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Abstract

The effects of stocking both filter-feeding fish and piscivorous fish were compared to the

effects of stocking only filter-feeding fish for suppressing algal blooms and improving water

quality in the impoundment area of Xiaojiang River where catfish were dominant. Using only

filter-feeding fish for algal suppression and water quality control was more effective in the

short-term, but use of both filter-feeding fish and piscivorous fish was better in the long-term.

Obvious suppression of phytoplankton biomass (PB) only occurred during the first 14 days

regardless of the fish stocked. Adding fish to the enclosure clearly alters phytoplankton com-

munity structure and introducing piscivorous fish to an enclosure stocked with filter-feeding

fish changed the relative densities of dominant algae species. While stocking filter-feeding

fish decreased total nitrogen concentration by removing phytoplankton, it did not effectively

decrease total phosphorus and Chlorophyll a concentrations. Introducing piscivorous fish to

the enclosure weakened the relationship between nutrients and phytoplankton. Results indi-

cate that stocking only filter-feeding fish to improve water quality and suppress phytoplank-

ton in an impoundment area is insufficient and other technologies and means should be

applied simultaneously.

Introduction

Dam construction significantly modifies river ecosystems [1–2]. The resulting impoundment

affects the physical, chemical, and biological characteristics of a river and is a primary contrib-

utor to the algal blooms and water quality deterioration that often occurs after damming [3–

5]. The impoundment-induced changes in hydrodynamics will produce a eutrophication

problem if there is excessive nutrient loading to the impounded water [4, 6], followed by algal

blooms [7–9]. The close relationship of eutrophication with water quality degradation and
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algal blooms has been widely recognized [8, 10–12]. Excessive nutrient loads lead to harmful

algal blooms (HABs), which degrade water quality[13,14] and can produce toxins that affect

fish and other taxa survivals [15–17].

Biomanipulation methods are frequently applied to control algal blooms by reducing algal

biomass[18–20] and the use of filter-feeding fish (e.g. silver carp, Hypophthalmichthys moli-

trix) and mollusks (e.g. Dreissena rostriformis bugensis) to produce a top-down effect on phyto-

plankton communities has been well-documented[19,21,22]. In recent years, the simultaneous

use of phytoplanktivorous and piscivorous fish to reduce algal biomass has been used more

frequently in biomanipulation experiments [20, 23]. The cascading effects of fish predation

and zooplankton grazing overcomes the food-preference limitation imposed by using only

planktivorous fish[24–25]. Radke and Kahl [24] concluded that silver carp should be used for

biomanipulation only if the primary aim is to reduce nuisance blooms of large phytoplankton

species and Wang et al. [25] reported that silver carp are not recommended for phytoplankton

control when the objective was to control the entire phytoplankton community of a shallow

lake. However, biomanipulation experiments carried out in a reservoir using simultaneous

release of filter-feeding and piscivorous fish are rare, especially studies that compare the effec-

tiveness of stocking fish from both trophic levels with the use of filter-feeders only.

In the past decade, a large number of hydropower stations with capacities ranging from sev-

eral MW to over 20,000 MW have been constructed in China. Among the new hydropower

stations, the Three Gorges Project (TGP) has been well-studied because of numerous conten-

tious environmental issues [26]. With the completion of the TGP in 2012, the Three Gorges

Reservoir (TGR) stretched from Sandouping in Hubei Province to the Jiangjin District of

Chongqing (~660 km) and backed into over 100 tributaries. Since the TGR filled to 135 m in

2003, environmental consequences have emerged [26] and local managers began facing algal

blooms and deteriorating water quality in many tributary bays[27]. A nearly continuous algal

bloom emerged on the impounded section of Xijiang River, a primary tributary of the TGR

[27].

With a drainage area of 5173 km2 and mainstem length of 182 km, the Xiaojiang River is

the largest primary tributary in the middle north shore of TGR. Since the water level of TGR

rose to 172 m in 2008, the backwater area of Xiaojiang River extends to Hanfeng lake of Kaix-

ian County town (nearly 90 km in length), of which about 40 km is permanently inundated

(also called Xiaojiang Bay) as the TGR water level fluctuates from 145 m to 175 m. Xiaojiang

River has the largest submerged area and the most extensive riparian area in the TGR system

[28]. The backwater area of Xiaojiang River has also developed the highest algal biomass[29],

high-frequency algal blooms and is dominated by piscivorous fish species (Silurus asotus, Cul-
ter ilishaeformis, Culter mongolicus)[27]. For these reasons, the Xiaojiang River backwater is an

appropriate location to carry out a biomanipulation experiment designed to control algae and

improve water quality.

