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Abstract

As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in 

models of protrusive force production via the dynamic actin network. Here, we review recent 

studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in 

different migratory environments. These findings have revealed an unexpected level of plasticity, 

both in how cells rely on the Arp2/3 complex for migration and other physiological functions and 

in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling 

cascades.

Introduction

Actin polymerization drives the morphological changes that allow cells to undergo dynamic 

processes, such as division, phagocytosis, and migration. The formation of new actin 

filaments from actin monomers is regulated by three classes of nucleating proteins, 

including the formins, tandem-monomer-binding nucleators, and the Arp2/3 complex [1–3]. 

Formins, such as mDia1 and 2, generate unbranched filaments by stabilizing actin trimers 

and promoting elongation through associations with both the growing barbed end and actin-

bound profilin. The tandem-monomer-binding nucleators, including Spire, cordon bleu, and 

leiomodin, form unbranched filaments by bringing together actin monomers, via a series of 

monomer-binding WH2 domains, in a configuration that mimics the stable actin trimer. The 

Arp2/3 complex is unique in that it nucleates branched actin filaments.

The first-identified actin nucleator, the Arp2/3 complex has been studied extensively using 

in vitro reconstitution assays, biochemical and structural analyses, and in vivo genetics-

based functional experiments [4,5]. The Arp2/3 complex consists of seven subunits, two of 

which (Arp2 and Arp3) are actin-related proteins that serve as a nucleus for the new actin 
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filament. Other Arp2/3 complex subunits bind to existing actin filaments to generate a 

branch at a ~78° angle from the mother filament [6–8]. Nucleation by Arp2/3 is regulated by 

many proteins, most prominently the Wiskott-Aldrich syndrome family of nucleation 

promoting factors (NPFs), such as WASP, N-WASP, Scar/WAVE, and WASH. The WASP 

family NPFs share a consensus WCA domain in their C-termini that binds monomeric actin 

through the WH2 domain (W) and the Arp2/3 complex through the cofilin homology region 

and acidic tail (CA) [9,10]. Thus, in a spatiotemporally-regulated manner, these NPFs 

facilitate the transition of the Arp2/3 complex from its splayed, inactive conformation to its 

closed, active conformation and also supply an actin monomer to form the growing barbed 

end. The WISH/DIP/SPIN90 proteins are NPFs that activate the Arp2/3 complex without 

binding to F- or G-actin, promoting the formation of unbranched filaments that may serve as 

the seed for subsequent branch nucleation [11].

Cells must be able to rapidly modify their actin network to adapt to their surroundings. It is 

well-established that cells can switch between multiple modes of migration depending on 

their gene expression, the dimensionality of their environment (1D vs 2D vs 3D), and the 

extracellular matrix (ECM) stiffness and composition [12–24]. This is accomplished in part 

by complex Arp2/3 regulation combined with the multitude of other mechanisms that 

promote actin nucleation during cell migration, allowing for tight spatiotemporal control of 

the formation of different actin architectures. Furthermore, applied mechanical resistance 

alters the actin network density, geometry, power and stiffness, suggesting that variations in 

force may influence the organization of actin filaments in vivo [25]. Geometric constraints 

also dictate the structure of the actin network [26–28]. Nonetheless, variability in 

experimental conditions and the intricacy of the underlying regulatory mechanisms has made 

it difficult to dissect the role of Arp2/3 in cell migration. This review will focus on recent 

advances in our understanding of Arp2/3-mediated actin polymerization during cell 

migration and the mechanisms by which cells fine-tune their actin networks to adapt to 

internal perturbations or extracellular environments.

Studies of Arp2/3 Subunit-Disruption in Migration

Because of its central role in the actin polymerization required for cell migration, 

endocytosis, and other vital processes, functional studies of the Arp2/3 complex were 

initially hindered by the lethality of Arp2 or Arp3 null cells and animals [29,30]. Early 

studies with Arp2/3 complex subunit knock-down or NPF inhibition supported the notion 

that the Arp2/3 complex mediates actin polymerization during lamellipodia formation and 

migration in cells such as fibroblasts, lymphocytes, mammary carcinoma cells, and the 

amoeba Dictyostelium discoideum [31–42]. Improvements in genetic techniques over the 

past decade have allowed for more direct tests of Arp2/3 function in migration in a variety of 

cell types (Table 1).

