
Oncotarget73845www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ � Oncotarget, Vol. 7, No. 45

CoGAPS matrix factorization algorithm identifies transcriptional 
changes in AP-2alpha target genes in feedback from therapeutic 
inhibition of the EGFR network

Elana J. Fertig1,*, Hiroyuki Ozawa1,2,*, Manjusha Thakar1, Jason D. Howard1, Luciane 
T. Kagohara1, Gabriel Krigsfeld1, Ruchira S. Ranaweera1,3, Robert M. Hughes1, 
Jimena Perez1, Siân Jones4, Alexander V. Favorov1,5,6, Jacob Carey7, Genevieve 
Stein-O’Brien8,9, Daria A. Gaykalova10, Michael F. Ochs11, Christine H. Chung1,3

1Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
2Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
3Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
4Personal Genome Diagnostics, Baltimore, MD, USA
5Vavilov Institute of General Genetics, Moscow, Russia
6Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
7Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
8Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
9Lieber Institute for Brain Development, Baltimore, MD, USA
10Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
11Department of Mathematics and Statistics, The College of New Jersey, Ewing Township, NJ, USA
*These two authors contributed equally to this project as co-first authors

Correspondence to: Elana J. Fertig, email: ejfertig@jhmi.edu
Keywords: EGFR, targeted therapeutics, cell signaling, genomics, crosstalk
Received: May 11, 2016        Accepted: September 02, 2016        Published: September 16, 2016

ABSTRACT

Patients with oncogene driven tumors are treated with targeted therapeutics 
including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) 
demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously 
untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate 
interactions resulting from EGFR inhibitor use in cancer cells with these genetic 
alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer 
cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic 
background. We then measure gene expression after treating modified HaCaT cells 
with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene 
expression signature associated with the anticipated silencing of the EGFR network. 
It also infers a feedback signature with EGFR gene expression itself increasing in 
cells that are responsive to EGFR inhibitors. This feedback signature has increased 
expression of several growth factor receptors regulated by the AP-2 family of 
transcription factors. The gene expression signatures for AP-2alpha are further 
correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes 
in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, 
the AP-2alpha gene expression signatures are also associated with inhibition of 
MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular 
Signatures (LINCS) data. These results suggest that AP-2 transcription factors are 
activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor 
resistance.
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INTRODUCTION

Precision medicine in cancer aims to improve 
therapeutic outcomes by matching intervention to the 
genetic alterations observed in individual cancers. For 
example, over-expression of epidermal growth factor 
receptor (EGFR) has been associated with poor prognosis 
in head and neck squamous cell carcinoma (HNSCC) [1, 
2]. Cetuximab, a monoclonal antibody inhibiting EGFR, 
has demonstrated improved survival in HNSCC patients 
when combined with chemotherapy or radiation, leading 
to Food and Drug Administration (FDA) approval for 
these approaches [3–7]. Similar findings have led to the 
FDA approval and clinical adoption of EGFR inhibitors 
in other solid tumors [8]. However, both de novo and 
acquired resistance are common [8], making durable 
clinical responses to EGFR inhibitors rare [6].

Previously, we have published molecular alterations 
to cellular signaling pathways within the EGFR network 
associated with in vitro cetuximab resistance in HNSCC 
cells [9, 10]. These signaling changes arise from complex 
feedback [11] between ligand overexpression and receptor 
crosstalk [10], changes in miRNA expression [10], DNA 
methylation [12], and genetic alterations [13]. Molecular 
mechanisms for therapeutic resistance may be present at 
the time of treatment, may expand due to clonal selection, 
be acquired during tumor evolution, or adapt from rapid 
rewiring of cellular signaling pathways [14]. Furthermore, 
each individual tumor or each sub-clone comprising that 
tumor may have unique molecular mechanisms for such 
therapeutic resistance [15–19].

In this study, we hypothesize that genomic signatures 
from short-term transcriptional responses to EGFR 
inhibitors will distinguish signaling processes in sensitive 
and resistant cells. To test this hypothesis, we treat in vitro 
models of EGFR, MAPK, and PI3K pathway activation 
in HNSCC [9] with gefitinib, afatinib, and cetuximab. 
EGFR inhibition is also modeled by knocking-down EGFR 
expression with siRNA. Gene expression is measured in 
each of these conditions. We apply the CoGAPS meta-
pathway analysis algorithm [20] to delineate genomics 
signatures for cell-signaling responses to EGFR inhibition 
with genetic alterations in the EGFR signaling network. 
This algorithm confirms that signaling in the MAPK 
pathway remains elevated in cells that are resistant to EGFR 
inhibitors. It also identifies unexpected transcriptional 
increases in gene expression of AP-2alpha targets when 
treating EGFR inhibitor sensitive cells with cetuximab, 
gefitinib, and afatinib. The AP-2alpha growth factor 
receptor increases gene expression of several growth factor 
receptors, and may be a mechanism by which sensitive cells 
maintain homeostasis in growth factor receptor signaling. 
Thus, this CoGAPS meta-pathway analysis of short-term 
gene expression data can detect gene expression signatures 
that are critical early biomarkers for therapeutic sensitivity 
to EGFR targeted agents.

RESULTS

Genetic alterations to EGFR network signaling 
proteins are pervasive in cancer subtypes treated 
with EGFR inhibitors

Previously, we described the protein-protein 
interactions evident in HNSCC-specific EGFR signaling 
[9] from comprehensive reviews [21, 22]. In this study, 
we survey the DNA alterations of EGFR signaling 
proteins in solid tumors represented in The Cancer 
Genome Atlas (TCGA) and are FDA-approved for EGFR 
inhibitor treatment [8]: pancreatic adenocarcinoma 
(PAAD), lung adenocarcinoma (LUAD) [23], lung 
squamous cell carcinoma (LUSC) [24], HNSCC [25], and 
colon adenocarcinoma (COAD) [26]. In these tumors, 
DNA alterations to the EGFR network are pervasive 
(Figure 1A).

Alterations to distinct signaling proteins within the 
EGFR network do not exhibit equivalent impact for EGFR 
inhibitor therapeutic sensitivity. Therefore, we survey the 
average frequency of genetic alterations corresponding 
to each signaling protein in the EGFR network across 
PAAD, LUAD, LUSC, HNSCC, and COAD tumors in 
TCGA (Figure 1B). EGFR amplifications and mutations 
occur in only 9% of primary tumors in each subtype, 
with genetic alterations in the PI3K family (PIK3CA, 
PIK3CB, PIK3CD, or PIK3CG) (30%) and in the RAS 
family (HRAS, KRAS, or NRAS) (39%) being most 
prevalent (Figure 1B). Similar molecular landscapes 
for the EGFR network are observed for each cancer 
type (Figure 1C, Supplementary Table S1) with RAS 
alterations most common in PAAD (86%), LUAD (39%), 
and COAD (50%) and PI3K alterations most common in 
LUSC (55%) and HNSCC (41%). Thus, we observe that 
mutations within EGFR and the RAS and PI3K pathways 
are the most common genetic alterations in tumors 
currently treated with EGFR inhibitors. Because they 
are downstream of EGFR in the cell-signaling network, 
both RAS and PI3K alterations confer resistance to 
EGFR inhibitors [8, 27]. However, neither their absence 
nor EGFR expression are sufficient to predict long term 
therapeutic sensitivity [8]. To better inform treatment 
selection, it is possible that short term changes in gene 
expression resulting from therapeutic inhibition will define 
signaling responses associated with treatment sensitivity 
or resistance against these commonly altered genetic 
backgrounds.