Two species of filter-feeding fish, silver carp Hypophthalmichthys molitrix and bighead carp

Aristichthys nobilis, and one species of piscivorous fish, the catfish Silurus asotus, were selected

for the enclosure experiment. The effectiveness of using all three fish species was compared to

that of using only the two filter feeders for algal control. The feasibility of using biomanipula-

tion to suppress algae and improve water quality was then assessed for Xiaojiang Bay, an

impoundment in which the dominant piscivore is the catfish [28].

Methods

All experimental procedures were conducted in conformity with institutional guidelines for

the care and use of laboratory animals, and protocols were approved by the Institutional
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Animal Care and Use Committee in Institute of Hydroecology, Ministry of Water Resources

& Chinese Academy of Sciences, China.

Experimental site

The experimental site was located between the towns of Houba and Qukou (Fig 1), the section

of the Xiaojiang backwater with the highest chlorophyll a value and the highest Cladocera den-

sity (160 ind/L) and biomass (60 mg/L) [29]. The experimental site was eutrophic, with total

nitrogen (TN) and phosphorus (TP) ranges of 1.44–3.26 mg/L and 0.10–0.12 mg/L [30]. On

both shores of the experimental area there were numerous plant species, with Xanthium sibiri-

cum, Bidens pilosa, Eclipta prostrata dominating in the water level fluctuation zone [31]. Their

decomposition at high water level releases large quantities of nutrients into the water column.

The backwater in the experimental area had a flow velocity of<0.05 m/s, a mean width of

~100 m and a mean depth of ~2.1 m. The experimental site had more than 50 fish species,

including silver carp and bighead carp and the dominant piscivorous species, the Amur catfish

[28]. There were no specific permission were required for carrying out experiments in this site

and also this field study did not involve endangered or protected species.

Experimental design

We conducted our experiments in twenty-two enclosures (L×W×H = 3 m ×2 m ×2 m), which

constructed of polyvinyl chloride (PVC) sheeting (6.0 cm thickness) fastened to frames made

Fig 1. Location of the experimental site.

doi:10.1371/journal.pone.0171953.g001
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of steel tubing (5.0 cm). The enclosures were placed 25 m off the north shore at a water depth

of 1.5 m and the experimental period was June 11-July 23, 2013. The tops and bottoms of the

enclosures were open to maintain light intensity and free exchange of nutrients [32]. The

lower end of the enclosure frames were fixed with rocks and buried to a depth of 20 cm in the

sediment and the frame tops extended 30 cm above the water surface. Prior to treatment, the

PVC sheeting was pulled down near, but not touching, the sediment for 5 days [32] to allow

the water quality and plankton community to stabilize. After stabilization, the PVC was fas-

tened to the steel tube frame, creating an enclosure volume of ~13.5 m3.

Ten treatments and a control group [Control] were prepared. The first five treatments

were combinations of silver carp and bighead carp [T1-T5] and the second five treatments

were combinations of these two ones and the catfish [T6-T10]. The treatments were arranged

as shown in Table 1, based on Xie [33]and preliminary studies conducted on the Xiaojiang

River. Each treatment was carried out in duplicate (two enclosures/treatment). The mean

weight of fish released into enclosures was ~3 g for silver carp and bighead carp and ~8 g for

catfish.

Physical, chemical and biological parameters of water in the enclosures

The first sampling for physical, chemical and biological parameters was carried out on June

11, immediately before the fish were introduced to the enclosures, and the enclosure water was

resampled every seven days, giving a total of seven sample sets collected one week apart. Before

collecting samples, water temperature (WT, ℃), dissolved oxygen (DO, mg/L) and pH were

measured in situ using a multifunctional YSI meter (YSI-650, YSI Inc., Yellow Springs, OH).

