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Abstract

Functional Electrical Stimulation is a promising approach to treat patients by stimulating the

peripheral nerves and their corresponding motor neurons using electrical current. This tech-

nique helps maintain muscle mass and promote blood flow in the absence of a functioning

nervous system. The goal of this work is to control muscle contractions from FES via three

different algorithms and assess the most appropriate controller providing effective stimula-

tion of the muscle. An open-loop system and a closed-loop system with three types of

model-free feedback controllers were assessed for tracking control of skeletal muscle con-

tractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algo-

rithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a

muscle-mass-spring system was implemented in simulation to test the open-loop case and

closed-loop controllers. These simulations were carried out and then validated through

experiments ex vivo. The experiments included muscle contractions following four distinct

trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers fol-

lowed the stimulation trajectories set for all the simulated and tested muscles. When com-

paring the experimental outcomes of each controller, we concluded that the Adaptive

Augmented PI algorithm provided the best closed-loop performance for speed of conver-

gence and disturbance rejection.

Introduction

Functional Electrical Stimulation (FES) is a rehabilitation technique used to treat patients

with absence of a functioning nervous system by maintaining blood flow and directly stimu-

lating peripheral nerves [1, 2]. Motor unit recruitment varies with FES since fast motor

units are recruited prior to slow motor units [2–4]. Although non-physiological recruitment
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attenuates muscle atrophy, it can induce fatigue which hinders muscle performance. Patterns

of FES can be delivered via transcutaneous or percutaneous electrodes from an electrical

stimulator which is regulated by a controller. The controller specifies stimulation parameters

including amplitude, pulse width, and frequency. Theoretically, appropriate muscle contrac-

tions can be generated by FES to improve and maintain muscle function. To successfully

activate the muscle, a balance must exist between the controlled level of contraction and the

energy transfer from electrodes into the muscle. As demonstrated in [5–10], correlations

exist between the number of tetanic contractions and muscle physical properties such as

muscle mass, fiber size and force production. Assessment of muscle force and length changes

during activation by electrical stimulation, which constitute reliable indicators of muscle

function.

FES systems in clinical settings have relied primarily on open-loop control schemes. That

is, there is no feedback captured from the stimulated muscle to compare to the desired muscle

stimulus. Open-loop systems provide a command input but do not use output feedback to

adjust the control action [11]. The major challenges when implementing closed-loop systems

as rehabilitation tools include non-physiological recruitment due to synchronous recruitment,

spasticity, complexity of muscle systems, appropriate sensing mechanisms, and disturbances

to mention a few [12–14]. The designed control algorithm should be able to compensate and

regulate muscles’ complexity as well as disturbances for optimal tracking.

Coordination of muscle activation is essential to movement. Cyclical activation by agonist-

antagonistic muscle pairs provide motion at a joint (e.g., at the hip during walking), while syn-

chronized contractions of the muscle pair stabilizes the joint [15]. A major motivation for this

study was to develop a feedback control system to activate muscle. Popovic et al. [16] presents

a review on various control methods used in simulation or experimentation, including open-

loop controllers applying an inverse model, linear PID controllers, feedforward controllers

with PID, and adaptive controllers. The increased need for effective and easy to operate FES

equipment has motivated the exploration of these autonomous closed-loop systems, in which

produced movement is measured in real-time using sensors and the stimulation pattern is

modulated according to the difference between achieved and desired motion. For example,

designed control systems for joint tracking by electrical stimulation includes a robust feedback

system, H infinity controller, for ankle-moment tracking of the human calf muscles during

upright position [17]; a neuro-PID controller for regulating knee angle employing an artificial

neural network to regulate the desired knee angle to the appropriate stimulation parameters

and a PID controller for compensation of unmodeled disturbances and tracking error [18];

and a sliding mode controller for regulating knee angle using Riener’s knee model [19]. The

latter controller can display undesirable oscillatory behavior known as chattering [20, 21]. In

addition, an example of adaptive control systems for muscle stimulation include a multiple-

model adaptive control for upper-limb rehabilitation assuming nonlinear-time-invariant sys-

tems using time-varying Hammerstein structures to represent activation dynamics. This par-

ticular controller requires a set of subject models from experimental data and a set of tracking

controllers from a healthy population [22].

Efficient controllers are needed to understand the relationships between the stimulation

parameters and the resulting force and motion outputs. As a result, numerous issues arise

regarding stability and robustness of controllers; for example, inefficient adjustments to fit the

patient’s desired movement parameters, and sensitivities attributable to disturbances in the

system make smooth coordinated movements difficult. Closed-loop systems enable repeatabil-

ity through feedback by minimizing the error between the input and output of the system. In

the present study, a closed-loop FES system was tested that compared different types of con-

trollers to stimulate skeletal muscle ex vivo.
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The key to implement an effective and efficient closed-loop FES system relies on four

important criteria: (1) the system’s stability, which describes the boundedness of the input ref-

erence trajectory achieved by the muscle contraction, (2) the transient response, which pro-

vides a measure of how fast the muscle contractions converge to the reference trajectory, (3)

the tracking performance, which scores the system’s ability to follow the desired motion, and

(4) control constraints, which safeguard the muscles from unsuitable stimulation and joints

from unwanted movements. Therefore, the controller design for a system comprised of a

dynamic musculoskeletal model as well as sensors and actuators requires recurrent computa-

tion of the desired stimulation to accomplish the desired task [23–28]. In this study, we seek to

test our controller detached from voluntary muscle contractions as suggested by Lynch and

Popovic in [16]. Therefore, we dissected the muscle to asses the efficacy of the proposed con-

trol algorithms. This process guarantees the generated muscle contractions are solely due to

the stimulation pulses set by the control effort.

The objective of this study was to test control of muscle contractions in simulation and

experiments, specifically those of mouse muscle extensor digitorum longus (EDL) properties,

via an open-loop system and a closed-loop system with three different closed-loop controllers

to determine the most appropriate controller for position tracking. These controllers were

based on minimizing the error of the system without relying on complex skeletal muscle mod-

els, such as proposed by the classic Hill muscle model [29], Huxley’s sliding filament muscle

model [30], or rheological models [31]. We tested an open loop system and three model-

free closed-loop controllers: Proportional-Integral (PI), Model Reference Adaptive Control

(MRAC), and Adaptive Augmented PI (ADP-PI). Computational simulations were performed

followed by validation through experiments ex vivo. Our goal was to determine which of these

controllers provided the best performance of a skeletal muscle subjected to contraction when

tracking each of four predetermined functions, including a step, sine, ramp, and square wave

trajectories. Through adequate tuning of the parameters specified in each controller, we were

able to minimize the error between the set desired trajectory and the actual muscle response.

Materials and methods

The Materials and Methods section is divided into three main components: (1) the Skeletal

Muscle Simulation, detailing the computational muscle system, (2) Controller Design, outlin-

ing the three controllers implemented in experiment and simulation, as well as (3) Experimen-

tal Design, which focuses on the explanation of the mouse muscle trials performed and the

statistical analyses of these results. The nomenclature used throughout the paper is listed in the

Supporting Information section, S1 Table.