Characterization of modified HaCaT cell models 
with oncogenic EGFR, MAPK, and PI3K 
pathway activation

The immortalized, but not transformed, HaCaT 
keratinocyte cell line has been well characterized for the 
molecular alterations of premalignancy in HPV-negative 
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HNSCC (Figure 2A). Building on the observations of 
pervasive EGFR and RAS/PI3K alterations in TCGA 
tumors, we introduce overexpression of wild-type EGFR 
overexpression, HRASV12D, and PIK3CAH1047R activating 
constructs to model the acquisition of these constitutively 
active alterations during carcinogenesis (Figure 2A). 
These modified HaCaT cells with activation of specific 
signaling pathways enable us to delineate signaling 
responses to molecular or pharmacological perturbation 
across an isogenic background. RT-PCR confirms 
EGFR mRNA and HRAS mRNA are overexpressed in 
HaCaT-EGFR and HaCaT-HRASV12D cells with respect 
to control (HaCaT-Mock) (Supplementary Figure S1). 
Western blot analysis with phospho-specific antibodies 

further validates the impact of each alteration on 
cell signaling within the EGFR network (Figure 2B, 
Supplementary Figure S2). For example, HaCaT-
PIK3CAH1047R demonstrates enhanced downstream 
phospho-AKT and phospho-STAT3 levels. Furthermore, 
HaCaT-EGFR also demonstrates increased phospho-
EGFR signaling. Additionally, HaCaT-HRASV12D 
exhibits an expected increase in phospho-MAPK levels 
(Figure 2B). Therefore, these HaCaT in vitro models 
exhibit the predicted signaling alterations expected by 
EGFR, RAS, and PI3K pathway activation without 
the complexity introduced by the broader genetic 
heterogeneity evident within the landscape of cancer cell 
lines or human tumors.

Figure 1: Frequency of DNA alterations to EGFR network signaling proteins in TCGA. A. Summary of total number 
of mutations or copy number alterations in the network for pancreatic adenocarcinoma (PAAD), lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), head and neck squamous cell carcinoma (HNSCC), and colon adenocarcinoma (COAD) tumors in 
TCGA. B. Cell signaling network of EGFR in human tumors. Shading of each node indicates the percentage of samples with alterations in 
each node of the EGFR cell signaling network across all the TCGA tumor types in A according to the color bar. C. Cell signaling network 
of EGFR, with nodes shaded according to percentage of samples with DNA alterations in each tumor type from A.
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After validating each modification, we inhibit EGFR 
in the HaCaT cell lines with three targeted agents with 
unique mechanisms of action: cetuximab, gefitinib and 
afatinib. Cetuximab is a monoclonal antibody specific 
for the extracellular portion of EGFR, thus it functions 
to prevent receptor activation by blocking ligand binding. 
Both gefitinib and afatinib are small molecule tyrosine 
kinase inhibitors that prevent intracellular activation of 
the receptor. While cetuximab and gefitinib are selective 
inhibitors of EGFR, afatinib is a pan-HER family 

inhibitor, potentially preventing further downstream 
activation mediated through receptor crosstalk among 
the HER family members. Equivalent numbers of cells 
were cultured in Matrigel colony formation assays and 
treated with standard concentrations of gefitinib (100nM), 
cetuximab (100nM), or afatinib (10nM). After 7 days, 
total colony area of the treated cells is compared to that 
of the untreated control in order to calculate the relative 
cell survival. Lower relative survival rates correspond to 
greater therapeutic sensitivity, and higher survival rates 

Figure 2: HaCaT overexpression constructs. A. Venn diagram comparing molecular alterations in HPV-negative HNSCC to the 
HaCaT keratinocyte cell lines and HaCaT-EGFR, HaCaT-HRASV12D, and HaCaT-PIK3CAH1047R overexpression constructs. B. Western 
blots for each HaCaT cell line. C. Total colony area (survival rates) for each HaCaT construct after seven days of treatment with cetuximab 
(100nM, blue), gefitinib (100nM, red) and afatinib (10nM, green) relative to PBS control, set at 100% of survival. Mean values are 
indicated as points and error bars represent the maximum and minimum values over three replicates.
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to therapeutic resistance. At this dosage, survival rates 
are comparable for gefitinib and cetuximab, and lower in 
afatinib treatment for each of the modified HaCaT cells 
(Figure 2C, Supplementary Figure S3). Each oncogenic 
modification leads to increased cell survival following 
EGFR inhibition compared to HaCaT-Mock. Only 
afatinib decreases cell survival in HaCaT-EGFR to a 
similar extent observed in HaCaT-Mock. Cell survival is 
consistently higher in both HaCaT-HRASV12D and HaCaT-
PIK3CAH1047R for all three pharmacological agents relative 
to PBS controls (Figure 2C). The relative survival rates for 
gefitinib and afatinib are comparable and lower than the 
corresponding survival rate for cetuximab in the HaCaT-
PIK3CAH1047R cells.

Transcriptional changes elicited by EGFR 
inhibition distinguish therapeutic sensitivity in 
modified HaCaT cells with genomic alterations 
in the EGFR network

We also measure gene expression profiles of the 
modified HaCaT cell lines before and after 24 hour 
treatment with EGFR inhibitors (100 nM cetuximab, 
100 nM gefitinib, and 10 nM afatinib). Hierarchical 
clustering identifies four dominant clusters: (1) treated and 
untreated HaCaT-HRASV12D cells, (2) untreated HaCaT-
Mock, HaCaT-EGFR, and HaCaT-PIK3CAH1047R cells, 
(3) treated HaCaT-PIK3CAH1047R cells and cetuximab 
treated HaCaT-Mock cells, and (4) treated HaCaT-EGFR 
cells and gefitinib or afatinib treated HaCaT-mock cells 
(Supplementary Figure S4). We note there is substantial 
overlap between the genes in the third and fourth clusters, 
with the separation in hierarchical clustering resulting 
from larger fold changes of gene expression after 
treatment in HaCaT-Mock and HaCaT-EGFR cells relative 
to HaCaT-PIK3CAH1047R cells.

In addition to hierarchical clustering, we apply the 
CoGAPS meta-pathway analysis algorithm [28] to this 
gene expression data. CoGAPS meta-pathway analysis 
identifies three dominant patterns in gene expression 
data (Figure 3). Whereas clustering provides exclusive 
categorical gene and group assignments, CoGAPS infers 
gene expression signatures with continuous values for 
each gene enabling individual genes to be associated with 
multiple pathways. This analysis assigns each sample a 
continuous value for the association of each gene signature 
with that sample, called CoGAPS patterns. For this 
dataset, the first CoGAPS pattern is constant across all cell 
types and treatments, reflecting constant gene expression 
values in all conditions (Figure 3A). The second pattern 
has the highest magnitude in HaCaT-HRASV12D cells, but 
simultaneously decreases in all HaCaT cells after EGFR 
inhibition (Figure 3B). The overexpression of these genes 
due to the mutant HRAS and their subsequent decrease 
after treatment was proportional to the relative cell 
survival of each modified HaCaT cell line (correlation 

coefficient of 0.72 and p-value of 0.008). Taken together, 
this pattern is consistent with HRAS and its downstream 
pathway activation in HaCaT-HRASV12D cells. It also 
reflects inhibition of that pathway from treatment with 
EGFR inhibitors in sensitive cells. The CoGAPS gene set 
statistic confirms that the gene targets of the transcription 
factor Elk-1, which we previously confirmed to be a 
marker of RAS/MAPK signaling [9], are significantly 
associated with this pattern (Figure 3C, p-value of 0.04).