Samples for total nitrogen (TN, mg/L), total phosphorus (TP, mg/L) and Chlorophyll a (Chl-a,

mg/L) were collected from each enclosure by the method described by Zhu et al [32]. Water

samples were immediately placed on ice and taken to the laboratory for analysis using standard

methods (Environmental Quality Standards for Surface Water, GB3838-2002). One liter of

water was sampled using a 2 L organic glass hydrophore, preserved by adding 15 mL Lugol’s

solution and transported to the laboratory for analysis of phytoplankton biomass (PB) using

the method described by Gibson et al. [34], herein the cell number of different phytoplankton

species were directly counted in a plankton counting chamber (0.1 mL) using an optical digital

microscope with different magnifications and meanwhile[35] the phytoplankton species were

identified referring to the book Freshwater Algae in China [36].

Table 1. Experimental designs for different treatments.

Treatment Stocking weight each fish species (g) Stocking density(g/m3)

Control Silver carp Bighead carp Catfish

T1 81 189 0 20

T2 121 283 0 30

T3 162 378 0 40

T4 202 472 0 50

T5 243 567 0 60

T6 81 189 27 22

T7 121 283 40 33

T8 162 378 54 44

T9 202 472 68 55

T10 243 567 81 66

doi:10.1371/journal.pone.0171953.t001
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Data analysis

The values of the environmental parameters for each treatment for each set of samples were

obtained by averaging values from the duplicate enclosures. During the experimental period

from the second sampling to the last sampling, the mean values and standard deviations of

environmental parameters for each treatment were calculated and then the mean values

between each fish treatment and control treatment were compared by using the method of

Independent Samples T Test [37]. Two-way analysis of variance (Two-way ANOVA) was used

to examine the influences of different treatment types(no fish, stocking sliver carp and bighead

carp, and stocking sliver carp, bighead carp and catfish) and different sampling times on the

variations of water quality and phytoplankton biomass[37]. The variation values (Varvith) of

water quality and the phytoplankton biomass at the second sampling to the seventh sampling

for a given treatment were respectively calculated as follows:

Varv ith ¼ Vith � Firv

Where Vith was the value of an environmental parameter at the ith sampling, Firv was the

value of an environmental parameter at the first sampling.

Based on the method of Hedges et al. [38], the presence/absence (P/A) value for each

parameter at each sampling time was obtained by taking the common logarithm of the ratio

of the value for each treatment (Xpresent) and the corresponding value for the control group

(Xabsent), as expressed below:

P=A ¼ log10 ðXpresent=XabsentÞ

Where Xpresent and Xabsent were the values of environmental parameters when fish were present

and absent [38]. If the P/A value of a parameter for a treatment is < 0, the parameter value

with the treatment was less than the corresponding control. Because the initial P/A values

(first sample) were different for each parameter, the initial P/A values for each parameter were

set to zero to allow better comparison of the trends resulting from different treatments.

Pearson’s correlation analysis was performed on pairs of water quality parameters[37]. All

the statistical analyses were performed using SPSS (Ver.16.0, SPSS Inc., USA). Figures were

made using CorelDRAW 12 and Excel 2010.

Results

Effect of treatments on physical, chemical and biological parameters of

water

During the experimental period from the second sampling to the last sampling(W1-W6),

water temperature varied from 21.4˚C to 29.6˚C, with a mean value of 24.2˚C. After the first

sampling, the mean value of each water quality parameter was shown in Table 2. The mean

concentration of DO, pH, TN, Chl-a and PB in fish treatments were not significantly different

from the control group (Table 2), but the differences between T2-T10 and the control group in

TP were significant.

Results from the Two-way ANOVA were shown in Table 3. The differences of sampling

times had the significant effects on the variations of DO, pH, TN, TP, Chl-a and PB concentra-

tions (p<0.05), while the differences of treatment types led to significant statistical differences

on the variations of pH, TN, TP and Chl-a concentrations(Table 3). However, the differences

of treatment types didn’t cause the obviously differences on the variations of DO and PB con-

centrations (p>0.05, Table 3). Additionally, the interactions between treatment type and

Fish, algae and water quality
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sampling time on the variations of all environmental parameters were significant (p<0.05,

Table 3).