Skeletal muscle simulation

To assess the performance of open-loop and closed-loop controllers, a virtual setup com-

prised of a muscle-mass-spring system is modeled in MATLAB/Simulink. The muscle model

algorithm and parameters used in simulation are adapted from the Thelen muscle model

[32, 33], which is based on the Hill-type model [29] detailed in the Supporting Information

sections, S1 Appendix and S2 Table. Four different trajectories (step, sine, ramp and square

wave functions) were specified to carry out these simulations for the open-loop and closed-

loop controllers.

The muscle-mass-spring system setup is shown in Fig 1. The muscle contraction x is

recorded and serves as the feedback information for the closed-loop controllers. Dissipative

forces such as Coulomb frictional force, Ff, and damping force, Fc ¼ c _x, are considered in the

model since the experimental setup has the mass block moving along a steel rail. The static and

Classical and adaptive control of muscle contraction using FES
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kinetic coefficients of friction and the damping coefficient were chosen as μs = 0.120, μk =

0.080 and c = 3.500N-s/m, respectively. The spring constant ks = 35.025N/m and mass

m = 0.900g are based on the built experimental setup used to validate the simulations.

A block diagram for the algorithm is shown in Fig 2. At the start of simulation, the muscle-

tendon length, lMT, at t = 0, is set at maximum optimal fiber length lM
0

and the tendon is set at

the tendon slack length, lT
s . The ratio between the EDL muscle fiber to whole muscle length,

lM
0
=lM, is 0.44 [34]. In a given time step, the muscle fiber length is calculated from the integra-

tion of the contraction dynamics block and updated into the tendon block. The force gener-

ated from the system, FMT, is the muscle force. A subsystem describes the motion dynamics of

the system as follows,

m€x þ c _x þ ksðx � x�Þ ¼ FMT � Ff sign ð _xÞ; ð1Þ

with initial conditions:

xðt ¼ 0Þ ¼ 0; _xðt ¼ 0Þ ¼ 0: ð2Þ

Fig 1. Muscle-mass-spring system schematic based on the system’s equation of motion. The EDL muscle

contraction causes the mass positioned along the bar rail to move in the same direction as the contraction. The trajectory

of the muscle is tracked using the linear magnetic encoder. The movement is then fed back to the controller.

doi:10.1371/journal.pone.0172761.g001

Fig 2. Flowchart showing the muscle-mass-spring system modeled in MATLAB/Simulink to test controllers.

doi:10.1371/journal.pone.0172761.g002
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To implement Ff, a switch is applied such that the system can vary between static and

dynamic coefficients of friction, μs and μk, respectively. The frictional force is determined by

the following conditions:

Ff ¼

mkmg signð _xÞ if jFMT � c _x � ksðx � x�Þj � msmg

msmg signð _xÞ if jFMT � c _x � ksðx � x�Þj < msmg

ð3Þ

8
>>><

>>>:

The muscle contraction, x, was fedback to the system via the three closed-loop controllers.

The controllers determined the appropriate activation time for the contraction pulse. For the

open-loop case, tuning was done by inspection since there is no feedback in the system. A gain

value was found to generate the pulse required for the muscle contraction to follow the speci-

fied trajectory.

Controller design

For the muscle model simulation, an open-loop system and three closed-loop controllers were

used to control muscle contraction. These were a linear PI control law and two nonlinear con-

trollers which introduce adaptation to the system, MRAC and ADP-PI controllers. The follow-

ing sections provide a tutorial explaining the structure of the three control techniques in detail.

Furthermore, a brief sample outlining tuning of the controllers are detailed in the Supporting

Information sections, S2 Appendix and S1 Fig.

Proportional integral controller. For the purpose of muscle stimulation, a PI controller

was used as described in [35, 36]. The structure of this controller is demonstrated in Fig 3. In

this model, the user specifies the desired trajectory, xd(t), as the system input, which is then

compared to the current measured state, x(t). Since a positive control force will result in nega-

tive contraction, the system error, ePI(t), is defined as follows,

ePIðtÞ≜ xðtÞ � xdðtÞ: ð4Þ

Based on this definition of the error, the PI controller then determines the control input,

uPI(t), by implementing the following law,

uPIðtÞ ¼ kP ePIðtÞ þ
1

Ti

Z t

0

ePIðtÞdt
� �

; ð5Þ

where kP is the proportional gain and Ti is the integral time. In standard form, the quantity
kP
Ti

is referred to as kI, commonly called the integral gain.

Fig 3. Block diagram of the closed-loop system using a Proportional Integral controller. For the PI control, the error

ePI(t) is determined from the state x(t) and desired state xd(t). A control effort, uPI(t), based on ePI(t) is then input into the

system.

doi:10.1371/journal.pone.0172761.g003
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To tune the controller, a procedure was used similar to the Ziegler—Nichols Critical Gain

method presented in [35]. With the integral gain set to kI = 0, the proportional gain, kP, was

steadily increased until oscillation was detected in a step input response. The optimal propor-

tional gain was then taken to be the value used before oscillation was detected. Using this

value, the reciprocal of the integral time, 1

Ti
, was increased until the step response error was

determined to converge to a near zero value to ensure a proper transient response. Through

appropriate tuning, the system may exhibit relatively small or no overshoot during the muscle

contraction response.

Model Reference Adaptive Controller (MRAC). In addition to the PI controller, a

MRAC algorithm based on the theory presented in [37] and [38] was used. In this design, seen

in Fig 4, the control effort is a function of the adaptive gains, reference input, and current

state. The adaptive gains, likewise, depend on the reference input, current state, and error

between the unknown plant and reference system.

The following linear structure was implemented to describe the muscle behavior,

_xðtÞ ¼ axðtÞ þ buadðtÞ; ð6Þ

where xðtÞ 2 R is the system state, a 2 R is an unknown system state constant, b> 0 is the sys-

tem input constant with known sign and unknown magnitude, and uadðtÞ 2 R is the control

effort. The MRAC algorithm will ultimately force the system given in Eq (6) to converge to the

following reference model,

_xrðtÞ ¼ arxrðtÞ þ brrðtÞ; ð7Þ

Fig 4. Block diagram of the closed loop system using a Model Reference Adaptive Controller. The error, ead(t),

state, x(t), and reference input, r(t), are used to define the dynamics for adaptive gains, θr(t) and θx(t). The control effort is

computed using these gains, which then drives the mass-spring-muscle system to the reference system.

doi:10.1371/journal.pone.0172761.g004
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where xrðtÞ 2 R is the reference model state, ar < 0 is a negative (stable) system state constant,

br 2 R is a known input constant, and rðtÞ 2 R is the reference input. In the experiments, ar is

chosen such that ar = −br. The reference input, r(t), is then chosen so that the reference system

xr(t) tracks the desired trajectory, xdðtÞ 2 R.

