GTPases and kinases.3-10 How-
ever, in each eukaryotic kingdom, different anionic lipids are used
to power this high plasmamembrane electrostatic field (Fig. 2B).

Phosphoinositides cooperativity powers membrane
electrostatics in mammals

In mammals, phosphatidylserine [PS], phosphatidylinositol-4-
phosphate PtdIns(4)P, phosphatidylinositol- 4,5-biphosphate
[PI(4,5)P2], and phosphatidylinositol-3,4,5-triphosphate
[PtdIns(3,4,5)P3] are localized at the cell surface (Fig. 2A).11,12

These lipids are candidates to power the PM electrostatic field.
Phosphoinositides are low abundant lipids but highly anionic,
with PtdIns(4)P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3 containing
respectively 3, 5 and 7 net negative charges.13 Since PtdIns(4,5)
P2 is a distinctive lipid of the plasma membrane and relatively
abundant compared with other plasma membrane-localized
phosphoinositides, it was a prime candidate to drive plasma
membrane MSC. However, inducible PtdIns(4,5)P2 depletion
at the plasma membrane has no effect on the localization of
MSC-probes, suggesting that this lipid does not specify the
plasma membrane electrostatic field on its own.4,9 Interestingly,
inhibition of PtdIns(3,4,5)P3 synthesis by type-I PI3-Kinase
inhibitors together with inducible depletion of PM PtdIns(4,5)
P2 delocalized MSC-probes to intracellular compartments,
showing that these lipids are redundantly required for PM
MSC.4 Later on, concomitant inducible depletion of plasma
membrane-associated PtdIns(4)P and PtdIns(4,5)P2 also dem-
onstrated a role for PtdIns(4)P in plasma membrane surface
charges together with PtdIns(4,5)P2

9 (Fig. 2C). Altogether,
PtdIns(4,5)P2 seems to be critical in defining plasma membrane
MSC in human cells but acts redundantly with PtdIns(3,4,5)P3
and/or PtdIns(4)P (Fig. 2B).

PtdInsPs are highly anionic but represent only 1–2% of
total phospholipids in living cells.13 Other less anionic lipids
might also contribute to MSC notably due to their higher
abundance. In animals, PS represents about 10 to 20% of
plasma membrane phospholipids but PS is less anionic than
phosphoinositides (net charge ¡1).1,14 Inhibition of ATP
synthesis prevents phosphorylation of PtdInsPs by kinases
while lipid phosphatases are still active, triggering the rapid
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depletion of phosphoinositides from cellular membranes.10

However, this treatment does not affect the PS pool, since it
is not constantly regulated by phosphorylation10 In this con-
dition and therefore in the absence of PtdInsPs, MSC-probes
lose their specific plasma membrane localization and relocal-
ize to all PS-bearing organelles, including the PM but also
all plasma membrane-derived organelles along the endocytic
pathways (Fig. 2A).10 This result confirms the importance of
phosphoinositides in driving the specific electrostatic signa-
ture of the cell surface.10 However, in the absence of phos-
phoinositides, MSC-probes partially retain their plasma
membrane localization, suggesting a role for PS in plasma
membrane MSC.10

In addition, because in the absence of phosphoinositide,
MSC-probes localize to all PS-containing compartments,10 PS
might be involved in driving the electrostatic properties of
endocytic compartments. Bigay and Antonny proposed that PS
defined an electrostatic territory in cells that corresponds to all
PM-derived organelles.5,6 However, this hypothesis is mainly

based on coincidence between the presence of negative charges,
as visualized by MSC-probes, and the presence of PS on these
membranes.10 To our knowledge, this theory has not been chal-
lenged by genetic and/or pharmacological perturbation(s) of
the PS pool.