P/A values for water quality parameters

The P/A values for DO, pH, TN and TP for all treatments were shown in Fig 2. In all ten treat-

ments, the P/A values of DO (RDO) decreased for the first week (before June 18), increased

rapidly to the maximum value (0.07–0.24) in the subsequent two or three weeks and then

Table 2. Mean values of environmental parameters for each treatment (Mean±std.).

Treatment DO(mg/L) pH TN(mg/L) TP(mg/L) Chl-a(μg/L) PB(mg/L)

Control 6.79±3.18 8.09±0.18 0.95±0.26 0.07±0.01 41.94±13.12 2.65±2.77

T1 7.09±3.62 8.30±0.35 0.69±0.27 0.06±0.02 33.75±11.92 2.35±0.91

T2 5.98±3.21 8.27±0.38 0.74±0.24 0.05±0.02* 37.28±9.94 2.61±0.89

T3 6.95±3.60 8.29±0.38 0.70±0.29 0.05±0.01* 34.58±14.39 1.54±0.61

T4 6.06±3.30 8.27±0.34 0.82±0.30 0.06±0.02 34.55±9.21 2.12±0.70

T5 6.45±3.69 8.27±0.05 0.80±0.32 0.06±0.02 34.43±11.01 2.38±0.90

T6 6.08±3.47 8.21±0.28 0.85±0.25 0.06±0.01* 36.45±9.17 2.90±0.84

T7 6.09±3.56 8.27±0.30 0.91±0.22 0.06±0.01* 36.06±8.89 2.05±1.30

T8 5.67±3.27 8.28±0.32 0.87±0.26 0.05±0.02* 31.89±9.23 2.03±1.93

T9 6.76±3.47 8.29±0.34 0.71±0.20 0.05±0.01* 31.22±7.73 2.16±1.19

T10 6.53±3.03 8.29±0.33 0.80±0.22 0.05±0.01* 31.55±6.05 2.12±0.80

Notes:

* indicated significant differences between the treatment and the control (p<0.05) and were in bold print

doi:10.1371/journal.pone.0171953.t002

Table 3. Results of Two-way analysis of variance (Two-way ANOVA) examining the effects of different

treatment types and the different sampling times on the variations of environmental parameters.

Variable Factor F p

DO(mg/L) Treatment type 2.517 0.091

Sampling time 153.968 0.000

Treatment type and Sampling time 3.408 0.002

pH Treatment type 19.301 0.000

Sampling time 83.890 0.000

Treatment type and Sampling time 4.028 0.000

TN(mg/L) Treatment type 7.278 0.002

Sampling time 19.434 0.000

Treatment type and Sampling time 2.523 0.016

TP(mg/L) Treatment type 8.910 0.001

Sampling time 6.494 0.000

Treatment type and Sampling time 3.671 0.001

Chl-a(μg/L) Treatment type 8.326 0.001

Sampling time 20.707 0.000

Treatment type and Sampling time 7.383 0.000

PB(mg/L) Treatment type 1.108 0.338

Sampling time 29.904 0.000

Treatment type and Sampling time 4.868 0.000

Note:p < 0.05 was considered significant and highlighted in bold

doi:10.1371/journal.pone.0171953.t003

Fish, algae and water quality

PLOS ONE | DOI:10.1371/journal.pone.0171953 March 8, 2017 6 / 16



Fig 2. P/A values for DO (RDO), pH (RPH), TN (RTN) and TP (RTP) for each treatment.

doi:10.1371/journal.pone.0171953.g002
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fluctuated, ranging from 0.03 to 0.16 by the end of the experiment. The P/A values of pH

(RPH) fluctuated but displayed an upward trend and the pH for all treatments increased

during the last week of the experiment. The P/A values for TN (RTN) for treatments T1-T5

fluctuated after initially decreasing, while the RTN for treatments T6-T10 displayed a more

consistent downward trend. The P/A values of TP (RTP) for all 10 treatments decreased dur-

ing the first week, with larger decreases for T1-T5. All treatments, except for T3, reached maxi-

mum values at week 5 (July 16) and TP in all treatments decreased over the last week of the

experiment. RTP for T6-T10 also trended downward more than for T1-T6. Moreover, the

RTPs of T6, T9 and T10 were all<0 during the entire experimental period, while for treat-

ments T1-T5, the RTPs were all>0 at week 5 (July 16).