It is assumed that ideal gains, y
�

x 2 R and y
�

r 2 R, exist to drive the system to the reference

model through an ideal control law, uidðtÞ≜ y
�

xxðtÞ þ y
�

r rðtÞ. By substituting uid(t) into Eq (6),

the following relationship is obtained,

_xðtÞ ¼ ðaþ by
�

xÞxðtÞ þ ðby
�

r ÞrðtÞ: ð8Þ

The error is given by eadðtÞ≜ xðtÞ � xrðtÞ. Choosing y
�

x ≜
ar � a

b and y
�

r ≜
br
b , the closed-loop

system expression simplifies to the reference model and the error dynamics are given by

_eadðtÞ ¼ _xðtÞ � _xrðtÞ ¼ arxðtÞ � brrðtÞ � ðarxrðtÞ þ brrðtÞÞ ¼ areðtÞ: ð9Þ

Given that the reference model is chosen to be stable (ar < 0), the error dynamics are also

stable and the system state converges to the reference state. However, since a and b are

unknown, the ideal gains y
�

x and y
�

r cannot be computed and the ideal control law uid(t) cannot

be implemented. Hence, the ideal control law needs to be modified into an adaptive one

which, instead of the ideal gains, implements adaptive gains, θx(t) and θr(t).
Theorem 1. Consider the system Eq (6), the reference system Eq (7) and adaptation laws

given by

_yxðtÞ≜ � gxeadðtÞxðtÞsignðbÞ; ð10Þ

_yrðtÞ≜ � greadðtÞrðtÞsignðbÞ; ð11Þ

where γx> 0 and γr > 0 are the tuning parameters. Then, the closed loop system given by Eqs

(6), (7), (10) and (11) with the adaptive control law

uadðtÞ ¼ yxðtÞxðtÞ þ yrðtÞrðtÞ; ð12Þ

is Lyapunov stable and the tracking error ead(t) converges to zero.

Proof. Define the difference between the adaptive and ideal gains as ~yxðtÞ≜ yxðtÞ � y
�

x and

~yrðtÞ≜ yrðtÞ � y
�

r . By substituting the adaptive control input Eq (12) into Eq (6) and introduc-

ing the definitions of ~yxðtÞ, ~yrðtÞ, y
�

x, and y
�

r , we obtain,

_xðtÞ ¼ aþ byxðtÞð ÞxðtÞ þ byrðtÞð ÞrðtÞ

¼ aþ by
�

x

� �
xðtÞ þ by

�

r rðtÞ þ b~yxðtÞxðtÞ þ b~yrðtÞrðtÞ

¼ arxðtÞ þ brrðtÞ þ b~yxðtÞxðtÞ þ b~yrðtÞrðtÞ:

ð13Þ

Accordingly, the error dynamics are given by computing the difference between Eqs (13)

and (7) as follows,

_eadðtÞ≜ areadðtÞ þ b~yxðtÞxðtÞ þ b~yrðtÞrðtÞ: ð14Þ

Next, introduce the following Lyapunov function candidate [39],

VðeadðtÞ; ~yxðtÞ; ~yrðtÞÞ ¼
1

2
eadðtÞ

2
þ

1

2gx
jbj~yxðtÞ

2
þ

1

2gr
jbj~yrðtÞ

2
: ð15Þ

Classical and adaptive control of muscle contraction using FES
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Using Eqs (14), (10) and (11), the Lyapunov derivative is determined by computing the

time derivative of Eq (15) along the trajectories of Eq (14),

_V ðtÞ ≜ areadðtÞ _eadðtÞ þ
1

gx
jbj~yxðtÞ _yxðtÞ þ

1

gr
jbj~yrðtÞ _yrðtÞ

¼ areadðtÞ
2
� 0:

ð16Þ

Since ar < 0, the LaSalle-Yoshizawa Theorem guarantees the error will converge to zero as

time goes to infinity and all signals remain bounded [40].

Tuning the adaptive controller is a matter of adjusting the tuning constants γx and γr as well

as the reference system parameters ar and br. While larger tuning constants will speed the rate

of adaptation, high adaptive rates will lead to aggressive oscillatory behavior in the response,

which is undesirable in muscle stimulation. On the other hand, limiting the rates of adaptation

will also limit the rate of system convergence. Since the muscle stimulation occurred over a

short period of time, added benefit was gained from adjusting the initial conditions of the

adaptive gains, θx(0) and θr(0). This alteration allowed for the use of less aggressive adaptive

rates by starting each experimental run with conditions closer to a converged state, but also

required an additional tuning effort.

Adaptive augmented PI control. In order to maintain many of the overall benefits

observed with the implementation of the PI controller but facilitate the advantages of adapta-

tion, the ADP-PI controller presented in [41] was chosen. Alterations, however, were made to

this strategy to support a more heuristic tuning methodology which was used with the classical

PI controller. The design of this controller is given in Fig 5.

At the core of the algorithm, a classical PI controller provides a linear contribution to the

overall control strategy, augmented with an adaptive control effort which depends on adaptive

gains, current system state, desired trajectory, and a set of structured nonlinear functions of

the state. The adaptive gains are continuously updated based on system state, trajectory, error

between the reference system, and the same set of nonlinear functions. Using a first order

model to describe the muscle behavior similar to that of the MRAC algorithm, the system

model is given as follows,

_xðtÞ ¼ axðtÞ þ bl
� uðtÞ þW�T� xðtÞð Þð Þ; ð17Þ

where a 2 R is a known state constant, b 2 R is a known input constant, λ� > 0 is a constant

of known sign and unknown magnitude, uðtÞ 2 R is the control effort, W� 2 Rp is an

unknown constant vector where p> 0 is the number of linear and nonlinear functions con-

tained in �ðxðtÞÞ 2 Rp. Note that there is no loss of generality in assuming the state constant a
is known as the vector of basis functions ϕ(x(t)) will also contain the simple linear function

x(t) hence providing an overall uncertainty over the linear coefficient of the system dynamics.

Since the PI control relies on the integration of the error between current and desired states,

an additional integral state is introduced, xIðtÞ≜
R t

0
ðxðtÞ � xdðtÞÞdt. This state is then aug-

mented to the current model to provide an overall representation,

_xaðtÞ ≜
a 0

1 0

" #

xaðtÞ þ
b

0

" #

l
� uðtÞ þW�T� xðtÞð Þð Þ þ

0

� 1

" #

xdðtÞ; ð18Þ

where xaðtÞ≜ ½xðtÞ xIðtÞ�
T
.

Classical and adaptive control of muscle contraction using FES
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To implement the adaptive control algorithm, a reference system needs to be introduced.

In particular, we chose the known dynamics of Eq (18) which can be written as

_x linðtÞ ¼
a 0

1 0

" #

xlinðtÞ þ
b

0

" #

ulinðtÞ þ
0

� 1

" #

xdðtÞ; ð19Þ

where xlinðtÞ 2 R
2. A standard PI controller is chosen to guarantee that Eq (19) tracks the

desired trajectory, that is

ulinðtÞ≜ � K�T xlinðtÞ �
xdðtÞ

0

" # !

; ð20Þ

where K�≜ ½kP kI�
T
.

Substituting Eq (20) into Eq (19) provides the following closed-loop system, which will be

used as the reference system for the design of the adaptive controller

_x linðtÞ ¼ ArxlinðtÞ þ
bkP

� 1

" #

xdðtÞ; ð21Þ

Fig 5. Block diagram of the closed-loop system using Adaptive augmented PI controller. The system assumes a single input-single

output (SISO) form where x(t) is the state vector. To tune the controller, first we compute the linear gains, then calculate the adaptive

parameters ΓK and ΓW.

doi:10.1371/journal.pone.0172761.g005

Classical and adaptive control of muscle contraction using FES
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where Ar is defined as,

Ar ≜
a 0

1 0

" #

�
b

0

" #

K�T
 !