The third pattern has the lowest magnitude in 
HaCaT-HRASV12D cells, but increases in the other modified 
HaCaT cells after EGFR inhibition (Figure 3D). The 
observed increase after treatment is highest in HaCaT-
Mock and HaCaT-EGFR, consistent with the larger 
gene expression changes after treatment observed in 
the clustering analysis (Supplementary Figure S4). In 
this case, the increase in gene expression changes after 
treatment is anti-correlated with relative cell survival 
(Figure 3E, correlation coefficient of -0.75; p-value of 
0.005). Thus, the higher the sensitivity of the HaCaT cells 
to EGFR inhibitors (i.e., lower the relative cell survival), 
the greater the increase in gene expression changes after 
treatment. Unexpectedly, gene expression of EGFR itself 
is associated with this CoGAPS pattern for increased gene 
expression after EGFR inhibitor treatment (Figure 3F). 
Moreover, EGFR is significantly overexpressed after 
treatment with gefitinib (p-value of 5×10-8) and afatinib 
(p-value of 2×10-6). A similar trend is observed for 
cetuximab; however, this difference fails to meet statistical 
significance (Supplementary Figure S5A; p-value of 0.1).

We also performed siRNA knock-down of EGFR 
with 86% efficiency at 24 hours in HaCaT mock cells. 
We compare the resulting gene expression changes after 
siRNA knock-down relative to siRNA scramble in each 
of the HaCaT cells (Supplementary Figure S6). In this 
case, HaCaT EGFR knockdown yields an anticipated 
and statistically significant decrease in EGFR expression 
(Supplementary Figure S5B; p-value of 9×10-6). This 
siRNA data suggests that the transcriptional profiling data 
can effectively detect EGFR inhibition.

The AP-2alpha family of transcription factors is 
associated with increased growth factor receptor 
expression after treatment with EGFR inhibitors

The observed increase in EGFR gene expression in 
sensitive cell lines after treatment in the third CoGAPS 
pattern is consistent with a compensatory cellular response 
resulting from successful EGFR inhibition. Thus, we 
perform gene set analysis associating the CoGAPS 
signatures for EGFR expression with transcription factor 
targets that are annotated in the TRANSFAC database [29] 
to regulate EGFR expression. This analysis associates AP-
2alpha (p-value of 0.03) and AP-2gamma (p-value of 0.02) 
with EGFR feedback. In addition to EGFR, AP-2alpha and 
AP-2gamma also regulate the expression of other growth 
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factor receptors. For example, AP-2alpha annotated 
targets in TRANSFAC include ERBB2, IGF1R, PTEN, 
BMP2, BMP4, VEGFA, TGFA, FGFR4, and TGFBR3. AP-
2gamma targets include ERBB2 and TGFBR3. In addition, 

AP-2alpha regulates its own expression (TFAP2A) and 
contains the vast majority of annotated targets for AP-
2gamma (10 of 14 total target genes, Supplementary 
Figure S7A). Therefore, we formulate a gene signature 

Figure 3: CoGAPS meta-pathways and activity patterns in HaCaT constructs. A. First CoGAPS pattern capturing genes 
with limited expression changes in HaCaT constructs or treatment with EGFR inhibitors. B. Second CoGAPS pattern with increased gene 
expression in HaCaT-HRASV12D samples and decreased gene expression in samples that were treated with EGFR inhibitors. C. Magnitude 
of the corresponding gene associations (amplitude) in all genes (grey) for pattern 2 relative to genes that are targets of transcription factor 
Elk-1 (red) that is activated by the MAPK pathway. D. Third CoGAPS pattern with decreased gene expression in HaCaT-HRASV12D samples 
and increased gene expression in samples that were treated with EGFR inhibitors. In A, B, and D, each pattern CoGAPS has a magnitude 
that is scaled to sum to one across all samples. As a result, samples with pattern values close to zero are unassociated with the given gene 
signature. On the other hand, samples with pattern values close to one are more strongly associated with the gene signature than any other 
sample in the data. Values in between one and zero quantify the relative gene expression changes among the genetic backgrounds and 
treatments. E. Comparison of the difference in the magnitude of the third CoGAPS pattern in samples treated with EGFR inhibitors relative 
to untreated samples to relative cell survival rates after treatment with EGFR inhibitors in each HaCaT construct. F. Magnitude of the 
corresponding gene associations (amplitude) in all genes (grey) for pattern 3 relative to EGFR (red).
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for growth factor receptor activation by clustering gene 
expression changes in AP-2alpha target genes after EGFR 
inhibitor treatment (Figure 4A). Genes that co-cluster 
with increased EGFR gene expression are labeled as 
“up” genes in the signature, whereas genes that co-cluster 
with decreased EGFR gene expression after treatment are 
labeled as “down” genes in the signature (Figure 4A).

Because AP-2alpha is a transcription factor, its 
mRNA or protein expression may not directly correlate 
with its change in activity resulting from EGFR 
inhibition. Therefore, to confirm AP-2alpha mediated 
feedback, we measure gene expression of AP-2alpha 
target genes associated with growth factor receptor 

signaling which increased (EGFR, ERBB2, IGF1R, 
PTEN, BMP2, BMP4) or decreased (VEGFA, TGFA, 
FGFR4, TGFBR3) after EGFR inhibition in sensitive 
cells (HaCaT-EGFR and HaCaT-Mock). Because afatinib 
treatment has the strongest effect on gene expression, 
RT-PCR validation of the microarray data is performed 
only for these samples. Accordingly, RT-PCR analysis 
confirms consistent gene expression changes after afatinib 
treatment in all validated genes, excluding EGFR in 
HaCaT-EGFR, a transcript artificially sustained with an 
exogenous promoter (Figure 4B). This signature is also 
disrupted after afatinib treatment in HaCaT-HRASV12D 
cells (Figure 4C). In this case, expression changes in 

Figure 4: AP-2alpha gene expression signature in HaCaT cells. A. Heatmap of gene expression changes after treatment with 
EGFR inhibitors in each HaCaT construct for targets of AP-2alpha. B. ΔΔCt values from qRT-PCR for AP-2alpha targets after afatinib 
treatment relative to PBS control in HaCaT-EGFR cells. C. ΔΔCt values from RT-PCR for HaCaT-HRASV12D cells after afatinib treatment 
relative to PBS control.
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BMP2, BMP4, VEGFA, and TGFA are observed to be in 
the opposite direction from HaCaT-EGFR after treatment, 
consistent with the heatmap of AP-2alpha targets in 
Figure 4A. Also consistent with the clustering analysis, 
RT-PCR demonstrates modest gene expression changes in 
HaCaT-Mock (Supplementary Figure S7B) and consistent 
changes in HaCaT-PIK3CAH1047R (Supplementary Figure 
S7C) in these target genes after afatinib treatment. In both 
cases, the gene expression of “down” genes decreased 
after afatinib treatment similarly to HaCaT-EGFR and in 
contrast to HaCaT-HRASV12D.