Fibroblasts—Our group and others have shown that loss of Arp2/3 activity in mouse 

embryonic fibroblasts through the use of inhibitors, complex subunit knock-outs, or RNAi 

results in the loss of lamellipodia [43–47]. Surprisingly, these Arp2/3-deficient cells are still 

migratory, though with reduced speed, through the generation of formin-containing 

filopodial structures of bundled actin [45,46]. These actin structures coordinate with myosin 
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II-mediated contractility in the cortex to drive leading edge extension [44]. Although these 

studies found similar alterations in F-actin structures at the leading edge, they disagreed on 

the effect of Arp2/3 complex loss on migration toward chemical cues: our studies showed 

reduced directional persistence and a cell-autonomous defect in chemotaxis toward growth 

factors, while Wu et al found that Arp2/3 knock-down cells only exhibit a chemotactic 

deficiency if there is interference by secreted inflammatory cytokines [44,47]. The same 

group did find that haptotaxis toward surface-bound ECM molecules is impaired in the 

knock-down cells and later repeated their findings with an Arp2/3 subunit knock-out 

[43,46]. These discrepancies could be caused by differences in genetic background, the 

manner by which the cells were produced, the targeted Arp2/3 complex subunit, or 

experimental conditions.

Neural and glial progenitors—Recent studies have examined the role of the Arp2/3 

complex in the migration of progenitor cells found in the brain. For example, Arp2/3 is 

required for the directed migration of neural stem cell-derived oligodendrocyte precursor 

cells (OPCs) in an electric field, which has implications for neural stem cell transplantation 

for remyelination [48]. Similar to mouse embryonic fibroblasts, Arpc2-null OPCs were 

slower, with shorter, filopodial processes than Arpc2-expressing OPCs. We recently found 

that Arp2/3 is required for neural cell migration in vivo: Arpc2-null mice have impaired 

cortical architecture due to defects in both radial glial cell processes and the migration of 

neural progenitors along these tracks [49]. In vitro experiments showed that the migration 

defect of neural progenitor cells is particularly pronounced in soft or low-laminin 

environments that mimic brain tissue.

Hematopoietic cells—As opposed to fibroblasts and neural progenitor cells, evidence 

shows that Arp2/3-mediated actin polymerization inhibits the migration of both dendritic 

and T cells, which will be discussed below [50,51]. However, a recent study of dendritic 

cells suggests that successful passage through narrow pores, which is determined by the 

physical constraints of the nucleus, is associated with an increase in actin polymerization 

around the nucleus as it reaches the point of constriction [52]. This perinuclear actin, as well 

as migration under confinement, is reduced by Arp2/3 inhibition or knock-down, but is not 

required for the confined movement of cells with low lamin levels and softer nuclei, 

suggesting that actin filaments facilitate migration through narrow spaces by promoting 

nuclear deformation [52]. In hemocytes, the Drosophila macrophage-like immune cells, 

depletion of Rho1, WASH, or Arp2/3 subunits reduces the formation of cellular protrusions 

and prevents a subset of migration events during development [53]; similar studies suggest 

that lamellipodia formation and migration of hemocytes in vivo require Scar/WAVE [54,55].

Epithelial cells—In MCF10a mammary epithelial cells, inhibition or knock-down of 

Arp2/3 results in the disruption of lamellipodia and the formation of unstable or bleb-like 

protrusions, corresponding to a decrease in directional persistence and migratory speed [56]. 

Furthermore, Arp2/3 inhibition impairs nascent focal adhesion assembly and decreases the 

coupling between the actin cortex and cell membrane [56].
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Cancer cells—Because of the links to metastatic migration, the role of Arp2/3 has been 

examined in a number of cancer cell lines. The results are conflicting, which is unsurprising 

given the tremendous genetic diversity and heterogeneity of cancer cells. Several studies 

have shown that the Arp2/3 complex or Arp2/3-stimulating factors, such as cortactin, are 

upregulated in malignant gliomas, and inhibition of Arp2/3 activity reduces lamellipodia 

formation and invasion [57,58]. Similar trends have been shown for Arp2/3 and its NPFs in 

models of mammary carcinoma [59–61] . However, other studies of glioma motility 

concluded that Arp2/3 activity is unnecessary, or even inhibitory, for migration in confined 

environments [62–65]. The mechanisms of Arp2/3-independent migration are unclear, as 

studies alternatively conclude that either motility is dependent on formin-mediated actin 

polymerization or is independent of actin polymerization entirely based on observed 

migration in the presence of actin depolymerizing agents. Similarly, endocytosis of α5β1 

integrin enhances the invasion of ovarian carcinoma cells into the 3D matrix by promoting 

the formation of actin spikes via RhoA-mediated formin activity, independent of Arp2/3 

[66].