: ð22Þ

By designing kP and kI through classical techniques, Ar is guaranteed to be Hurwitz. This,

however, is under the assumption that both a and b are known. In reality, however, kP and kI

are tuned in the same manner discussed with the PI controller. Once satisfactory values are

determined, approximate values for a and b are found by examining the step response to

achieve a similar trend in simulation.

To design a controller which guarantees that the augmented system Eq (18) converges to

the reference system Eq (21), we introduce the following tracking error,

eaðtÞ≜ xaðtÞ � xlinðtÞ; ð23Þ

and analyze its dynamics, obtained as follows,

_eaðtÞ ¼ _xaðtÞ � _x linðtÞ

¼ AreaðtÞ þ
b

0

" #

l
� uðtÞ þW�T� xðtÞð Þð Þ þ

b

0

" #

K�TxaðtÞ þ
� bkP

0

" #

xdðtÞ

¼ AreaðtÞ þ
b

0

" #

l
� uðtÞ þ

1

l
� K�T xaðtÞ �

xdðtÞ

0

" # !

þW�T� xðtÞð Þ

 !

:

ð24Þ

Next, we define the control effort u(t) as the sum of a linear part and an adaptive one, that is

uðtÞ≜ ulinðtÞ þ uadðtÞ, where ulin(t) is given by Eq (20) and uad(t) needs to be designed.

Accordingly, Eq (24) can be simplified to the following expression,

_eaðtÞ ¼ AreaðtÞþ

þ
b

0

" #

l
� uadðtÞ þW�T� xðtÞð Þ þ

1 � l
�

l
� K�T xaðtÞ �

xdðtÞ

0

" # ! !

:
ð25Þ

Since Ar is designed to be Hurwitz, by choosing uad(t) as follows

u�adðtÞ≜ � W�T� xðtÞð Þ �
1 � l

�

l
� K�T xaðtÞ �

xdðtÞ

0

" # !

; ð26Þ

the error dynamics Eq (25) simplifies to _eaðtÞ ¼ AreaðtÞ which guarantees asymptotic stability

and hence convergence of ea(t) to 0.

However, since the values of W� and λ� are unknown, the ideal controller Eq (26) cannot

be implemented. Hence, the ideal control law needs to be modified into an adaptive one

which, instead of those ideal values, implements adaptive variables ŴðtÞ and K̂ðtÞ.
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Theorem 2. Consider the system Eq (18), the reference system Eq (21), and the adaptation

laws given by

_̂K ðtÞ ¼ signðl�ÞGK xaðtÞ �
xdðtÞ

0

" # !

eT
a ðtÞP

b

0

" #

; ð27Þ

_̂W ðtÞ ¼ signðl�ÞGW�ðxðtÞÞe
T
a ðtÞP

b

0

" #

; ð28Þ

where ΓK> 0 and ΓW> 0 are the adaptation gains. The closed loop system given by Eqs (18),

(21), (27) and (28) with the adaptive control law

uadðtÞ≜ � ŴTðtÞ� xðtÞð Þ � K̂ TðtÞ xaðtÞ �
xdðtÞ

0

" # !

; ð29Þ

is Lyapunov stable and the tracking error ead(t) converges to zero.

Proof. By defining the difference between the ideal gains and the adaptive gains as

~KðtÞ≜ K̂ ðtÞ � 1� l�

l�
K� and ~WðtÞ≜ ŴðtÞ � W�, the error dynamics can be rewritten as follows,

_eaðtÞ ¼ AreaðtÞ �
b

0

" #

l
� ~W TðtÞ� xðtÞð Þ þ ~K TðtÞ xaðtÞ �

xdðtÞ

0

" # ! !

: ð30Þ

Next, the following Lyapunov function candidate is introduced,

VðeaðtÞ; ~K ðtÞ; ~WðtÞÞ ¼ eT
a ðtÞPeaðtÞ þ jl

�
j~K TðtÞG� 1

K
~KðtÞ þ jl�j ~W TðtÞG� 1

W
~WðtÞ; ð31Þ

where P 2 R2�2 is a positive definite matrix. Using Eqs (30), (27) and (28), the Lyapunov deriv-

ative is determined by computing the time derivative of Eq (31) along the trajectories of Eq

(30)

_V ðtÞ ¼ _eT
a ðtÞPeaðtÞ þ eT

a ðtÞP _eaðtÞ þ 2jl
�
j~K TðtÞG� 1

K
_~K ðtÞ þ 2jl

�
j ~W TðtÞG� 1

W
_~W ðtÞ

¼ eT
a ðtÞðA

T
r P þ PArÞeaðtÞ

þ2jl
�
j~K TðtÞ � signðl�Þ þ xaðtÞ �

xdðtÞ

0

" # !

eT
a ðtÞP

b

0

" #

þ G� 1

K
_~K TðtÞ

 !

þ2jl
�
j ~WTðtÞ � signðl�Þ� xðtÞð ÞeT

a ðtÞP
b

0

" #

þ G� 1

W
_~W TðtÞ

 !

:

¼ eT
a ðtÞðA

T
r P þ PArÞeaðtÞ ¼ � eT

a ðtÞQeaðtÞ � 0;

ð32Þ

where the last inequality follows from the fact that Q 2 R2�2 is positive definite since it satisfies

the Lyapunov algebraic equation AT
r P þ PAr þ Q ¼ 0 with P positive definite and Ar Hurwitz.

Hence, LaSalle-Yoshizawa Theorem guarantees that ea(t) will converge to zero as time goes to

infinity and all signals stay bounded [40].

Experimental design

To validate the results obtained from simulation, experiments were carried out for the closed-

loop controllers: PI, MRAC and ADP-PI systems. Since open-loop systems performances are

not guaranteed to remain within acceptable limits, while closed-loop systems are known to be
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more accurate due to feedback, no open-loop systems were considered in experimentation.

Thus, the main focus of the paper is the application of an optimal approach, i.e. closed-loop

control, for muscle stimulation. In our experiments, the fast contracting EDL mouse muscle

was activated at 100Hz to evoke tetanic contractions.

Twenty-four male C57/BL10 ScN mice with ages ranging from 12 to 32 weeks (Jackson

Laboratories) were fed standard, irradiated Envigo Teklad Global 18% Protein Rodent Diet

(2918) (Cambridgeshire, UK) and provided water ad libitum. They were maintained in a tem-

perature controlled vivarium between 68˚F–79˚F on a 12 hour light/ dark cycle. Cages were

maintained by vivarium staff as needed. Mean body mass was 28.04 ± 4.41 g. Mice were eutha-

nized with CO2 to carry out the experiments. Eight mice were used (N = 8) for each type of

controller. One muscle was used per animal. All procedures were approved by the Institutional

Animal Care and Use Committee (IACUC No. 08-119-HNFE) at Virginia Tech. The approval

was obtained prior to the start of the study. All efforts were made to minimize animal suffer-

ing. After euthanasia with CO2, one EDL muscle was surgically removed. Once removed, the

muscle was incubated in a physiological salt solution gassed with 95%O2, 5%CO2 at room tem-

perature (20˚C). Since isolated muscle viability ex vivo decreases with increased temperature,

we selected room temperature to maximize muscle viability [42]. The muscle aligned equidis-

tant between two platinum electrodes. Temperature was maintained between 16˚C–17˚C.