Gene expression changes from cetuximab 
treatment in AP-2alpha target genes are 
associated with therapeutic sensitivity in 
HPV-negative HNSCC cell lines

We perform further analysis of gene expression 
data for a panel of HNSCC cell lines treated with 100 
nM of cetuximab for 24 hours to confirm our findings in 
the HaCaT model system in HNSCC cells. Similar to the 
HaCaT cells, HPV-negative HNSCC cell lines (Figure 5A, 
Supplementary Table S2) without alterations in the EGFR 
network (UMSCC1, personal communication with the the 
Carey and Brenner Labs, publication in process; SCC25, 
Dataset 1 and [30]) or EGFR amplification (SQ20B, 
Dataset 2) have lower cell survival with cetuximab 
treatment than cells with PIK3CA mutation (SCC61, 
[31]). Little variation is observed in HPV-positive HNSCC 
cell lines. We note that this includes a cell line an HRAS 
mutation (93VU147T, [30]), although this variant is not 
an activating hotspot mutation. The SCC47 cell line has 
a 3’ UTR variant in KRAS and is sensitive to cetuximab, 
consistent with observations in human HNSCC for this 
variant [32].

Also consistent with our observation in the HaCaT 
model, changes in EGFR mRNA expression in cetuximab 
treated HNSCC cells relative to control samples are 
associated with higher cell survival (p-value for one-sided 
Pearson correlation test of 0.11, Figure 5A). The change 
in gene expression in TFAP2A after cetuximab treatment is 
significantly associated with the observed change in EGFR 
expression in all HNSCC cell lines (unadjusted LIMMA 
p-value of 0.001, Figure 5B). In addition, the “up” genes 
from the AP-2alpha signature are significantly correlated 
with the change to EGFR expression in all HNSCC cell 
lines (one-sided Wilcoxon gene set p-value of 0.02, 
Figure 5B). However, apparent in the gene expression 
profiles of the panel of HNSCC cells (Figure 5C), the 
changes in TFAP2A gene expression and AP-2alpha “up” 
target genes are more strongly associated with changes 
in EGFR expression in HPV-negative cells (p-values of 
0.002 and 0.04, respectively) than HPV-positive (p-values 
of 0.79 and 0.15, respectively). Taken together, these 
results suggest that AP-2alpha is associated with feedback 
resulting from therapeutic sensitivity in HPV-negative 

HNSCC cell lines, whereas an alternative molecular 
mechanism prevents this feedback in HPV-positive 
HNSCC cell lines.

AP-2alpha target genes have coordinated gene 
expression changes from cetuximab treatment 
in human HNSCC tumors with low CDKN2A 
expression

We perform further analysis of human biopsy 
samples pre- and post-cetuximab treatment from [33] to 
assess whether the AP2-alpha gene expression signature 
holds in vivo. Whereas the cell lines are from both HPV-
negative and HPV-positive cancers, all human biopsy 
samples are from HPV-negative patients (personal 
communication with S. Schmitz). Because increased 
expression of p16, encoded by CDKN2A, is often used as 
a surrogate marker of HPV-positive HNSCC, we evaluate 
the correlation between CDKN2A and EGFR expression. 
We observe a wide range in CDKN2A gene expression 
in these samples that remains consistent between the pre 
and post treatment biopsies (Figure 6A). Gene expression 
changes after cetuximab treatment in AP-2alpha target 
genes cluster according to CDKN2A expression (Figure 
6B). Consistent with our observation in HPV-negative 
HNSCC cell lines, changes to EGFR expression after 
cetuximab treatment have greater variability in tumors 
with low CDKN2A expression than high expression 
(Figure 6C). Expression changes in the “up” genes from 
the AP-2 alpha signature are more associated with changes 
in EGFR expression in the tumors with low CDKN2A 
expression than high expression (one-sided Wilcoxon gene 
set p-value of 0.13, Figure 6D and one-sided Wilcoxon 
gene set p-value of 1.0, Figure 6E, respectively).

Expression changes in AP-2alpha target genes 
are associated with therapeutic inhibition of 
signaling proteins downstream of EGFR

We perform further analysis of gene expression 
data from a panel of 9 cancer cell lines from diverse 
tumor types (Supplementary Table S3 : HA1E, HCC515, 
A375, A549, HEPG2, HT29, MCF7 PC3, and VCAP) 
treated with 3,096 therapeutic inhibitors in the Library of 
Integrated Network-Based Cellular Signatures (LINCS) 
Program to determine whether the AP-2alpha gene 
expression signature is also associated with therapeutic 
response in other cancer types and to other targeted agents. 
Specifically, LINCS queries the association of changes in 
gene expression for each of the cell lines with the set of 
“up” and “down” AP-2alpha targets to rank the association 
of each therapeutic agent with that signature [34]. LINCS 
results for all therapeutics are provided in Dataset 3, 
and summarized for therapeutics that are significantly 
associated with the AP-2alpha signature in at least four 
cell lines in Supplementary Table S4.
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Similar to our gene expression data from the 
HaCaT cells, the AP-2alpha signature has mixed 
association with EGFR inhibitors for distinct cell lines. 
Specifically, our AP-2alpha signature is positively 
enriched in 5 of 8 cell lines tested for gefitinib and 5 
of 9 cell lines tested for afatinib in LINCS (Dataset 3, 
Supplementary Table S4). An additional 24 therapeutic 
agents tested in the LINCS panel are also significantly 
associated with the AP-2alpha signature with 18 
positive and 6 negative correlations. Overall, 10 of 
the 18 positively correlated agents inhibit signaling 
proteins downstream of EGFR (MEK, AKT, and mTOR; 

Figure 7 and Supplementary Table S4). The remaining 
compounds include IGF1R inhibitors (10-DEBC and 
BMS-536924), VEGF/VEGFR inhibitors (tivozanib and 
sunitinib), and a pan-aurora kinase inhibitor (tozasertib). 
With the exception of PP-110, all of these inhibitors 
that are associated with overexpression of AP-2alpha 
targets inhibit signaling proteins downstream of EGFR 
or growth factor receptors that also activate the signaling 
proteins in the EGFR network. These LINCS data further 
suggest that AP-2alpha is associated with a feedback 
response from effective inhibition of signaling pathways 
downstream of EGFR.

Figure 5: AP-2alpha gene expression signature in HNSCC cell lines. A. Change in EGFR expression after cetuximab treatment 
relative to PBS control in a panel of HPV-positive (blue) and HPV-negative (red) HNSCC cell lines. B. Relative ranking of “up” genes in 
the AP-2alpha gene expression signature among correlation statistics for changes in gene expression after cetuximab treatment in each gene 
with the changes in EGFR expression. C. Heatmap of difference in gene expression between cetuximab treated and untreated HNSCC cells 
in each AP-2alpha target genes. HNSCC cell lines are ordered according to HPV-status (negative, red and then positive, blue) and then 
relative cell survival after cetuximab treatment.
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DISCUSSION

In this study, we survey the genomic landscape 
of the EGFR network among cancers in which EGFR 
inhibitors are often effective [8]. Within the TCGA 
genomics data for pancreatic, lung [23, 24], head and neck 
[25], and colon tumors [26], mutations or copy number 
alterations of EGFR network genes are most pervasive in 
EGFR, RAS, and PI3K. Therefore, this study creates a cell 
line model of EGFR overexpression, mutant HRASV12D, 

and mutant PIK3CAH1047R in a controlled genetic 
background. In this model system, activation of the RAS 
pathway by mutant HRASV12D and activation of the PI3K 
pathway by mutant PIK3CAH1047R reduces sensitivity to 
EGFR inhibitors compared to EGFR overexpression.