Overall, PtdInsPs are the main anionic lipids that regulate
plasma membrane surface charge in mammals, while PS seems
to have a broader role in controlling membrane electrostatics
of all PM-derived organelles (Fig. 2B-C)3-6,9,10

Maintenance of plasma membrane electrostatics in yeast:
It’s all about PS

Based on findings in mammals, the potential involvement of
PtdInsPs was analyzed in yeast. To address the relative role
of PtdInsPs in plasma membrane electrostatic field, tempera-
ture-sensitive alleles that reduces both PtdIns(4)P and
PtdIns(4,5)P2 or PtdIns(4,5)P2 alone were used. Surprisingly,

Figure 1. (A) Timeline showing landmark papers for the in vivo study of membrane surface charges (MSC) in various organisms. Color indicates the model system used in
the study: blue, human cell lines; brown, Saccharomyces cerevisiae; Green, Arabidopsis thaliana and Nicotiana benthamiana. (B) Schematic representation of peptide-based
MSC-probes (Left and middle panels) and domain-based MSC-probes (right panel). Black circles indicate negative membrane surface charges, red circles show cationic res-
idues in MSC-probes that interact with MSC through electrostatic interactions, and purple circles indicate aromatic residues that provide hydrophobic interaction for
membrane anchoring. The lipid anchor is represented in purple (for clarity only farnesylation is given as an example, but other lipid modifications have been used, such
as the N-terminal myristoylation in c-Src or K-myr reporters, see ref 3). K-Ras4B MSC-probe corresponds to the C-terminal tail of K-Ras4B, c-Src probe corresponds to the
N-terminal tail of c-Src, K-myr is a synthetic construct that has a N-terminal myristoylation adjacent to the K-Ras4B charged peptide. MSC, membrane surface charges,
KA1 domain, Kinase Associated1 domain; MARK1, Microtubule Associated Regulated Kinase1; MARCKS-ED, Myristoylated Alanine-Rich C Kinase Substrate-Effector Domain.
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at restrictive temperature, KINASE ASSOCIATED1 (KA1)
domains, which are domains that bind to all anionic phos-
pholipids and therefore act as MSC-probes, remain strictly

localized at the PM in all these yeast mutant strains.7 These
results suggest that unlike in animals, PtdInsPs do not play a
major role in PM MSC.7

Figure 2. Contribution of different anionic phospholipids in plasma membrane surface charge. (A) schematic representation of human, yeast and plant cells. Anionic phospho-
lipids that localize at the cell surface are indicated for each cell type. For clarity, PI3P, PI5P and PtdIns(3,4)P2 have been omitted, although they have been shown to localize at
the plasma membrane in animal cells at very low quantity and/or upon specific stimuli.11 The localization of PS in plasma membrane-derived organelles is indicated by the
orange color. Note that for practical purposes, dashes indicate the presence of several lipid species on the same membrane, however, this does not mean that they are neces-
sarily organized in discrete domains. (B) schematic representation of the anionic lipids required for plasma membrane MSC in mammals (left), yeast (middle) and plants (right).
Note that in human, PtdIns(4,5)P2 acts redundantly with either PtdIns(4)P or PtdIns(3,4,5)P3. (C) confocal pictures showing the localization of the KA1 domain of MARK1 in
human fibroblast cells (left), S. cerevisiae (middle) and A. thaliana root epidermis (right). KA1 is a domain that interacts with all negatively charged lipids and therefore acts as a
sensor of membrane electrostatics (so called MSC-probe). Top panels are control cells and bottom panels show conditions in which anionic phospholipids have been genetically
or chemically perturbed. The targeted lipid(s) is indicated in white (downward pointing arrows indicate the reduction in the given lipid content and Ø total absence in the lipid
in the Dcho1 yeast mutant). Note that KA1MARK1 localizes at the cell surface in mammals, yeasts and plants, but that this strict plasma membrane localization relies on different
anionic phospholipid in these cells. EE, early endosome; LE, late endosome; RE, recycling endosomes; TGN, trans-golgi network; ER, endoplasmic reticulum; MSC, membrane
surface charge. Pictures of fibroblasts are from Hammond et al.9 and pictures from yeast and plants are from Simon et al.8 The cartoon representing the cell from the top left
cornel is inspired from Jean and Kiger 2012 and adapted by permission from Macmillan Publisher Ltd: [NATURE REVIEW MOLECULAR CELL BIOLOGY], ref. 12 copyright (2012).
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By contrast to mammals in which PS is spread all along the
endocytic pathway,10,14,15 PS is highly enriched at the PM in
yeast (Fig. 2A).7,10 Therefore, PS is a good candidate to specify
plasma membrane electrostatics in yeast cells. Cho1p is the
only PS synthase in yeast, and the cho1 mutant does not pro-
duce any PS.10,16 mislocalization of the KA1 MSC-probes in
cho1 shows a prominent contribution of PS in plasma mem-
brane surface charge (Fig. 2C).7,8 Altogether, these results sug-
gest either no or minor roles of PtdInsPs in plasma membrane
surface charge in yeast, while PS is the main anionic lipid regu-
lating the plasma membrane electrostatic potential.7