The EDL muscle was set at 1g of resting tension which corresponds to lM
0

, prior to the initial

stimulation.

During muscle activation, mass trajectory was measured using a linear encoder (Renishaw

LM15, IL). Feedback was captured from the instantaneous position to minimize the error,

e(t), between the desired predefined trajectory and the actual muscle contraction. Each con-

traction trial was executed at a stimulation frequency of 100Hz with a duration ranging from

7s to 10s. The constant voltage applied from the stimulator (Aurora Scientific Inc., 701B

stimulator) to the EDL muscle bath was set at 25V and a variable current limited to 1A. The

resting tension at lM
0

was sustained between each contraction; the muscle shortened 20% to

40% of lM
0

during contractions [42]. Each EDL muscle was stimulated using either the PI,

MRAC, or ADP-PI controller. Measurements were recorded, which primarily included mus-

cle force, muscle contraction, and twitch responses. The latter were recorded at the begin-

ning and between trials to monitor muscle fatigue and assess muscle decay. Furthermore,

resting periods of one minute were provided between trials to ensure the quality of the mus-

cle. The muscles’ predefined trajectories included step, sinusoidal, ramp, and square inputs.

After the conclusion of each trial, physical measurements of the muscle including muscle

mass and muscle length at resting tension were recorded. The average muscle mass and

muscle length were 0.0142±0.0024g and 10.44±0.69mm, respectively. A timeline of events

describing the step by step process for an experiment is detailed on Supporting Information

S3 Table.

Controller setup. A host computer supported the exchange communication between

the muscle’s experimental and controller setup, as displayed in Fig 6. The host program con-

figured the data acquisition board NI sbRIO-9612 (National Instruments, TX) to update the

parameters on the real-time controllers. The board recorded and sampled at 250Hz. The NI

sbRIO-9612 operated a 400MHz microprocessor and a 2M field programmable gate array

(FPGA). The FPGA outputted a digital pulse width modulation (PWM) signal at a frequency

of 100 Hz, which consists of a succession of pulses in which the pulse duration is determined

by the feedback controllers to output the adequate stimulation. The PWM signal set by the

control effort, u(t), has a pulse duration saturation limit between 0μs and a configurable

upper limit of 200μs. The FPGA sends the PWM stimulation signal via the digital output
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ports to the external trigger on the current stimulator, which are connected to the platinum

electrodes.

Muscle contraction was measured through a magnetic linear encoder (Renishaw, IL) with a

resolution of 5μm. The signal from the encoder, comprised of two square waves in quadrature,

was detected by the FPGA through the digital input pins at a rate of 1MHz. The high sample

rate ensures all encoder pulses are considered. The position information from the FPGA was

sampled at a rate of 250Hz. Simultaneously, the controller, running on the microprocessor,

updated the output and pulse width parameters from the FPGA using the measured position.

Moreover, position measurements, adaptive gains for the MRAC and the ADP-PI controller as

well as desired trajectories were updated and saved on the host computer.

Statistical analyses. Four controllers (one open-loop and three closed-loop) were evalu-

ated in simulation and the closed-loop controllers were validated experimentally. Four trajec-

tories were implemented per controller. In the case of the simulations, tuned trajectories were

attained (deterministic results). For the experimental results, trials were carried out for all tra-

jectories. Mean and standard deviation (xμ ± σx) were determined for the squared tracking

error (STE) between the desired and/or reference trajectory and the actual trajectory. STE is

Fig 6. Controller setup displaying the interface between the controller and experimental setup. The control effort, u(t), determines

the parameters of the duty cycle transmitted to the FPGA, which onsets the muscle contraction.

doi:10.1371/journal.pone.0172761.g006
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determined as,

STE ¼

1

n
Pn

i¼1
ðxdðtÞ � xðtÞÞ2; ðfor PI controllerÞ

1

n
Pn

i¼1
ðxrðtÞ � xðtÞÞ2; ðfor MRAC and ADP—PI controllersÞ:

8
>>>>><

>>>>>:

In addition, mean settling time ð�t sÞ for the step trajectory was calculated across all experi-

ments per controller. To test significance, we evaluated normality visually through the quan-

tile-quantile plot (Q-Q plot) of residuals and equality of variances via Levene’s test. To ensure

normality, a square root transformation for the ramp and square trajectories was required.

Furthermore, a Welch’s unequal variances t-test was performed. Since the data did not meet

the homogeneity of variances assumption, we implemented the Games Howell post hoc test.

Statistical analyses were performed using JMP (SAS Institute, Cary, North Carolina, USA).

Significance was set at α< 0.05. The statistical analyses focused on identifying differences

between all controllers. The number of samples for each trajectory are detailed on Table 1. We

hypothesize the ADP-PI controller has the best performance overall.

Results

Overall observations regarding tuning of the controller gains for the PI,

MRAC, and ADP-PI

Tuning of parameter gains were largely dependent on each muscle. To determine the appro-

priate gains for the control effort, we applied first a step input for tuning the muscle gains. All

the trajectory responses exhibited friction, which was mainly attributed to the mass motion

along the rail. Results are displayed in Figs 7–11.

The PI controller gains, kP and kI, are user-defined parameters which drive the response of

the system. The input control effort obtained through the PI controller generated the appropri-

ate PWM signal for muscle contraction. Examples of the pulse duration input signal and its

corresponding output are shown in S2–S3 Figs in the Supporting Information.

The MRAC controller required six tuning parameters. The MRAC controlled trajectories

presented fluctuations during adaptation of the controller’s parameters. A sample of these

parameters are listed for simulation and experiments on Table 2. The adaptive gains, θx(t) and

θr(t), are specified for t = 0, the tuning parameters, γx and γr ensures that ead(t) converges to

zero, the constants, ar and br describe the muscle model behavior. Specifying these tuning

parameters allowed the MRAC controller to determine the required control input signal gen-

erating the pulse duration for muscle contraction. The pulse duration and its corresponding

trajectory response are shown in Supporting Information S4 and S5 Figs.

Table 1. Number of trials from experiments used for statistical analysis.

Trajectory PI MRAC ADP-PI

Step 33 52 20

Sine 14 15 21

Ramp 6 13 11

Square 11 9 14

Ntotal 64 89 66

doi:10.1371/journal.pone.0172761.t001
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Fig 7. Step trajectories due to EDL muscle contraction using the PI, MRAC, and ADP-PI controllers from

simulations and experiments. xμ ± σ from experimental results as well as simulations, including the controllers and open-

loop simulations, are shown to assess the controller performance in simulation and validate the outcome through

experiments for the (A) PI controller, (B) MRAC controller, and (C) ADP-PI controller.

doi:10.1371/journal.pone.0172761.g007

Classical and adaptive control of muscle contraction using FES

PLOS ONE | DOI:10.1371/journal.pone.0172761 March 8, 2017 15 / 29



Fig 8. Mean experimental step trajectories due to EDL muscle contraction using the PI, MRAC, and ADP-PI controllers.