Hierarchical clustering analyses of gene expression 
data in this study determine that gene expression profiles 
for HaCaT-HRASV12D cells are less correlated to the 
gene expression profiles of other modified HaCaT cells. 
However, these analyses cannot further distinguish 

Figure 6: AP-2alpha gene expression signature in human HNSCC pre and post cetuximab treatment biopsies. 
A. CDKN2A expression in pre- (light grey) and post-treatment (dark grey) biopsies. Values are compared to average CDKN2A expression 
in all samples (dashed-line). This average expression is used as a threshold to label samples as having low (red) or high (blue) CDKN2A 
expression, labeled p16 low and high, respectively. B. Heatmap of gene expression changes pre- and post-cetuximab treatment in genes in 
the AP-2 alpha signature. C. Relative ranking of “up” genes in the AP-2alpha gene expression signature among correlation statistics for 
changes in gene expression after cetuximab treatment in each gene with the changes in EGFR expression in tumors with low CDKN2A 
expression. D. As for C for tumors with high CDKN2A expression.
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gene expression differences between untreated HaCaT-
Mock, HaCaT-EGFR, or HaCaT-PIK3CAH1047R cells. Nor 
does the hierarchical clustering analysis distinguish the 
gene expression changes between three different EGFR 
inhibitors: cetuximab, gefitinib, or afatinib. In contrast, 
our previous study showed that gene expression profiling 
accurately delineated activated signaling pathways 
in serum starved HaCaT-HRASV12D, HaCaT-mock, 
and HaCaT-EGFR cells [9]. These data suggest that 
perturbations stressing cancer cells enhance differences 
between gene expression profiles of cells that have 
molecular alterations that impact therapeutic sensitivity. 
In these cases, predictions of optimal targeted therapeutic 
selection from pre-treatment gene expression data alone 
would be expected to have limited specificity. Such 
limitations of gene expression profiling of pretreatment 
samples for precision medicine in cancer will remain 
regardless of advances to computational algorithms [35–
38] or increased availability of high-throughput datasets 
[39, 40]. Post-treatment data are essential to delineate 
patients that are responsive to a targeted agent and infer 

alternative therapeutic modalities for those patients who 
are resistant. For those that are resistant, there has been 
a growing call for longitudinal genomics data to infer 
optimal therapeutic strategies that account for post-
treatment cell signaling changes [41]. Studies performing 
genomics profiling of post-treatment biopsies or repeat 
surgeries [33, 42, 43], circulating tumor cells and DNA 
[19, 44], and post-mortem samples [45, 46] are emerging 
in the literature. However, there are numerous technical 
challenges to these studies in obtaining enough tissues 
to characterize the genomics changes, accounting for 
tumor heterogeneity and the microenvironment [42, 47], 
profiling patients that are responsive to the therapy, and 
associating post-treatment samples with robust measures 
of therapeutic sensitivity. While there is no substitute for 
genomics profiling of human cancer, pre-clinical models 
such as the HaCaT cells in this study and mathematical 
models enable querying of post-treatment genomics 
changes to numerous therapeutic agents [34], outgrowth of 
all possible clones from heterogeneous tumor populations 
[48], and delineate therapeutic sensitivity from cellular 

Figure 7: Significantly enriched therapeutic inhibitors in LINCS. EGFR cell signaling network including pertubagens from 
LINCS that inhibit signaling nodes in the EGFR network and are significantly associated with the AP-2alpha gene expression signature.
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density and proliferation [49]. Therefore, longitudinal 
genomics data from pre-clinical models subject to 
numerous experimental perturbations are essential to 
develop the systems biology tools to perform personalized 
therapeutic selection from longitudinal, post-treatment 
genomics data.

In this study, the CoGAPS non-negative matrix 
factorization algorithm [28] infers genes associated 
with EGFR, PI3K, and HRAS pathway activation more 
accurately than hierarchical clustering of gene expression 
data from our modified HaCaT model system. For 
example, clustering analysis associates gene expression 
changes in one set of genes with the HaCaT-HRASV12D 
cells and another set of genes for sensitive cells treated 
with EGFR inhibitors. On the other hand, the quantitative 
pattern detection enabled by CoGAPS infers a single 
gene expression signature for RAS pathway activation 
in HaCaT-HRASV12D cells and RAS pathway repression 
with EGFR inhibitor treatment in sensitive cells. In the 
CoGAPS analysis, the magnitude of gene expression 
decrease evident at 24 hours from the CoGAPS pattern 
is proportional and predictive of measured sensitivity of 
modified HaCaT cells after 7 days of EGFR inhibitor 
treatment. This observation is consistent with the 
association of activating RAS mutations, which are 
established resistance mechanisms for EGFR inhibitors 
[8]. Moreover, our previous study associated a gene 
expression signature derived from HaCaT-HRASV12D 
with acquired therapeutic resistance in the HPV-negative 
HNSCC cell line, UMSCC1 [9], independent of an 
acquired RAS mutation in this model system. Based 
on these results, we anticipate that CoGAPS gene 
expression signatures will allow for the identification and 
quantification of the cellular processes associated with 
targeted agent acquired resistance.

CoGAPS analysis of the gene expression data in this 
study also identifies an unanticipated increase in growth 
factor receptor expression after treating HaCaT cells 
sensitive to EGFR inhibitors. Increases in EGFR mRNA 
expression are also correlated with sensitivity to cetuximab 
in a panel of HNSCC cell lines. This observation suggests 
that EGFR expression increases when cells with an 
oncogenic dependence on EGFR signaling are treated 
with EGFR inhibitors. We hypothesize that increase in 
EGFR expression arises from a feedback mechanism, 
compensating for its suppression by EGFR inhibitors. It 
is possible this increase in EGFR expression results from 
a growth advantage in individual cells within our model 
system, with higher growth factor receptor expression 
rather than pathway activation that results in transcription 
of alternate growth signals. However, this change is 
unlikely to be apparent in gene expression data after the 24 
hours of treatment in this study. Negative feedback loops 
are mathematically associated with greater sensitivity to 
pharmacological targeting of cell signaling cascades [50]. 
Therefore, we attribute increased growth factor expression 

to a feedback mechanism that preserves the homeostasis 
of EGFR expression within cells that are dependent on the 
EGFR pathway. This feedback mechanism is consistent 
with the rapid rewiring of signaling networks associated 
with adaptive resistance to EGFR inhibitors in non-small-
cell lung cancer [14].

In previous studies, we have found that high 
throughput genomics analysis of transcription factor 
targets can distinguish cellular signaling processes in 
cancer subtypes [51] and therapeutic response of cells 
from a single genetic background [52]. This current 
study finds that AP-2alpha gene targets are correlated 
with changes in EGFR expression after treatment with 
EGFR inhibitors in our model system. We also use the 
HaCaT gene expression data to define a transcriptional 
signature of activated and repressed genes by AP-2alpha 
from the list of target genes annotated in TRANSFAC. 
Both EGFR expression and that of additional target genes 
in AP-2alpha also increase concurrently in HNSCC cell 
lines that are sensitive to cetuximab. Whereas the gene 
expression changes for HaCaT-HRAS dominate the gene 
expression signature for HaCaT cells, the PIK3CA mutant 
cell line SCC61 dominates the gene expression signature 
for HNSCC cell lines. Therefore, we hypothesize that AP-
2alpha is a common mechanism for feedback from EGFR 
inhibition in for all human cancers that are sensitive to 
EGFR inhibitors.

