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Tumor LINE-1 methylation level and colorectal cancer location 
in relation to patient survival
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ABSTRACT

Colorectal tumors arise with genomic and epigenomic alterations through 
interactions between neoplastic cells, immune cells, and microbiota that vary along the 
proximal to distal axis of colorectum. Long interspersed nucleotide element-1 (LINE-1) 
hypomethylation in colorectal cancer has been associated with worse clinical outcome. 
Utilizing 1,317 colon and rectal carcinoma cases in two U.S.-nationwide prospective 
cohort studies, we examined patient survival according to LINE-1 methylation level 
stratified by tumor location. Cox proportional hazards model was used to assess a 
statistical interaction between LINE-1 methylation level and tumor location in colorectal 
cancer-specific mortality analysis, controlling for potential confounders including 
microsatellite instability, CpG island methylator phenotype, and KRAS, BRAF, and 
PIK3CA mutations. A statistically significant interaction was found between LINE-1 
methylation level and tumor location in colorectal cancer-specific mortality analysis 
(Pinteraction = 0.011). The association of LINE-1 hypomethylation with higher colorectal 
cancer-specific mortality was stronger in proximal colon cancers (multivariable hazard 
ratio [HR], 1.66; 95% confidence interval [CI], 1.21 to 2.28) than in distal colon cancers 
(multivariable HR, 1.18; 95% CI, 0.81 to 1.72) or rectal cancers (multivariable HR, 0.87; 
95% CI, 0.57 to 1.34). Our data suggest the interactive effect of LINE-1 methylation 
level and colorectal cancer location on clinical outcome.

INTRODUCTION

Evidence suggests that colorectal tumors arise 
with sets of genomic and epigenomic alterations through 

interactions between neoplastic cells, immune cells, and 
microbiota that vary along the proximal to distal axis of 
colorectum [1–6]. Consistent with a continuous change 
in the intestinal microbiota and luminal contents along 
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the bowel subsites, host immunity against colorectal 
tumors and proportions of colorectal cancers with 
specific molecular features of colorectal cancer such as 
microsatellite instability (MSI), high-level CpG island 
methylator phenotype (CIMP), and BRAF and PIK3CA 
mutations change along the bowel subsites [7–12].

Methylation status of the long interspersed 
nucleotide element-1 (LINE-1), which constitutes 
approximately 18% of the entire human genome, serves 
as a surrogate for overall cellular DNA methylation 
status [13, 14]. The genome-wide DNA hypomethylation 
has been associated with an increased chromosomal 
instability that may cause low-level antitumor 
immunity in colorectal cancer [15–20]. In fact, LINE-1 
hypomethylation in colorectal cancer has been associated 
with a lower density of T cells in tumor tissue and worse 
clinical outcome [21–23]. Studies have shown that the 
prognostic association of tumor LINE-1 methylation level 
in colorectal cancer differs by MSI status [24, 25]. We 
hypothesized that the prognostic association of LINE-
1 hypomethylation in colorectal cancer might differ by 
tumor location.

To test this hypothesis, we utilized resources of 
1,317 colorectal cancer cases in two U.S.-nationwide 
prospective cohort studies (the Nurses’ Health Study 
[NHS] and the Health Professionals Follow-up Study 
[HPFS]), and examined the interactive association of 
LINE-1 methylation level and tumor location in colorectal 
cancer mortality analysis, controlling for potential 
confounders including major molecular features of 
colorectal cancer. A better understanding of the prognostic 
association of tumor LINE-1 hypomethylation according 
to colorectal cancer location may offer new insights into 
the pathogenesis of colorectal cancer.

RESULTS

Tumor LINE-1 methylation level and colorectal 
cancer location

We measured tumor LINE-1 methylation level 
(ranging from 23.1 to 93.8% of 0 to 100% scale; mean 
63.4%; standard deviation 9.8%) among 1,317 colon and 
rectal cancer cases within the NHS and the HPFS. Table 1 
summarizes clinical, pathological, and tumor molecular 
features according to tumor LINE-1 methylation level 
in colorectal cancer. Of the 1,317 cases, 621 (47%) had 
proximal colon cancer, 409 (31%) had distal colon cancer, 
and 287 (22%) had rectal cancer. Low-level tumor LINE-
1 methylation was associated with higher pN stage and 
metastatic disease, and inversely associated with poor 
tumor differentiation, MSI-high, MLH1 hypermethylation, 
CIMP-high, and BRAF mutation (P ≤ 0.003 with the 
adjusted α level of 0.003 for multiple hypothesis testing).

Clinical, pathological, and tumor molecular features 
according to tumor LINE-1 methylation level in proximal 

colon, distal colon, and rectal cancers are summarized in 
Supplementary Table S1.

Tumor LINE-1 hypomethylation and patient 
survival according to colorectal cancer location

We examined the relationship between tumor 
LINE-1 methylation level and patient survival according 
to colorectal cancer location (Table 2). In the 1,317 
colorectal cancer cases, there were 717 deaths, including 
382 colorectal cancer-specific deaths, during a median 
patient follow-up of 12.0 years (interquartile range: 8.0 to 
16.6) among censored cases.