The dashed lines represent the 2% upper and lower bounds to reach the desired trajectory set at 1mm.

doi:10.1371/journal.pone.0172761.g008
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Fig 9. Sine trajectories due to EDL muscle contraction using the PI, MRAC, and ADP-PI controllers from

simulations and experiments. xμ ± σ from experimental results as well as simulations, including the controllers and open-

loop simulations, are shown to assess the controller performance in simulation and validate the outcome through

experiments for the (A) PI controller, (B) MRAC controller, and (C) ADP-PI controller.

doi:10.1371/journal.pone.0172761.g009
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Fig 10. Ramp trajectories due to EDL muscle contraction using the PI, MRAC, and ADP-PI controllers from

simulations and experiments. xμ ± σ from experimental results as well as simulations, including the controllers and open-

loop simulations, are shown to assess the controller performance in simulation and validate the outcome through

experiments for the (A) PI controller, (B) MRAC controller, and (C) ADP-PI controller.

doi:10.1371/journal.pone.0172761.g010
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Fig 11. Square trajectories due to EDL muscle contraction using the PI, MRAC, and ADP-PI controllers from

simulations and experiments. xμ ± σ from experimental results as well as simulations, including the controllers and open-

loop simulations, are shown to assess the controller performance in simulation and validate the outcome through

experiments for the (A) PI controller, (B) MRAC controller, and (C) ADP-PI controller.

doi:10.1371/journal.pone.0172761.g011
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The ADP-PI controller was implemented assuming linear dynamics for muscle behavior.

This nonlinear controller, which defines the control input, u(t), is composed of a linear and

adaptive component. For the ADP-PI controller, the function ϕ(x(t)) was chosen as,

� xðtÞð Þ ¼ ½x2; ex; sin ðxÞ; x�; ð33Þ

which was arbitrarily selected based on the muscle controlled trajectories. The known state

constant a and the known input constant b were determined through computational simula-

tions using previously calculated PI gains, kP and kI. These were then used to determine the

P matrix by solving AT
r P þ PAr þ Q ¼ 0, prior to the start of each trial.

The ADP-PI controller converged at a rate proportional to muscle fiber contraction, thus

minimizing the error between the reference trajectory and the actual trajectory. This was

observed throughout all trajectories using the ADP-PI controller. The controller required tun-

ing of ten parameters, which are listed in Table 3, for the simulation and experimental valida-

tion. First, the linear gains, kP and kI were computed using a method similar to the Ziegler—

Nichols Critical Gain method presented in [35]. The constants, a and b are parameters deter-

mined for the linear muscle model behavior as described by Eq (17). The adaptive gains, ΓK

and ΓW, in Table 3 are initial values set at t = 0. In this way, the system can converge quickly

through adaptation. Moreover, S6 and S7 Figs Design in the Supporting Information displayed

the pulse duration input signal and its corresponding output for all trajectories in experiment.

Trajectory dispersion was smaller compared to the PI and MRAC results as determined by the

σ bounds.

Table 2. MRAC adaptive parameters implemented for all trajectories for a trial experiment and simulation.

γx × 105 [m−3] γr × 105 [m−3] θx(0) [s/m] θr(0) [s/m] ar [1/s], -br [m/s2]

Step exp 1.00 1.00 0.025 0.040 −2.0

Step sim 1.45 1.45 0.035 0.140 −2.0

Sine exp 8.00 5.00 0.020 0.060 −2.0

Sine sim 9.50 2.50 0.010 0.060 −2.0

Ramp exp 8.00 5.00 0.020 0.060 −2.0

Ramp sim 10.50 8.50 0.080 0.060 −2.0

Square exp 8.00 5.00 0.020 0.060 −2.0

Square sim 1.00 1.00 0.025 0.040 −2.0

doi:10.1371/journal.pone.0172761.t002

Table 3. Parameters of the ADP-PI controller including the linear gains, kP and kI, and state constants: a, b to describe the first order model for

muscle behavior.

kP [s/m] kI [1/m] a [1/s] b [m/s2] ΓK1
, ΓK2

× 10−1 [s2/m3] ΓW1
, ΓW2

, ΓW3
, ΓW4

× 10−4 [s2/m2]

Step exp 0.050 0.75 -11.55 2.89 0.10 0.10

Step sim 0.090 0.40 -3.50 8.50 0.10 0.10

Sine exp 0.055 1.00 -11.55 2.89 1.00 1.00

Sine sim 0.400 0.25 -1.50 12.50 1.00 1.00

Ramp exp 0.035 0.90 -57.75 2.89 1.00 1.00

Ram sim 0.080 0.90 -3.50 8.50 1.00 1.00

Square exp 0.055 1.00 -50.0 2.89 1.00 1.00

Square sim 0.075 0.37 -3.50 10.50 1.00 1.00

doi:10.1371/journal.pone.0172761.t003
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Muscle contractions following step input trajectories show faster

convergence using the ADP-PI controller

The results obtained implementing the step input trajectory for the three controllers are displayed

in Fig 7A–7C. The plots include mean experimental step trajectories (xμ ± σ), controller simula-

tions, and open-loop simulations as well as the desired and reference step input trajectories. Over-

all, no overshoot was observed for all the controllers. The mean and standard deviation (xμ ± σ
bounds) displayed faster convergence to the reference trajectory using ADP-PI controller when

compared to the PI and MRAC controllers. Moreover, trajectory dispersion was smaller using the

ADP-PI controller when compared to the PI and MRAC results as determined by the σ bounds.

We evaluated the mean settling times for convergence using the PI, MRAC and ADP-PI

controllers as shown in Fig 8, that is, the time response to reach and maintain 2% of the final

value, set at 1mm. The mean settling time using the PI controller was �t s ¼ 6:5s, while the

mean settling time using the MRAC controller exhibited fluctuations and did not settle during

the 8s of muscle stimulation. The mean settling time using the ADP-PI controller is reached at

�t s ¼ 2:3s, which is almost three times faster than using the PI controller.

Comparing the mean settling times to simulations for each controller, we observed the PI

controller simulation settling at ts = 3.4s while remaining within the variance bounds of the

experimental results (refer to Fig 7A) and in turn capturing the muscle activation behavior

similar to the experiments, while the open-loop simulation converged much faster at ts = 1.1s.

The MRAC controller simulation (as shown in Fig 7B) converged after 3.8s to the reference

trajectory. The open-loop trajectory responded rapidly to the reference trajectory and settled

after ts = 1.1s. Lastly, the ADP-PI controller simulation, as displayed in Fig 7C settled at ts =

1.0s to the reference trajectory compared to the mean settling time at �t s ¼ 2:3s, while the

open-loop simulation settled at �t s ¼ 1:1s.