In the panel of HNSCC cell lines, the association 
of gene expression changes in the AP-2alpha target genes 
with increased EGFR expression in sensitive cells is 
stronger in HPV-negative than HPV-positive cells. We 
observe a similar trend in gene expression data from 
pre- and post-treatment HPV-negative HNSCC tumor 
biopsies treated with cetuximab in [33]. Although this 
dataset lacks measurements of cetuximab response in the 
tumors, changes in EGFR expression after treatment are 
more variable in tumors with low CDKN2A expression. 
These changes are associated with corresponding changes 
in AP-2alpha target genes in tumors with low CDKN2A 
expression. Because high p16 expression (encoded by 
CDKN2A) expression is a surrogate biomarker for HPV-
related HNSCC [53] and associated with prognosis [54], 
we hypothesize that the lack of AP-2alpha response to 
EGFR inhibition in HPV-positive HNSCC are due to that 
fact that HPV-positive tumors may not be dependent on 
EGFR, but likely driven by viral oncoproteins, E6 and E7.

To test the association of the AP-2alpha gene 
expression signature with additional human cancers, we 
queried its association with therapeutic inhibitors in the 
broader panel of 9 cancer cell lines and 3,096 therapeutic 
inhibitors in LINCS. Supporting our initial results, the 
AP-2alpha signature is associated with gene expression 
changes from gefitinib and afatinib treatments in a subset 
of cell lines. Moreover, the AP-2alpha signature is also 
significantly associated with gene expression signatures of 
therapeutic agents that inhibit signaling proteins within the 
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EGFR network, including PI3K, AKT, mTOR, and Src, 
in a greater number of the cell lines from LINCS. These 
data are consistent with feedback from AP-2alpha being 
initiated when signaling pathways downstream of EGFR 
are effectively inhibited. Establishing the functional role 
of AP-2alpha binding and corresponding transcriptional 
changes of target genes during this feedback response to 
targeted therapeutic inhibition warrants further study.

This study associates AP-2alpha with increased 
growth factor receptor expression after treatment with 
EGFR inhibitors in sensitive cells. We hypothesize that 
the observed AP-2alpha transcription of growth factor 
receptors may give rise to subsequent development of 
acquired therapeutic resistance to EGFR inhibitors. This 
compensation is analogous to our previous observation 
that HB-EGF overexpression is associated with cetuximab 
resistance in HNSCC [10]. Recently, AP-1 has similarly 
been associated with acquired resistance to cetuximab in 
HNSCC and in epidermoid carcinomas [55, 56]. Given 
the similarity of AP-1 and AP-2 DNA binding domains 
and their recognized DNA sequence homology [57], it 
is likely both transcription factors can fulfill similar, but 
unique, functional roles in mediating acquired cetuximab 
resistance in HNSCC cells with low CDKN2A expression 
and other cancers treated with EGFR inhibitors. Therefore, 
we hypothesize that combining new therapeutics to target 
AP-family transcription factors with therapeutics targeting 
proteins in the EGFR signaling network will mitigate the 
feedback response that drives acquired resistance.

In summary, matrix factorization algorithms for 
transcriptional data [58–60] are powerful discovery tools 
that enable quantification of relative relationships between 
samples in complex experimental designs including 
distinct genetic background and therapeutic conditions. 
Previously, we showed that CoGAPS is a particularly 
robust matrix factorization algorithm for inference of 
transcriptional regulatory networks in cancer [61]. In our 
current study, the CoGAPS matrix factorization analysis 
identifies AP-2alpha as a key feedback mechanism 
initiated by EGFR therapeutic inhibition. The role of 
AP-2alpha in mediating EGFR targeted agent response 
and subsequent acquired therapeutic resistance warrants 
further study.

MATERIALS AND METHODS

Cell lines and reagents

Cell line authenticity was confirmed using the Short 
Tandem Repeat (STR) Identifier kit (Applied Biosystems). 
HaCaT cells were cultured in W489 media consisting of 
80% MCDB153 and 20% L15 medium supplemented with 
1% FBS and maintained at 37°C in a humidified incubator 
with 5% CO2. All primary and secondary antibodies were 
purchased from Cell Signaling Technology (Boston, MA) 
except anti-HRAS antibody (Santa Cruz Biotechnology, 

Inc.). Cetuximab (Bristol-Myers Squibb, Princeton, NJ) 
was purchased from Johns Hopkins Pharmacy. Gefitinib 
was purchased from Tocris Bioscience (Ellisville, MO). 
Afatinib (BIBW2992) was purchased from Sellekchem. 
HaCaT, a spontaneously immortalized keratinocyte cell 
line was purchased from Cell Lines Service Germany. 
HaCaT cells were treated with cetuximab (100nM) and 
gefitinib (100nM), as described previously [10, 62], and 
afatinib (10nM) based on the dose-response curves for 
HaCaT-Mock cells. HNSCC cells are grown and treated 
with cetuximab (100 nM), as previously described 
[10, 62].

Generation of HaCaT-Mock, HaCaT-EGFR, 
HaCaT-HRASV12D, and HaCaT-PIK3CAH1047R 
cells

To establish continuous expression vectors for 
EGFR, HRASV12D and PIK3CAH1047R, pLenti-CMV puro 
lentiviral vector was used. pLenti-EGFR was made 
by Gateway technology (SIGMA) using Ultimate™ 
ORFCard for Clone ID IOH81788. pLenti-HRAS was 
purchased from Addgene (Cambridge, MA). pLenti-
PIK3CAH1047R was made from JP1520 PIK3CA H1047R 
HA vector [63] as template. All vectors were confirmed 
to have correct gene sequence by sequencing. Viral 
particles were produced by co-transfecting 900 ng of each 
expression vector, 100 ng of psPAX2 packaging vector, 
and 1 μg pMD 2G as an envelope vector into HEK-293T 
cells using 10 μl of Lipofectamine2000 (Invitrogen Life 
Technologies). Virus culture supernatants were obtained 
24-48 hour after transfection. HaCaT cells were exposed 
to virus-containing media for 24hr and were selected 
using puromycin (Invitrogen) 5 ug/mlfor for at least 2 
weeks. For confirmation of EGFR or HRAS expression, 
total RNA was extracted from transduced cell line using 
Qiagen RNeasy Mini kit (Qiagen, Valencia, CA) according 
to the manufacturer’s protocol. EGFR and HRAS over-
expression was confirmed using EGFR (Hs01076078_
m1) and HRAS (Hs00978050_g1) primers by Real time 
PCR (Applied Biosystems/Life Technologies). Data were 
analyzed as ΔΔCt with respect to ACTB.

Immunoblotting

Protein lysates were prepared as previously 
described [10]. Lysed protein concentration was measured 
by the bicinchoninic acid (BCA) method (Thermo 
Scientific). Proteins from each sample were fractionated 
by SDS-PAGE and transferred to nitrocellulose membrane. 
After blocking with blocking buffer (Li-cor Bioscience), 
the membranes were incubated with primary antibodies 
overnight at 4°C followed by incubation with HRP-linked 
secondary antibodies. Protein bands were visualized 
by chemiluminescence using the ECL Western blotting 
Detection System (GE Healthcare, Piscataway, NJ, USA). 
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Western blot quantification was performed with Image 
Studio Lite v.5.x software (Li-cor). Quantification is 
determined by the number of pixels detected in a delimited 
area. We manually determined the area to be quantified for 
each of the proteins expressed by the HaCaT cell line and 
by each of the mutant variants generated. We used β-Actin 
pixel count to normalize the data (target protein/β-Actin) 
and verify if there is gain or loss in expression relative to 
normal protein levels.