P/A values for Chlorophyll-a and phytoplankton biomass

The P/A values for Chl-a (RCA) and phytoplankton biomass (RPB) for all treatments are

shown in Fig 3. The RCA of all treatments decreased sharply during the second week (July 25)

and declined again during the last week. During week 3, the RCA for T1-T5 recovered to�0,

while the RCA for treatments T6-T10 all remained <0. It is clear from Fig 4 that T6-T10 led to

a lower final Chl-a than T1-T5.

The RPB, for all treatments, was<0 for the first 2 weeks and then increased rapidly during

week 3. After week 3 the RPB fluctuated, but more noticeably for T6-T10 than for T1-T5. At

the last sampling, the RPBs for T1-T5 were>0 but there were three treatments (T7, T8, T9) for

which the RPBs were <0.

Fig 3. P/A values for Chlorophyll a (RCA) phytoplankton biomass (RPB) for all of fish presence treatments.

doi:10.1371/journal.pone.0171953.g003
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Variations of phytoplankton compositions and biomasses under different

stocking ways

The phytoplankton compositions and biomasses for each treatment at day 0 (initial), day 14

and day 42 (final) are shown in Table 4. During the three samplings, phytoplankton from 6

phyla was observed in the control. After the introduction of fish, the number of phyla observed

on day 42 decreased in 7 of the 10 treatments and no phytoplankton from Pyrrophyta and

Euglenophyta were collected. As the experiment progressed, the biomasses of different phyto-

plankton species varied, both in the presence and absence of fish. However, changes in phyto-

plankton community structure displayed very different patterns in the different treatment

Fig 4. Linear correlation of stocked fish density with biomass of three dominant phyla at day 14.

doi:10.1371/journal.pone.0171953.g004
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groups. Initially, the phytoplankton community was dominated by species of Chlorophyta,

Cyanophyta, Bacillariophyta, Pyrrophyta and Euglenophyta. At day 14, the dominant species

in the control and T1-T5 were species of Chlorophyta, Bacillariophyta and Euglenophyta,

while in T6-T10 the dominant species were Chlorophyta, Cyanophyta and Bacillariophyta. At

the end of the experiment (day 42), phytoplankton in the control group and all treatment

groups included species of Chlorophyta and Cyanophyta. In addition to species from these

two phyla, species of Cryptophyta and Euglenophyta were observed in the control, Crypto-

phyta and Bacillariophyta in T1-T5, and only Bacillariophyta in T6-T10.

To indicate the control exerted on PB, stocked fish density was correlated with biomass of

the three dominant phyla at day 14 (Fig 4, when displayed the most obviously suppression for

PB). The correlation of Cyanophyta biomass with fish stocking density was tighter (R2 =

0.7139 and R2 = 0.9153) than with Chlorophyta and Bacillariophyta. However, for T1-T5, PB

increased with stocking density and, for T6-T10, PB decreased with stocking density. In

T1-T5, the biomass of Bacillariophyta and Cyanophyta increased with stocking density and, in

T6-T10, the biomasses of Bacillariophyta and Cyanophyta decreased with the stocking density.

Correlations among water quality and biotic parameters

The correlations among water quality and biotic parameters for treatments T1-T5 and T6-T10

are shown in Table 5. There were significantly correlations between DO and pH, as well as

Chl-a for both T1-T5 (r = 0.945, p< 0.01 and r = 0.720, p< 0.01) and in T6-T10 (r = 0.906,

p< 0.01 and r = 0.464, p< 0.05). The pH also significantly correlated with Chl-a (r = 0.736,

p< 0.01) for T1-T5, TN (r = 0.585, p< 0.01) and Chl-a (r = 0.434, p< 0.05) for T6-T10. Sig-

nificant correlations were observed between TN and TP for T1-T5 (r = 0.406, p< 0.05) and

Table 4. Phytoplankton composition and biomass (mg/L) for each treatment at day 0, 14 and 42.