Muscle contractions following sine input trajectories exhibit a lag

response for all controllers and highly oscillatory behavior using the

MRAC controller

The sine trajectories are shown in Fig 9A–9C. The experimental and simulation responses

using the PI controller, shown in Fig 9A, exhibited some oscillatory behavior during relaxation

at interval sets [3s, 5s] and [8s, 10s] as opposed to the open-loop simulation. The PI simulation

was within bounds of the experimental trajectories while the open-loop case did not remain

within the bounds during the initial contraction. The oscillations during muscle relaxation

were attributed to the extension spring in the setup. This effect likely indicated that the spring

force after muscle contraction was pulling the muscle faster than the time required for the

muscle to return to its original length after stimulation. The MRAC sine trajectories from sim-

ulation and experiment were also characterized by oscillatory behavior during adaptation, as

shown in Fig 9B. Both responses followed the set reference trajectory as opposed to the open-

loop case, which was characterized by a higher amplitude and did not capture these fluctua-

tions. Lastly, the sine trajectories using the ADP-PI controller displayed in Fig 9C, did not

exhibit fluctuations as compared to the MRAC results. These trajectories followed the refer-

ence system in both experiment and simulation, but lagged after 3s of stimulation.

Muscle contractions following ramp input trajectories are characterized

by a response delay for all controllers

Oscillations prevailed for the ramp trajectories in experiment and simulation as shown in Fig

10A–10C as well as a delayed response of approximately 1s for all controllers. For the PI
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controller (Fig 10A), the mean ramp response and distribution attenuated after 6.5s as evi-

denced by the σ bounds converging closer to the desired trajectory. The MRAC controller in

experiment and simulation showed highly oscillatory behavior throughout the 10s of stimula-

tion as observed in Fig 10B. On the contrary, the ramp trajectories using the ADP-PI controller

in experiment and simulation (refer to Fig 10C) attenuated its oscillatory behavior after 5.5s of

stimulation, which could be attributed to the adaption component of the system.

Muscle contractions following square input trajectories present a delay

sustaining full contraction for all controllers

The square trajectories are illustrated in Fig 11A–11C. Stiction was observed for the square tra-

jectories in simulation and experiment using the PI and ADP-PI controllers as shown in Fig

11A and 11C. The experimental and simulations using the MRAC controller sustained oscil-

latory behavior throughout the 9s of stimulation as observed in Fig 11B. This behavior was

evident through the dispersion of the mean as shown by the σ bounds during contraction.

Moreover, we observed that no experimental samples restored to its original position after

the initial contraction. This behavior could be an indication of muscle fatigue and friction

between the mass and rail of the setup. In addition, the closed-loop simulations presented sim-

ilar behavior as the experiments as opposed to the open-loop simulation which did not capture

the nonlinearities affecting the system.

EDL muscle response to sine and ramp trajectories is significantly

different across the closed-loop controllers

To evaluate the treatment of the controllers for muscle stimulation in experiment, the mean

STE was used to test the following hypotheses: (1) the condition of the controller is significant

and has an effect on muscle stimulation, and (2) the ADP-PI controller is the optimal control-

ler to implement for muscle stimulation compared to PI and MRAC.

To assess controller tracking performance, we analyzed the mean STE values between the

three controllers for all trajectories. Box plots of the step and sine trajectories are shown in Fig

12. For the step trajectories, normality condition was satisfied from observations of the Q-Q

plot of the residuals and we tested the means with Welch’s unequal variances t-test. There was

moderate evidence suggesting the PI (xμ ± σ, 0.031 ± 0.02), MRAC (0.066 ± 0.11), and ADP-PI

(0.028 ± 0.01) controllers means were equal (F(2, 65.8) = 2.81, p = 0.06). A pair-wise compari-

son using Games-Howell post-hoc test revealed moderate evidence of differences between the

PI and MRAC controllers (Mean Difference (MD) = 0.034, p = 0.09) and MRAC and ADP-PI

controllers (MD = 0.037, p = 0.06). No significant difference was observed between PI and

ADP-PI controllers (MD = 0.003, p = 0.77).

The sine trajectories satisfied the normality condition. Welch’s unequal variances t-test

showed a strong evidence of a difference among the means of the PI (0.020 ± 0.02), MRAC

(0.049 ± 0.04), and ADP-PI (0.015 ± 0.01) controllers ((F(2, 23.8) = 5.14, p = 0.01). A pair-wise

comparison via Games-Howell post-hoc test reported significant differences between the PI

and MRAC controllers (MD = 0.030, p = 0.04) and between the MRAC and ADP-PI control-

lers (MD = 0.034, p = 0.02). No significance was observed between PI and ADP-PI controllers

(MD = 0.005, p = 0.62).

For the ramp and square trajectories, box plots are displayed in Fig 13. For these trajecto-

ries, we performed a square root transformation to ensure normality, which was validated

through Q-Q plots of the residuals. For the ramp trajectories, the Welch’s unequal variances

t-test showed strong evidence of the difference in means (F(2, 15.7), p> 0.0001) for the PI

(0.076 ± 0.01), MRAC (0.129 ± 0.07), and ADP-PI (0.114 ± 0.01) controllers. Through a pair-
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wise comparison using Games-Howell post-hoc test, significance was observed between the PI

and MRAC controllers (MD = 0.053, p = 0.04) and the PI and ADP-PI controllers

(MD = 0.038, p = 0.003). There was no significance between MRAC and ADP-PI controllers

(MD = 0.014, p = 0.73). Lastly, the square trajectories satisfied the normality condition. The

Welch’s unequal variances t-test presented moderate evidence of difference in means (F(2,

15.3) = 3.09, p = 0.07) for the PI (0.222 ± 0.03), MRAC (0.246 ± 0.06), and ADP-PI

(0.204 ± 0.02) controllers. Through the Games-Howell post-hoc test no significant differences

were observed between the PI and MRAC (MD = 0.023, p = 0.55), MRAC and ADP-PI

(MD = 0.042, p = 0.17), and between PI and ADP-PI controllers (MD = 0.018, p = 0.19).

Conclusions

Here, we have presented numerical simulations of muscle stimulation via adaptive and linear

closed-loop controllers as well as experimental validation of these systems ex vivo. By testing

the efficacy of the controllers using the EDL muscle in isolation, we can measure contractions

solely due to the stimulation delivered by the control effort. The three feedback controllers are

effective in tracking a variety of reference trajectories. In addition, the model simulated with

the closed-loop controllers generally matched well with the experimental results, both in terms

of quantitative metrics and qualitative behavior. Overall, experiments validated controller sim-

ulations since it captured nonlinearities such as delays and friction behaviors, which were not

present in the open-loop responses.

All closed-loop controllers worked in simulation to track signals. To build the simulations,

linear dynamics were assumed for muscle behavior while nonlinear controllers, with the

exception of the PI controller and open-loop case, were applied. The successful outcomes of

Fig 12. Box plots of the mean Squared Tracking Error (STE) due to EDL muscle contraction for the step and sine input

trajectories. Statistical significance is denoted by *, # (p < 0.05).

doi:10.1371/journal.pone.0172761.g012
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this comparative study highlights the advantage of feedback controllers in electrical stimula-

tion without the requirements of higher order muscle models that carry great computational

demands. Nevertheless, challenges still persist when implementing control systems for FES

treatments, such as the nonlinearities of the muscle system, appropriate coordination of mus-

cle group activation, non-physiological recruitment eliciting fatigue associated with muscle

contractions, time delays of the biochemical processes between stimulation and the start

of muscle contraction, spasticity, just to mention a few [12, 16, 43–46]. As pointed out by

Narendra and Annaswammy [46], handling of biological systems, such as skeletal muscles,

requires adaptation and understanding of the input/output relationship for the design of the

controllers.