Colony formation assay

1×103 cells with 100 μl media were seeded 
to each well of a 96 well dish coated with 45 ul of 
Matrigel (BD). Drug treatments were added the next 
day. Media and reagents were replaced every 3 days. 
Colonies were scanned and analyzed with GelCount™ 
(Oxford Optronix Ltd; UK) on day 7 after MTT [4mg/
ml 3-(4,5-Dimethythiazol-2-yl)-2,5-diphenyltetrazolium 
bromide, Sigma-Aldrich] staining for 2 hours. The 
total area of colonies was calculated by average colony 
area multiplied by colony number. Relative survival is 
computed as the total colony area for 7 days of treatment 
relative to PBS control as described previously [62].

siRNA knockdown

For knockdown of EGFR, Human Kinase EGFR 
(siRNA1) MISSION® siRNA (SIHK0657; Sigma-
Aldrich) was used. Transfection of siRNA was performed 
using the Lipofectamine 2000 transfection reagent 
(Invitrogen) following the manufacturer protocol and 
assayed for silencing 24 and 48 hours after transfection.

Microarray data preprocessing and analysis

Gene expression was measured in triplicate using 
Affymetrix hgu133plus2.0 arrays with data collected in 
three distinct technical batches. We normalized these 
arrays with the Bioconductor package fRMA version 
1.16.0 [64] and applied pSVA [65] to correct for batch 
effects. Clustering analysis based upon Euclidean 
distances was applied to identify outlier samples that still 
do not cluster with replicate samples after batch correction 
to remove from subsequent analysis. We selected a 
single probe for each gene by finding the probe with the 
highest median absolute deviation between experimental 
conditions in the HaCaT cells relative to the median 
absolute deviation across replicates of each experimental 
condition (Dataset 4). Normalized and raw data are 
available from GEO (HaCaT cells: GSE80667, HNSCC 
cells: GSE62027, and untreated UMSCC1: GSE21483).

Raw data for human HNSCC tumors pre and 
post cetuximab from [33] was provided by personal 
communication with Sandra Schmitz and Jean-Pascal 
Machiels and normalized with fRMA. These samples were 
said to be p16 low if the maximum expression value of the 

probe selected for CDKN2A expression (207039_at) is less 
than the median average expression value for all pre- and 
post-treatment samples (5.4).

Differential expression statistics comparing changes 
in gene expression from treatment with EGFR inhibitors 
were computed with empirical Bayes moderated, 
t-statistics from a linear model using the R/Bioconductor 
package LIMMA [66]. Reported p-values are adjusted 
for false discovery rate using Benjamini-Hotchberg 
correction [67]. Analyses are organized with the R 
package ProjectTemplate (version 0.6) and all the R code 
used for these analyses in this manuscript is available from 
the GitHub repository EGFRFeedback.

CoGAPS meta-pathway inference

We applied the CoGAPS meta-pathway analysis 
algorithm implemented in the CoGAPS [28] Bioconductor 
package (version 1.99.0) to infer concurrent gene 
expression changes in multiple experimental conditions. 
Specifically, CoGAPS is an unsupervised algorithm 
that factors a matrix of gene expression data (D) with 
corresponding uncertainty for each matrix element (Σ) 
as D ~ N(AP, Σ), where N represents a univariate normal 
distribution for each matrix element. In this model, A is a 
matrix whose columns represent the relative expression of 
genes in each sample, as determined by the corresponding 
rows of P. The set of genes with non-zero elements in 
columns of A are called meta-pathways. The magnitude in 
the corresponding rows of P indicates the relative activity 
of the inferred meta-pathway in each sample.

The gene expression data matrix D and 
corresponding uncertainty matrix Σ was estimated as the 
mean and the standard deviation of replicate samples for 
the same experimental conditions, respectively. Elements 
of Σ were set to have a minimum value of 5% of the signal 
in D. Genes that are not annotated as experimentally 
validated transcription factor targets in TRANSFAC 
[29] professional database (version 2014.1) or with 
log fold change below 0.5 between any experimental 
conditions were filtered from analysis. CoGAPS was run 
on this data for 50,000 iterations for a range from two 
to six dimensions (columns of A and rows of P). The 
dimensionality of the data was determined from pattern 
robustness [68].

Transcription factor enrichment analysis

A z-score was computed for each element of the A 
matrix as the ratio of its mean value over samples from the 
CoGAPS MCMC chain to the uncertainty of samples from 
the chain. Each pattern was associated with transcription 
factors by comparing the magnitude of values within the 
corresponding column of the z-scorefor genes selected 
for CoGAPS analysis and annotated as targets of that 
transcription factor in TRANSFAC [29] professional 
database (version 2014.1, Dataset 5) using the CoGAPS 
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gene set statistic [28]. In order to associate further changes 
in expression of an individual gene to a transcription 
factor, we computed the Pearson correlation between the 
row of the z-scores for the amplitude matrix of that gene 
in all patterns to corresponding z-scores for every other 
measured gene. We then filtered the list of transcription 
factors to those that have the reference gene annotated 
as a target. We applied a Wilcoxon gene set statistic to 
compare the correlation coefficients for targets of the 
remaining transcription factors to the remaining set of 
genes. We excluded the query gene from the list of genes 
as annotated targets or the null for this gene set analysis.

AP-2alpha gene expression signature and qRT-
PCR validation

We computed gene expression differences between 
treated and untreated samples relative to control in each 
HaCaT cell line for targets of AP-2alpha. Clustering 
analysis was used to define a gene expression signature of 
AP-2alpha targets that increased in expression after EGFR 
inhibition in sensitive lines (called “up” genes) and genes 
with decreased expression after treatment in sensitive 
lines (called “down” genes). Additional qRT-PCR 
validation was performed using Taqman probes (Applied 
Biosystems, Foster City, CA) on AP-2alpha targets for 
EGFR (HS01076078_m1), ERBB2 (HS01001580_m1), 
IGF1R (HS00609566_m1), PTEN (HS02621230_s1), 
BMP2 (HS00154192_m1), BMP4 (HS00370078_m1), 
VEGFA (HS00900055_m1), TGFA (HS00608187_m1), 
FGFR4 (HS01169908_m1), and TGFBR3 (HS00234257_
m1) and control β-actin (HS00357333-g1) as described 
above.

TCGA analysis

TCGA level 3 mutation and GISTIC copy number 
calls for each gene in the EGFR network were obtained 
from cBioPortal [69] for LUAD, LUSC, PAAD, COAD, 
and HNSCC (Dataset 6). A sample with a mutation, 
a GISTIC score of 2 (copy number amplification), or a 
GISTIC score of -2 (homozygous deletion), was defined 
as having an alteration in that gene. Alterations were 
summarized for genes of the same family, so that PI3K 
alterations reflected alterations in PIK3CA, PIK3CB, 
PIK3CG, or PIK3CD; RAS to HRAS, KRAS, or NRAS; 
AKT to AKT1, AKT2, or AKT3; RAF to BRAF or ARAF; 
and NF-KB to NFKB1, NFKB2, RELA, or RELB.

DNA alterations in cell lines

DNA alterations for genes in the EGFR network 
in HNSCC cell lines (SQ20B, SCC61, SCC47, SCC90, 
and 93VU147T) and cell lines from LINCS (A375, A549, 
HCC515, HEPG2, HT29, MCF7, PC3, and VCAP) were 
compiled from the Catalogue of Somatic Mutations 
in Cancer (COSMIC) [30], [31, 32, 39, 70], and whole 

exome sequencing for SCC1 (personal communication 
with Carey and Brenner Labs, publication in process) in 
Supplementary Tables S2 and S3, respectively. In addition, 
whole exome sequencing was performed on HNSCC cell 
lines SCC25 (Dataset 1) and SQ20B (Dataset 2) with the 
following methods. Fastq files containing raw reads for 
these cell lines are available on SRA (SRP082979).