Species Control T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Cryptophyta 0.19 0.12 0.07 0.00 0.24 0.06 0.18 0.12 0.06 0.01 0.00

Chlorophyta 0.90 0.79 0.55 1.20 1.06 0.79 1.47 0.40 1.09 0.96 0.51

Day 0 Cyanophyta 0.78 0.74 1.01 0.38 0.87 0.82 0.61 0.49 0.30 0.89 0.56

Bacillariophyta 1.04 0.93 2.12 0.29 0.23 1.29 0.79 0.92 0.87 0.38 0.84

Pyrrophyta 0.71 0.61 0.00 0.31 0.92 0.92 0.92 1.53 0.92 1.83 0.92

Euglenophyta 0.67 0.18 0.55 0.83 0.70 0.55 0.28 1.07 1.19 0.83 1.44

Sum 4.29 3.37 4.30 3.00 4.02 4.43 4.25 4.53 4.43 4.90 4.26

Cryptophyta 0.01 0.19 0.01 0.01 0.08 0.00 0.07 0.21 0.00 0.00 0.32

Chlorophyta 1.71 0.97 0.21 0.38 0.38 0.27 0.46 0.99 1.23 1.08 1.03

Day 14 Cyanophyta 0.45 0.27 0.21 0.26 0.43 0.45 0.84 0.80 0.46 0.15 0.15

Bacillariophyta 1.31 0.35 0.87 0.06 0.41 1.07 1.32 0.36 0.27 0.51 0.49

Pyrrophyta 0.00 0.00 0.32 0.00 0.31 0.31 0.42 0.35 0.00 0.31 0.00

Euglenophyta 0.92 0.15 0.49 0.21 0.52 0.18 0.00 0.11 0.34 0.40 0.00

Sum 4.39 1.93 2.11 0.92 2.13 2.28 3.04 2.81 2.29 2.45 2.00

Cryptophyta 0.29 1.66 0.45 0.19 0.80 0.97 0.27 0.13 0.34 0.08 0.27

Chlorophyta 0.15 0.46 0.51 0.22 0.21 1.05 0.49 0.19 0.18 0.47 0.73

Day 42 Cyanophyta 0.37 0.17 0.32 0.18 0.21 0.46 0.18 0.28 0.31 0.11 0.26

Bacillariophyta 0.11 0.68 0.97 0.50 0.68 0.30 0.98 0.02 0.09 0.30 0.18

Pyrrophyta 0.00 0.00 0.00 0.15 0.00 0.00 0.54 0.00 0.00 0.00 0.00

Euglenophyta 0.15 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.15

Sum 1.07 2.97 2.25 1.32 1.90 2.78 2.45 0.62 0.92 0.96 1.59

doi:10.1371/journal.pone.0171953.t004
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for T6-T10 (r = 0.416, p< 0.05), and between TN and Chl-a for T6-T10 (r = -0.382, p< 0.05).

However, correlations between Chl-a and TP or PB were not significant for any treatment.

The only parameters significantly correlated with PB were TN for T1-T5 (r = -0.586, p< 0.01)

and DO for T6-T10 (r = -0.411, p< 0.05).

Discussion

In this study, an enclosure experiment was designed to determine differences in algal sup-

pression and water quality improvement due to differences in the trophic level of fish

released into an enclosure in which the phytoplankton community is dominated by species

of Chlorophyta, Bacillariophyta and Cyanophyta(Table 4). Introducing fish to the enclosures

did not significantly change the mean value of any water quality parameter with the exception

of TP in treatment T1,T2,T6-T10 (Table 2). As fish stocking density increased in treatments

T1-T10, mean PB in T1-T5 and in T6-T10 decreased respectively from 2.35±0.91 mg/L to

2.38±0.90 mg/L and from 2.90±0.84 mg/L to 2.12±0.80 mg/L(Table 2),indicating that only

stocking filter-feeding fishes even if increased their stocking density also didn’t obviously

decrease the mean PB level of the entire experimental period in the impoundment area of the

Xiaojiang River. The result was opposite to some other study results which showed stocking

filter-feeding fish was able to obviously decline the PB[20,39–41]. However, for all fish treat-

ments, the lowest mean PB for T1-T5 and for T6-T10 was observed in T3 and in T8 respec-

tively which the stocking density for the sliver carp and bighead carp was 40 g/m3, might

indicating that maintained this density for these two kinds of fish species was most appropri-

ate for controlling the PB concentration of this study area. Our results from Fig 3 also sup-

ported above point of view.