All closed-loop controllers are consistent with experiments. The closed-loop muscle system

simulations qualitatively captured the behavior of the EDL mouse muscle as evidenced by the

trajectory outputs in the Results section. Several assumptions were made when building, test-

ing and coding the experimental system, which included Coulomb friction and no moment

effects, among others. Moreover, spring reaction forces and friction contributed to the stick-
slip behavior observed in all trajectories during muscle relaxation. These effects observed in

experiments were captured by the closed-loop controllers in both simulation and experiments,

as opposed to the open-loop cases.

The ADP-PI controller system has the best tracking performance compared to that of the

PI and MRAC controller. The rate of muscle fiber contraction and adaptation worked in syn-

ergy to output adequate tracking of the reference system with minimal system error. Although

ten parameters characterized the system, the linear and nonlinear components could be tuned

Fig 13. Box plots of the mean tracking error (STE) due to EDL muscle contraction for the ramp and square input trajectories.

Statistical significance is denoted by *, # (p < 0.05).

doi:10.1371/journal.pone.0172761.g013
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separately for optimal output. Thus, the ADP-PI controller stimulated the muscle efficiently by

providing real-time changes to the gains and by reducing the influence of perturbations in the

system (e.g. small losses in muscle force over the course of the experiment). Overall, adaptation

enabled fastest tracking error convergence and remained stable while the parameters varied in

time. The ADP-PI controller best tracked the set trajectories by first using the PI component

to approach the area of convergence, thus minimizing the system error while the adaptive

component fine-tuned the controller. In this way, trajectory responses were characterized by

minimal oscillatory behavior, as compared to the MRAC controller which lacks this synergy.

Closed-loop systems are capable of using the feedback information to minimize the system

error and tracking of muscle contraction. However, comparing the closed-loop controllers in

experiments through statistical analyses revealed a significant effect of controller type on mus-

cle stimulation for the sine and ramp trajectory inputs. As shown in Figs 12–13, mean squared

tracking error was significantly different between the PI and MRAC as well as the MRAC and

ADP-PI for the sine trajectories and the PI and MRAC as well as the PI and ADP-PI for the

ramp trajectories. Overall, the ADP-PI had the smallest variance overall. The PI controller had

a smaller variance compared to MRAC. On the other hand, MRAC showed faster adaptation

compared to the rate of muscle fiber activation as characterized by overshoot and oscillations

captured for both simulation and experiment. By incorporating the linear and adaptive com-

ponents via the ADP-PI controller, we were able to apply a robust feedback system capable of

handling system uncertainties and unmodeled dynamics. We conclude that ADP-PI controller

offers the best performance due to its incorporation of the linear and adaptive components of

the PI and MRAC systems.

From a theoretical perspective, closed-loop controllers mimic the feedback inherent in the

nervous system, since our nerves carry out both commands to muscles and feedback to the

central nervous system; thus closed-loop control may be better integrated with, biological sys-

tems. The open-loop approach is not a natural process and simulations for this case failed to

capture the key characteristics observed in our FES experiments. Although the same muscle-

mass-spring system was applied for all simulations, the open-loop case was unable to assess the

muscle response through tracking and capture key behaviors, such as friction and response

delays. Conversely, tuning capabilities through closed-loop systems have the ability to capture

these behaviors and compensate for muscle fatigue by changing the control input and output-

ting the appropriate PWM signal.

Nevertheless, these controllers warrant further investigation, for example, to study the mis-

match between the experimentally-observed control effort and that predicted by the model.

Changes in the control effort are displayed in the Supporting Information section in S2–S7

Figs. We observed that the experimental control effort was generally smaller for experiments

than predicted by simulations. During experiments, the muscle was suspended in a bath sub-

merged in ionized solution which was not represented in simulation. The differences between

these control input signals and muscle response will be explored in future studies.

In conclusion, the application of feedback controllers, very rarely used in FES applications,

has the potential to become an effective tool for treatments regarding skeletal muscle stimula-

tion. Adaptive controllers, especially the ADP-PI controller, provide a beneficial strategy for

muscle treatment by providing appropriate stimulation to the affected muscle and considering

the muscle response to set stimulation. This proof of principle can be extrapolated to a clinical

setting as a rehabilitation tool since it can provide patients with an efficient method of muscle

activation. From a translational research perspective, next steps involve two major components:

(1) medical device design to incorporate these controllers in a user-friendly rehabilitation tool

comprising of electrodes, stimulator, and embedded systems tracking joint movement, and (2)

standard input trajectories for tracking joint movement to ensure best practices for patient
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rehabilitation. Both aspects introduce new challenges to guarantee reliable medical device

design, ensure safety procedures, and integrate human factors for future clinical trials.

Supporting information

S1 Table. Nomenclature.

(PDF)

S1 Appendix. Skeletal muscle model.

(PDF)

S2 Table. Thelen muscle parameters for the skeletal muscle model. These parameters were

used for simulations of the EDL mouse muscle model.

(PDF)

S2 Appendix. Tuning of controller procedure.

(PDF)

S1 Fig. Various step trajectory responses due to EDL muscle contraction using the PI con-

troller. Different values for kP and kI are determined to identify the appropriate tuning param-

eters.

(PDF)

S3 Table. Timeline of muscle experiment. A typical cascade of events when carrying out an

experiment.

(PDF)

S2 Fig. Samples of the step and sine pulse duration inputs and trajectory outputs using the

PI controller. Experimental sample applying the PI controller for muscle contraction com-

pared to the muscle system simulation for the PI and open-loop case. Trajectories include (A)

the step and (B) sine functions.

(TIF)

S3 Fig. Samples of the ramp and square pulse duration inputs and trajectory outputs using

the PI controller. Experimental sample applying the PI controller for muscle contraction

compared to the muscle system simulation for the PI and open-loop case. Trajectories include

(C) ramp and (D) square functions.

(TIF)

S4 Fig. Samples of the step and sine pulse duration inputs and trajectory outputs using the

MRAC controller. Experimental sample applying the MRAC controller for muscle contrac-

tion compared to the muscle system simulation for the MRAC and open-loop case. Trajecto-

ries include (A) the step and (B) sine functions.

(TIF)

S5 Fig. Samples of the ramp and square pulse duration inputs and trajectory outputs using

the MRAC controller. Experimental sample applying the MRAC controller for muscle con-

traction compared to the muscle system simulation for the MRAC and open-loop case. Trajec-

tories include (C) ramp and (D) square functions.

(PDF)

S6 Fig. Samples of the step and sine pulse duration inputs and trajectory outputs using the

ADP-PI controller. Experimental sample applying the ADP-PI controller for muscle contrac-

tion compared to the muscle system simulation for the ADP-PI and open-loop case.
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Trajectories include (A) the step and (B) sine functions.

(TIF)

S7 Fig. Samples of the ramp and square pulse duration inputs and trajectory outputs using

the ADP-PI controller. Experimental sample applying the ADP-PI controller for muscle con-

traction compared to the muscle system simulation for the ADP-PI and open-loop case. Tra-

jectories include (C) ramp and (D) square functions.

(TIF)
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