Sample preparation of SCC25 and SQ20B for 
next-generation sequencing

Sample preparation, library construction, exome 
capture, next-generation sequencing, and bioinformatics 
analyses of SCC25 and SQ20B cell lines were performed 
at Personal Genome Diagnostics (Baltimore, MD). In brief, 
DNA was extracted from cell lines using the QiaAmp DNA 
Blood kit (Qiagen). Genomic DNA from cell line samples 
were fragmented and used for genomic library construction. 
Briefly, 1-2 micrograms (μg) of genomic DNA in 100 
microliters (μl) of TE was fragmented in a Covaris sonicator 
(Covaris) to a size of 150-450bp. To remove fragments 
smaller than 150bp, DNA was purified using Agencourt 
AMPure XP beads (Beckman Coulter) in a ratio of 1.0 
to 0.9 of PCR product to beads twice and washed using 
70% ethanol per the manufacturer’s instructions. Purified, 
fragmented DNA was mixed with 36 μl of H2O, 10 μl of 
End Repair Reaction Buffer, 5 μl of End Repair Enzyme 
Mix (cat# E6050, NEB). The 100 μl end-repair mixture was 
incubated at 20°C for 30 min, and purified using Agencourt 
AMPure XP beads (Beckman Coulter) in a ratio of 1.0 
to 1.25 of PCR product to beads and washed using 70% 
ethanol per the manufacturer’s instructions. To A-tail, 42 
μl of end-repaired DNA was mixed with 5 μl of 10X dA 
Tailing Reaction Buffer and 3 μl of Klenow (exo-)(cat# 
E6053, NEB). The 50 μl mixture was incubated at 37°C 
for 30 min and purified using Agencourt AMPure XP beads 
(Beckman Coulter) in a ratio of 1.0 to 1.0 of PCR product to 
beads and washed using 70% ethanol per the manufacturer’s 
instructions. For adaptor ligation, 25 μl of A-tailed DNA 
was mixed with 6.7 μl of H2O, 3.3 μl of PE-adaptor 
(Illumina), 10 μl of 5X Ligation buffer and 5 μl of Quick T4 
DNA ligase (cat# E6056, NEB). The ligation mixture was 
incubated at 20°C for 15 min and purified using Agencourt 
AMPure XP beads (Beckman Coulter) in a ratio of 1.0 to 
0.95 and 1.0 of PCR product to beads twice and washed 
using 70% ethanol per the manufacturer’s instructions. To 
obtain an amplified library, twelve PCRs of 25 μl each were 
set up, each including 15.5 μl of H2O, 5 μl of 5 x Phusion 
HF buffer, 0.5 μl of a dNTP mix containing 10 mM of each 
dNTP, 1.25 μl of DMSO, 0.25 μl of Illumina PE primer 
#1, 0.25 μl of Illumina PE primer #2, 0.25 μl of Hotstart 
Phusion polymerase, and 2 μl of the DNA. The PCR 
program used was: 98°C for 2 minutes; 12 cycles of 98°C 
for 15 seconds, 65°C for 30 seconds, 72°C for 30 seconds; 
and 72°C for 5 min. DNA was purified using Agencourt 
AMPure XP beads (Beckman Coulter) in a ratio of 1.0 to 
1.0 of PCR product to beads and washed using 70% ethanol 
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per the manufacturer’s instructions. Exonic regions were 
captured in solution using the Agilent SureSelect 50Mb 
or v.4 kit according to the manufacturer’s instructions 
(Agilent). The captured library was then purified with a 
Qiagen MinElute column purification kit and eluted in 17 
μl of 70°C EB to obtain 15 μl of captured DNA library. 
The captured DNA library was amplified in the following 
way: Eight 30uL PCR reactions each containing 19 μl 
of H2O, 6 μl of 5 x Phusion HF buffer, 0.6 μl of 10 mM 
dNTP, 1.5 μl of DMSO, 0.30 μl of Illumina PE primer #1, 
0.30μl of Illumina PE primer #2, 0.30 μl of Hotstart Phusion 
polymerase, and 2 μl of captured exome library were set up. 
The PCR program used was: 98°C for 30 seconds; 14 cycles 
of 98°C for 10 seconds, 65°C for 30 seconds, 72°C for 30 
seconds; and 72°C for 5 min. To purify PCR products, a 
NucleoSpin Extract II purification kit (Macherey-Nagel) 
was used following the manufacturer’s instructions. Paired-
end sequencing, resulting in 100 bases from each end of 
the fragments was performed using Illumina HiSeq 2000 
(SCC25) and 2500 (SQ20B) instrumentation (Illumina).

Primary processing of next-generation 
sequencing data and identification of putative 
somatic mutations

Somatic mutations were identified using VariantDx 
custom software for identifying mutations in matched 
tumor and normal samples. Prior to mutation calling, 
primary processing of sequence data for both tumor and 
normal samples were performed using Illumina CASAVA 
software (v1.8), including masking of adapter sequences. 
Sequence reads were aligned against the human reference 
genome (version hg18) using ELAND with additional 
realignment of select regions using the Needleman-
Wunsch method. Candidate somatic mutations, consisting 
of point mutations, insertions, and deletions were then 
identified using VariantDx across either the whole exome.

VariantDx examines sequence alignments of cell 
lines samples against an unmatched normal while applying 
filters to exclude alignment and sequencing artifacts. In 
brief, an alignment filter was applied to exclude quality 
failed reads, unpaired reads, and poorly mapped reads 
in the tumor. A base quality filter was applied to limit 
inclusion of bases with reported Phred quality scores > 30 
for the cell line and > 20 for the normal (http://www.phrap.
com/phred/). A mutation in the cell line was identified 
as a candidate somatic mutation only when (i) distinct 
paired reads contained the mutation in the cell line; (ii) 
the number of distinct paired reads containing a particular 
mutation in the cell line was at least 10% of read pairs, 
(iii) the mismatched base was not present in >1% of the 
reads in the unmatched normal, (iv) the alteration was not 
reported in the 1000 Genome project, present in >1% of 
the population or listed as Common in dbSNP135 and (v) 
the position was covered in both the cell line and normal. 
Mutations arising from misplaced genome alignments, 

including paralogous sequences, were identified and 
excluded by searching the reference genome.

Candidate somatic mutations were further filtered 
based on gene annotation to identify those occurring in 
protein coding regions. Functional consequences were 
predicted using snpEff and a custom database of CCDS, 
RefSeq and Ensembl annotations using the latest transcript 
versions available on hg18 from UCSC (https://genome.
ucsc.edu/). Predictions were ordered to prefer transcripts 
with canonical start and stop codons and CCDS or 
Refseq transcripts over Ensembl when available. Finally 
mutations were filtered to exclude intronic and silent 
changes, while retaining mutations resulting in missense 
mutations, nonsense mutations, frameshifts, or splice site 
alterations. A manual visual inspection step was used to 
further remove artifactual changes.

LINCS analysis of AP-2alpha gene expression 
signature

The LINCS cloud query tool was used to compare 
the gene signature for AP-2alpha targets to gene 
expression data from a panel of pertubagens to data from 
the LINCS Production Phase L1000 data. Output from 
the LINCS cloud query is provided directly as Dataset 3, 
with column labels described in [71]. Pertubagens with 
mean connectivity scores for the AP-2alpha gene signature 
across four cell lines greater than 95% or below -95% 
were called as significantly associated with the AP-2alpha 
gene signature.
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