Multifaceted Regulation of the Arp2/3 Complex Adapts the Actin Network to Diverse Modes 
of Migration

Proteins that regulate the Arp2/3 complex—In addition to NPFs and upstream 

signaling factors, a number of proteins function in the regulation of Arp2/3 activity to 

control cell migration [10,67–77]. Recent studies have centered on a newly-discovered 

negative regulator of Arp2/3, Arpin [78]. This protein is recruited to the lamellipod by 

activated Rac, where it directly inhibits Arp2/3 activity to destabilize protrusions [78,79]. 

Arpin helps control directional persistence and migration speed by inducing pauses in 

motility [79]. Subsequent studies showed an inverse correlation between Arpin expression 

and breast cancer metastasis; low levels of Arpin are also associated with elevated 

expression of WAVE complex subunits and poor recurrence-free survival [80,81]. Another 

negative regulator, Gadkin, sequesters the Arp2/3 complex to endosomal vesicles, thereby 

inhibiting cell spreading and affecting the migration speed of dendritic cells in vitro [82,83]. 

In sum, the numerous potential interactions between Arp2/3 and components of the actin 

machinery leads to a highly regulated and tunable actin network that can be specifically 

tailored to a variety of dynamic cellular behaviors.

Differential activation of NPFs fine-tunes the structure of the actin network—
Evidence suggests that the differential utilization of various Arp2/3-activating proteins, 

including NPFs, can alter the migratory behavior of cells depending on environmental 

conditions. For example, recent work has demonstrated that loss of the Scar/WAVE complex 

in both carcinoma and normal epithelial cells decreases migration in 2D wound healing 

assays but promotes N-WASP- and Arp2/3-mediated invasion into 3D matrices through the 

activation of focal adhesion kinase (FAK) at the leading edge [84,85]. Thus, Arp2/3 plays 

different roles in 2D vs 3D migration depending on whether it is activated by Scar/WAVE or 

N-WASP. FAK, heavily implicated in cancer cell migration, interacts with Arp2/3, recruiting 

it to sites of nascent focal adhesions [86, 87]. The interaction between FAK and Arp2/3 also 

couples cell adhesion to leading edge protrusions and is required for migration of fibroblasts 

in response to ECM gradients in 2D [87,88]. Similarly, depletion of N-WASP, WAVE1, or 
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cortactin in fibrosarcoma cells undergoing migration in different environments showed that 

the regulatory machinery is alternatively activated for 2D vs 3D Arp2/3-based migration, 

resulting in different morphologies and migratory behaviors [89]. During migration in 3D 

environments, these cells form thin, dendritic extensions that branch to generate new 

protrusions that are molecularly distinct from the original, suggesting that the formation of 

different types of actin structures is coordinated [89].

Balance between Arp2/3 and other actin polymerizing factors—Studies of cells 

lacking the Arp2/3 complex have indicated that these cells can still generate protrusive actin 

networks that sustain migration through other actin nucleators [12,43–48,90]. These studies 

also showed that different actin polymerizing factors lead to different modes of migration 

[12,43–48,70,90–92] (Figure 1). A specific example of how the utilization of multiple 

nucleators contributes to cellular function comes from studies of dendritic cells (DCs) in 

confining microchannels. DCs have two competing pools of actin: a Cdc42- and Arp2/3-

mediated accumulation of F-actin at the cell front that slows motility but is required for 

micropinocytosis and antigen uptake in immature DCs, and a RhoA- and mDia-mediated F-

actin enrichment at the cell rear that is necessary for the fast migration and chemotaxis used 

by mature DCs to travel to the lymph nodes [51]. Stimulation with LPS, which triggers DC 

maturation, induces a switch from Arp2/3- to formin-derived actin networks with 

corresponding changes in migratory behavior [51]. However, previous studies reported that 

depletion of Arp2/3 activators, including Cdc42 and WASP, impairs migration of DCs to the 

lymph nodes [93–95]. These contradictions may be due to experimental differences in 

migratory environments. Similarly to DCs, Arp2/3 activity inhibits T cell migration to 

promote synapse formation upon high-affinity antigen binding, but is not required for the 

fast motility of T cells that are unbound by antigen [50]. Homeostasis between Arp2/3- and 

formin-based polymerization in fission yeast is controlled by competition for actin 

monomers, ensuring the proper assembly of the contractile ring and endocytic actin patches 

[96]. These studies and others suggest that the balance between different actin nucleators is 

critical for specific cell function and can be regulated by extracellular stimuli and 

intracellular signaling cascades [12,50,51,96].