Variations along the different sampling times for pH, TN, TP, Chl-a concentrations were

strongly related to the treatment types (Table 3), indicating that differences of fish stocking

schemes could exert obviously effects on the variations of above four environmental parame-

ters in the study area. This result was consistent with the point of view that nontraditional

biomanipulation had the possibility to influence some water quality parameters [39–41].

However, weakly relationship between the treatment type and variation of DO and PB

Table 5. The correlations among the water quality and biotic parameters for the treatments T1-T5 and T6-T10.

Treatments DO pH TN TP Chl-a PB

DO 0.945** -0.165 -0.014 0.720** -0.033

PH 0.945** -0.224 0.077 0.736** -0.023

TN -0.165 -0.224 0.406* -0.269 -0.586**

T1-T5 TP -0.014 0.077 0.406* 0.200 -0.359

Chl-a 0.720** 0.736** -0.269 0.200 0.121

PB -0.033 -0.023 -0.586** -0.359 0.121

DO 0.906** -0.435* -0.398* 0.464* -0.411*

PH 0.906** -0.585** -0.332 0.434* -0.208

TN -0.435* -0.585** 0.416* -0.382* -0.175

T6-T10 TP -0.398* -0.332 0.416* 0.300 0.085

Chl-a 0.464* 0.434* -0.382* 0.300 0.277

PB -0.411* -0.208 -0.175 0.085 0.277

*Significance <0.05.

**Significance <0.01.

doi:10.1371/journal.pone.0171953.t005
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concentrations also was observed in Table 3, which indicated that it was not effective for con-

trolling PB concentration by using the silver carp, bighead carp or/and catfish in this study

area. Similar result also was observed by Wang et al [25]. Actually, as pointed out by Zhang

et al. [41] and Ha et al. [42], the silver carp and the bighead carp did not work efficiently for

reducing the entire phytoplankton biomass in a specifically area because of the limitation in

feeding organs, and using the piscivorous fish for controlling the algal abundance was only

appropriate when they could obviously decline the grazing pressure of other fishes on

zooplankton.

The P/A values, displayed in Fig 2, showed that the variation of RDO and RPH with time

was similar for the two types of treatment, T1-T5 and T6-T10. However, variation patterns of

RTN and RTP were quite different for T1-T5 and T6-T10. The RTN with T1-T5 fluctuated

more widely than with T6-T10 and the RTP curves for T1-T5 and T6-T10 decreased initially

and then undulated upward for T1-T5 but downward for T6-T10. Yi et al. [39] once found

that, after one or two weeks, the P/A values for TN and TP decreased and then rebounded if

stocked with only filter-feeding fish. Our results indicated that this similar pattern changes for

the treatments of stocking only filter-feeding fishes (Fig 2). However, a different changed pat-

tern for RTN was observed if piscivorous fishes were added to the filter-feeding fish enclosures.

Although nitrogen and phosphorus concentrations the enclosures would increase due to fish

internal loading [39,41] and acetylcholine metabolism[19], especially in small enclosures, but

obviously above reasons could not explain the variation trends referred to the treatments of

T6-T10 because RTN decreased with increasing the fish stock density (Fig 2). Skov et al. [43]

had found out that the piscivorous fish may be had a significant structuring force for changing

the fish community and in turn declined the Chl-a and TP concentrations in shallow eutrophic

lakes by a 7-year study. In this study, the catfish was one fish species which feeding mainly on

the small fishes and benthos [44], which probably could impact the community structure of

benthos and in turn exerting the effect on phytoplankton community structure [45] resulting

finally in the variations of TN and TP concentrations. Sieben and Ljunggren [46] had also fig-

ured that a meso-predator release of stickleback may dramatically change coastal food web

constitution through a trophic cascade, which indicated that the predator adding may can

influence the flow of nutrients.

Yi et al. [39] reported that Chl-a and PB in fish present treatments were generally lower

than in fish absent treatments during the entire experimental period in hypereutrophic Lake

Taihu that displayed markedly suppressed Chl-a and PB when stocked with silver or bighead

carp. Our results showed it was more effective in the short-term to stock filter-feeding fish, but

better for long-term control of Chl-a to stock both filter-feeding fish and piscivorous fish (Fig

3). Wang et al. [25] also reported that planktivorous fish failed to decrease Chl-a in shallow

lakes due to decoupling of nutrients and chlorophyll, consistent with our findings (Table 5).