PtdIns(4)P massively accumulates at the plasma
membrane in plants and drives its electrostatic field

By contrast to yeast and animals, PtdIns(4)P massively accu-
mulates at the plasma membrane in plants.8,17 In Arabidopsis
root cells, short-term (up to 30 min) pharmacological inhibi-
tion of PI4-Kinase (PI4K) rapidly depletes the cellular
PtdIns(4)P pool but has no effect on PtdIns(4,5)P2.

8 This
results is surprising since PtdIns(4)P is the precursor of PtdIns
(4,5)P2. However, short-term depletion of PtdIns(4)P has also
no effect on PtdIns(4,5)P2 in human fibroblast cells, suggesting
that in both kingdoms the metabolism of these two lipids are
largely independent within this short time frame.8,9 In addition,
PtdIns(4)P is substantially more abundant than PtdIns(4,5)P2
in plant tissues,17,18 therefore the residual PtdIns(4)P molecules
might be sufficient to sustain PtdIns(4,5)P2 synthesis. The rela-
tive abundance of PtdIns(4)P over PtdIns(4,5)P2 and its accu-
mulation at the cell surface suggest that it might be involved in
plasma membrane electrostatics. Indeed, inhibition of PI4K
largely delocalized MSC-probes from the plasma membrane.8

In addition, genetic depletion of PtdIns(4)P specifically at the
plasma membrane induced the ectopic localization of MSC-
probes in less anionic endomembrane compartments.8

Together, these results indicate that PtdIns(4)P is important for
plasma membrane electrostatics and that, by contrast to mam-
mals, it does not act redundantly with PtdIns(4,5)P2.

However, it is worth noting that MSC-probes retain a cer-
tain degree of plasma membrane localization upon PtdIns(4)P
depletion (Fig. 2C), and that therefore other anionic lipids
might contribute to the plant plasma membrane electrostatic
field.8 Candidate lipids include PtdIns(4,5)P2, PS and/or phos-
phatidic acid (PA) that all localized at the plasma membrane at
least in some plant cell types (Fig. 2A).8,17,19 Pharmacological
and/or genetic perturbation of PtdIns(4,5)P2 and PA indeed
suggest that these lipids are involved in the plasma membrane
localization of proteins with cationic stretches.20 Therefore, as
seen for mammals, lipid cooperativity might also be important
for membrane electrostatics in plants. Nevertheless, unlike in
animals, depletion of PtdIns(4)P alone is sufficient to perturb
PM electrostatics in plants (Fig. 2C), highlighting the unusual
importance of PtdIns(4)P in specifying the identity of the plant
plasma membrane.

Concluding remarks

To conclude, the plasma membrane is highly electronegative
across eukaryotes, but differences exist concerning the lipids

involved in the maintenance of plasma membrane electrostatics
(Fig. 2B). The main difference comes from yeast where PS is the
major anionic lipid that drives plasma membrane surface
charge, while PtdInsPs are not required.7 This striking contrast
brings the question of the role of PS in membrane electrostatics
in multicellular eukaryotes such as plants or mammals. Indeed,
while PS has been postulated to control electrostatic properties
of plasma membrane-derived organelles,5,6 this has not been
fully addressed experimentally. Future researches are therefore
awaited to tackle this question. Similarly, it would be interesting
to explore the contribution of PA in membrane electrostatics.
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