Although switching between distinct types of actin networks is important for regulating 

migratory behavior under different environmental conditions, evidence suggests that the 

interplay between various actin polymerizing factors within the same structure also 

contributes to the fine-tuning of the actin assembly. For example, formins have been 

observed in lamellipodia, where they modulate the structure of the dendritic actin network 

by competing with capping protein for free barbed ends and promoting filament elongation 

[97–99]. Ultrastructural analysis of cells depleted of the formin mDia1, Arp2/3, or both 

further suggests that these nucleators are spatially intertwined with distinct consequences on 

cortical actin structure [90]. Other work has shown that fascin-1-containing bundles of actin 

may serve as a template for lamellipodia formation [88]. This is supported by the finding, 

generated by a combination of in vitro actin polymerization assays and spatially- and 

temporally-defined mDia1 inactivation in Hela cells, that mDia1 stimulates Arp2/3 

branching activity by providing mother filaments for nucleation [100]. Furthermore, 

increases in one nucleating factor can compensate for depletion of the other, supporting the 
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conclusion that mDia1 and Arp2/3 activities cooperate to influence the impact of the other 

on actin meshwork structure [100]. Other studies demonstrating that formins can assemble 

filopodia using dendritic actin generated by the Arp2/3 complex also highlight the 

cooperative nature of these nucleating factors [101–104].

Role of profilin as an integrator of multiple actin nucleation factors—Several 

recent studies have pointed to a role for the actin monomer-binding protein profilin as a 

negative modulator of Arp2/3-based actin nucleation. In Arpc2-null mouse fibroblasts, only 

profilin-bound actin monomers can incorporate into barbed ends, and excess profilin can 

inhibit Arp2/3-mediated actin polymerization both in wild-type cells and in vitro [105]. 

Profilin is known to enhance formin-mediated barbed end elongation; however, depletion or 

sequestration of either profilin or Ena/VASP, but not chemical inhibition of formins, which 

may not be complete, in the Arpc2-null background prevents protrusion formation and 

spreading [105]. The authors concluded that profilin antagonizes Arp2/3-mediated 

nucleation and actin branching by facilitating actin polymerization via Ena/VASP, thereby 

competing away actin monomers from the Arp2/3 complex. In contrast, Ena/VASP has also 

been proposed to interact with the WAVE regulatory complex to stimulate Arp2/3 activation, 

enhance migration, and maintain normal lamellipodia formation in Drosophila hemocytes 

and C. elegans epidermal cells, suggesting that this family of actin assembly proteins may 

have alternative functions in diverse cell types or under different conditions [106,107]. Work 

combining analysis of the contractile ring in S. pombe with in vitro actin reconstitution 

assays also shows that profilin inhibits Arp2/3 function, thereby maintaining the balance 

between formin- and Arp2/3-mediated actin polymerization that is required for cytokinesis 

[108]. These studies conclude that profilin tunes the actin network through the competition 

for actin monomers [105,108]; however, another study suggests that profilin competes with 

formins, VASP, capping protein, and Arp2/3-mediated end branching by binding to the 

barbed ends of F-actin, thereby regulating the length of actin filaments [109]. Although the 

mechanisms may be complex, profilin expression is emerging as an important regulator of 

actin network dynamics during migration by fine-tuning the activities of various actin 

polymerization proteins.

Conclusions and outlook

Recent findings on the function of the Arp2/3 complex, an actin nucleator long thought to 

play a key role in actin-based protrusive force generation, during the migration of diverse 

cell types in various experimental settings have been both fascinating and confusing. 

Underneath the conflicting functional consequences of Arp2/3 inhibition, it is becoming 

apparent that there is an unexpected level of complexity and plasticity in actin network 

formation, regulation, and force production to drive cell motility in response to specific 

geometric or mechanical properties of the environment. Particularly important is the intricate 

interplay, both competitive and collaborative, between different actin nucleators. Through 

gene expression and distinct subcellular localizations or activating signaling molecules, 

maintaining a balance between the Arp2/3 complex, its regulators, and other nucleating 

proteins is crucial for modulating the dynamic actin structures found during cell migration. 