Direct suppression of PB was observed before week 3 regardless of stocking scheme (Fig 3).

The subsequent increase in PB was probably because phytoplankton smaller than 5 μm were

poorly filtered by silver carp [47] and bighead carp [48], causing an increase in the number of

small phytoplankton freed from grazers and competitors [24,39,49]. Yi et al. [39] also noted

that filter-feeding fish typically promote small zooplankton by reducing control of phytoplank-

ton by zooplankton.

Fukushima et al. [50] found that stocking silver carp causes a shift in phytoplankton species

towards small individual green algae due to food selection. Ha et al. [42] also reported that bio-

manipulation using piscivore and Daphnia stocking substantially changes the phytoplankton

community, consistent with our results (Table 4). Different patterns of change in phytoplank-

ton community structure with the two stocking schemes were also observed (Table 4), indicat-

ing that the different stocking schemes act by different mechanisms. Actually, due to the niche

Fish, algae and water quality
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difference, filter-feeding fish suppress PB mainly by direct feeding while piscivorous fish

reduce PB indirectly by the cascade effect, as reported by Skov et al. [43]. The results displayed

in Fig 4 provided additional evidence for this point of view. As shown in Fig 4, with the two

stocking schemes, the linear relationships between stocking density and PB for the three domi-

nant phyla had opposite signs. In contrast to other studies [39,49,50], our results indicated that

Cyanobacteria biomass increased and green algae decreased as the density of filter-feeding fish

increased. Because of the complexity of aquatic ecosystems, determining the cause of differ-

ences observed with the two stocking schemes will require further study.

There was no obvious correlation between TP and PB with either stocking scheme,

although the correlation in T1-T5 was stronger than in T6-T10 (Table 5). The removal of phy-

toplankton by release of fish did not decrease TP in this impoundment area. A significant cor-

relation between TN and PB was observed in T1-T5 and not in T6-T10, indicating that the

addition of piscivorous fish weakens the relationship. Biomanipulation, using only filter-feed-

ing fish, to decrease TN and TP was inappropriate for impoundments dominated by catfish

[28] because catfish weaken the relationship between TP or TN and PB.

No significant correlations were observed between Chl-a and PB for either of the two stock-

ing schemes (Table 5). Guo et al. [21] showed that Chl-a was positively correlated with dinofla-

gellate biomass but no significant correlations with other algae, if the concentration of Chl-a in

the backwater area of Xiaojiang River was greater than 19μg/L. In this study, the concentration

of Chl-a of each treatment exceeded 30 μg/L and the dinoflagellate biomass was very low com-

pared to other algal taxa (Table 4), indicating that PB is more effective than Chl-a for predict-

ing algal blooms.

Conclusion

The mean values of TN, Chl-a and PB did not decrease significantly, compared to the control,

with either of the two stocking schemes. However, the mean values of TP for some treatments

(especially for all treatments of stocking both filter-feeding fish and piscivorous fish) were sig-

nificantly lower than the control group. Stocking only filter-feeding fish to control TN, TP,

Chl-a and PB was more effective in the short-term while stocking both filter-feeding fish and

piscivorous fish was more effective in the longer term. Nevertheless, only short-term (< 21

days) suppression of PB occurred with either stocking scheme. The change in phytoplankton

community structure over time indicated differences not only between fish present and the

fish absent treatments but also between the two stocking schemes. Adding fish to the enclosure

clearly changed the phytoplankton community structure. Releasing piscivorous fish to the

enclosure produced the opposite density effect on dominant algae species, suggesting different

mechanisms of algal biomass suppression. The results also showed that stocking filter-feeding

fish decreased TN concentration by removing phytoplankton while evidence for reducing TP

and Chl-a concentrations was not conclusive. Introducing piscivorous fish to the enclosure

weakened the relationships between nutrients and phytoplankton. Given the weakening effect

produced by piscivorous fish and the dominant position of catfish in this impoundment [28],

stocking only filter-feeding fish to improve water quality and suppress phytoplankton was

insufficient. Other technologies and means, such as decreasing external nutrient input [51]

and removing carnivorous fish [52], should be applied simultaneously.
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