In cancer, the mechanistic adaptability of the actin network is influenced not only by 

environments but also by the genetic heterogeneity of tumor cells, highlighting the 
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considerable challenge in understanding and preventing cancer cell migration during 

dissemination and metastasis. Because of the extraordinary plasticity of cell motility 

machineries, inconsistencies in experimental observations associated with different cell lines 

or environmental conditions could shed light on the adaptive principles and regulatory 

complexity of the actin network in cell migration.
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Figure 1. Cells use different actin networks for migration
The plasticity underlying the regulation of the actin machinery allows cells to adapt to 

diverse migratory environments. The migration of fibroblasts and other cell types on 2D 

surfaces is characterized by the formation of broad lamellipodia at the leading edge (upper 

left). These structures are composed of Arp2/3-mediated branched actin networks. In 

confined environments or in the absence of the Arp2/3 complex, many cell types generate 

filopodial structures of bundled linear actin filaments generated by formins (upper right). 

Properties of the extracellular matrix and inputs from upstream signaling pathways can 

mediate a switch between these different actin machineries. However, it is likely that cells 

migrating in diverse 3D environments in vivo use a combination of actin nucleators in order 

to fine-tune their cytoskeletal networks (lower center); these nucleators have been shown to 

both cooperate with and antagonize each other, depending on environmental context. 

Competition for free actin monomers, influenced by profilin, can modulate the balance 

between Arp2/3- and formin-mediated actin polymerization. Likewise, competition between 

formins, Ena/VASP, capping protein, profilin, and even NPFs for free barbed ends can 

influence the length and structure of the actin filaments. Thus, the migration machinery can 

be thought of as a spectrum, and cells can shift along this continuum from one mode to the 

next depending on regulatory protein concentrations, genetic factors or environmental cues. 

It should be noted that this Figure does not include contractility- or pressure-based modes of 

migration, such as blebbing or lobopodia.
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Table 1

Functional consequences of Arp2/3 depletion on migration in various cell types and environments

Cell Type
Method of Arp2/3 

Depletion Migratory Environment Tested Arp2/3 Function or Phenotype Reference

Fibroblasts

ES cells from Arpc3-
null mice were 

differentiated into 
fibroblasts

2D closed microfluidic chambers

Null cells lost lamellipodia but 
migrated by combining formin-
based filopodia formation with 
myosin II-based contractility to 
advance the leading edge; null 
cells were unable to migrate 
directionally during wound 

healing or chemotaxis toward EGF

Suraneni et 
al, 2012; 

Suraneni et 
al, 2015

Mouse embryonic 
fibroblasts with 

combined knock-down 
of Arpc2 and Arp2 

subunits in the 
Ink4a/Arf −/− genetic 
background; inhibition 

with CK666

2D continual-flow microfluidic 
chambers

Knock-down cells lost 
lamellipodia, showed focal 

adhesion and spreading defects, 
and migrated with reduced speed 
via filopodial structures; knock-

down cells were deficient in 
haptotaxis but showed normal 

chemotaxis if media was replaced; 
knock-down cells, via NF-κB 

activation, secreted growth factors 
that disrupted chemotaxis in a 

closed system

Wu et al, 
2012; Wu et 

al 2013

Mouse fibroblasts with 
conditional Arpc2 
knock-out in the 

Ink4a/Arf −/− genetic 
background

2D continual-flow microfluidic 
chambers

Null cells were able to chemotax 
toward PDGF

Asokan et al, 
2014

Null cells lost lamellipodia, 
showed an increase in filopodial 
protrusions, and migrated with 

reduced speed

Rotty et al, 
2015

Neurons and glia

Neural stem cells from 
Arpc2 knock-out mice 
were differentiated into 

oligodendrocyte 
precursor cells (OPCs)

Oligospheres plated on glass 
chambers with applied electric fields

Null cells had shorter, filopodial 
extensions and moved with 

reduced speed compared to wild-
type OPCs; Electric fields 

enhanced the migration and biased 
the directionality of wild-type 
OPCs but did not elicit these 

responses in null cells

Li et al, 
2015

Radial glial cells from 
Arpc2 knock-out mice

Cortical slices were embedded in 
matrigel for ex vivo imaging

Null cells had disorganized 
processes that lacked dynamic 
ruffles and were shorter than 

control cell protrusions due to 
frequent retraction; nulls showed 
altered cell fates due to premature 

differentiation, increased 
apoptosis, and decreased 

proliferation; these defects 
contributed to abnormal cortical 

architecture

Wang et al, 
2015

Neuronal precursor 
cells from Arpc2 
knock-out mice

Wild-type or null neurospheres 
cultured ex vivo with wild-type brain 
slices; glass or elastic laminin-coated 

surfaces in vitro

Null cells could not migrate in the 
ex vivo system or on soft or low-

laminin surfaces in vitro ; null 
cells lacked lamellipodia but could 

migrate, with reduced speed, on 
stiff or high-laminin surfaces

Wang et al, 
2015

Hematopoietic cells

Drosophila pupal 
macrophages with 

Arp2 or WAVE RNAi 
knock-down

2D glass surfaces and in vivo (WAVE 
knock-down only)

Knock-down cells lost 
lamellipodia and generate 

filopodial protrusions; WAVE 
knock-down cells extend 

processes in the direction of a 
chemotactic gradient but fail to 

migrate

Sander et al, 
2013

Drosophila embryonic 
macrophages with In vivo

Partial failure of knock-down cells 
to migrate anteriorly during 
development due to reduced 

Verboon et 
al, 2015
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Cell Type
Method of Arp2/3 

Depletion Migratory Environment Tested Arp2/3 Function or Phenotype Reference

Arp3 or WASH RNAi 
knock-down

protrusion size; knock-down cells 
could migrate posteriorly, but were 

disorganized

OT-I CD8+ T cells with 
chemical inhibition of 

Arp2/3 via CK666

Microchannels coated with pMHC 
antigenic complexes

Inhibition of Arp2/3 did not affect 
fast T cell migration (unbound by 
antigen) or exploratory migration 
during kinapse formation (bound 

by low-affinity antigen), but 
impaired T cell deceleration for 
synapse formation (bound by 

high-affinity antigen)

Moreau et 
al, 2015

Dendritic cells 
(immature and mature, 

via LPS induction) 
with conditional Arpc2 

knock-out, Arpc4 
siRNA knock-down, or 
chemical inhibition via 

CK666

1D confined microchannels; under 
agarose; collagen gels; ex vivo in ear 

epidermal sheets

Arp2/3 depletion enhanced 
migration speed in immature cells 

and reduced F-actin at the cell 
front, leading to defective antigen 
macropinocytosis; Arp2/3 was not 
required for F-actin enrichment at 
the cell rear or for chemotaxis in 

collagen gels or to lymphatic 
vessels ex vivo

Vargas et al, 
2016

Immature dendritic 
cells with Arpc4 

siRNA knock-down or 
chemical inhibition 

with CK666

Microchannels with constrictions ≥ 
1.5 μm

Arp2/3 depletion did not affect 
normal migration but prevented 

cells from passing through narrow 
confinements (3 μm or less); 
Arp2/3 depletion prevented 

perinuclear actin accumulation 
and nuclear deformation required 
for passage through narrow pores

Thiam et al, 
2016

Epithelial cells

MCF10A mammary 
epithelial cells with 

siRNA knock-down of 
Arp3 or chemical 

inhibition via CK869 
and CK666

2D coverslips

Arp2/3 depletion disrupted 
lamellipodia formation, reduced 
migration speed and directional 
persistence, and impaired focal 

adhesion assembly and attachment 
to the ECM; Arp2/3 depletion also 

weakened the coupling between 
the cytoskeletal cortex and plasma 

membrane

Beckham et 
al, 2014

Cancer cell lines

Human glioma cell 
lines U251, LN229 and 
SNB19 with chemical 
inhibition via CK666

2D wound healing; transwell 
invasion through Matrigel-coated 

Boyden chambers

Arp2/3 inhibition reduced 
lamellipodia size, disrupted 

polarity, and reduced migration 
and invasion in all cell lines; 

Arp2/3 expression is correlated 
with malignancy of patient tumors

Liu et al, 
2014

Rat C6 glioma cells or 
human patient-derived 

glioma propagating 
cells with chemical 

inhibition via CK666

2D surfaces or thin (3 – 7 μm), linear 
laminin tracks

Arp2/3 inhibition blocked 2D 
migration but enhanced linear/

saltatory migration by altering cell 
morphology, increasing cell 
velocity, and improving cell 

alignment in antiparallel arrays

Monzo et al, 
2016

A2780 human ovarian 
carcinomas with siRNA 
knock-down of Arpc2 
or Arpc3 or chemical 
inhibition via CK666

2D surfaces or elastic 3D cell-
derived matrix

Arp2/3 depletion did not affect 
α5β1 integrin recycling-mediated 
protrusion morphology, migration, 

or invasion

Paul et al, 
2015

*
For simplicity, this table does not include the many studies involving depletion of Arp2/3 regulators, including NPFs
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