For our primary hypothesis testing, we found 
a statistically significant interaction between LINE-1 
methylation level and tumor location in colorectal cancer-
specific mortality analysis (Pinteraction = 0.011; Table 2). 
Hazard ratio (HR) of colorectal cancer-specific mortality 
for 20% decrease in tumor LINE-1 methylation level 
was higher in proximal colon cancers (multivariable HR, 
1.66; 95% confidence interval [CI], 1.21 to 2.28) than in 
distal colon cancers (multivariable HR, 1.18; 95% CI, 
0.81 to 1.72) or rectal cancers (multivariable HR, 0.87; 
95% CI, 0.57 to 1.34) (Table 2). In the Kaplan-Meier 
analysis and the log-rank test (Figure 1), tumor LINE-1 
hypomethylation was associated with higher colorectal 
cancer-specific mortality in proximal colon cancer 
(P < 0.0001 for trend), but not in distal colon cancer 
(P = 0.12 for trend) or rectal cancer (P = 0.60 for trend).

In the secondary analysis, a similar interactive 
association between tumor LINE-1 methylation level 
and colorectal cancer location was observed in overall 
mortality analysis (Pinteraction = 0.002; Table 2). Tumor 
LINE-1 hypomethylation was associated with higher 
overall mortality in proximal colon cancer (for 20% 
decrease in tumor LINE-1 methylation level: multivariable 
HR, 1.40; 95% CI, 1.10 to 1.78), whereas tumor LINE-1 
methylation level were not significantly associated with 
overall mortality in distal colon cancer (for 20% decrease 
in tumor LINE-1 methylation level: multivariable HR, 
1.14; 95% CI, 0.86 to 1.50) or rectal cancer (for 20% 
decrease in tumor LINE-1 methylation level: multivariable 
HR, 0.72; 95% CI, 0.52 to 1.00).

Tumor LINE-1 hypomethylation and patient 
survival in strata of colorectal tumor location 
and MSI status

Given our previous study showing the interactive 
association between tumor LINE-1 methylation level 
and MSI status in relation to colorectal cancer mortality 
[25], we conducted an exploratory analysis to examine the 
relationship between tumor LINE-1 hypomethylation and 
patient survival in strata of colorectal cancer location and 
MSI status (Table 3). In proximal colon cancers, tumor 
LINE-1 hypomethylation appeared to be associated with 
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Table 1: Clinical, pathological, and tumor molecular features according to tumor LINE-1 methylation level in 
colorectal cancer

Characteristica Total No. 
 (n = 1,317)

Tumor LINE-1 methylation level P valueb

High (≥65%)  
(n = 579)

Intermediate 
(55-64.9%)  
(n = 496)

Low (<55%)  
(n = 242)

Mean age ± SD (year) 68.9 ± 8.8 69.9 ± 8.6 68.7 ± 8.7 67.1 ± 9.1 0.0001

Sex 0.09

    Men 593 (45%) 255 (44%) 214 (43%) 124 (51%)

    Women 724 (55%) 324 (56%) 282 (57%) 118 (49%)

Year of diagnosis < 0.0001

    Prior to 1995 468 (36%) 162 (28%) 202 (40%) 104 (43%)

    1996 to 2000 402 (30%) 157 (27%) 147 (30%) 98 (40%)

    2001 to 2008 447 (34%) 260 (45%) 147 (30%) 40 (17%)

Family history of 
colorectal cancer in a 
first-degree relative

0.35

    Absent 1,048 (80%) 471 (81%) 391 (79%) 186 (77%)

    Present 264 (20%) 107 (19%) 102 (21%) 55 (23%)

Tumor location 0.004

    Proximal colon 621 (47%) 301 (52%) 224 (45%) 96 (40%)

    Distal colon 409 (31%) 151 (26%) 166 (34%) 92 (38%)

    Rectum 287 (22%) 127 (22%) 106 (21%) 54 (22%)

Tumor differentiation 0.002

    Well to moderate 1,178 (90%) 501 (87%) 461 (94%) 216 (90%)

    Poor 131 (10%) 74 (13%) 32 (6.5%) 25 (10%)

pT stage (depth of 
tumour invasion)

0.45

    pT1 (submucosa) 143 (12%) 62 (12%) 63 (14%) 18 (8.2%)

  �  pT2 (muscularis 
propria)

249 (21%) 115 (22%) 90 (19%) 44 (20%)

    pT3 (subserosa) 757 (62%) 327 (62%) 288 (62%) 142 (65%)

  �  pT4 (serosa or other 
organs)

64 (5.3%) 26 (4.9%) 23 (5.0%) 15 (6.9%)

pN stage (number of 
positive lymph nodes)

0.003

    pN0 (0) 740 (63%) 348 (68%) 280 (62%) 112 (54%)

    pN1 (1-3) 268 (23%) 108 (21%) 105 (23%) 55 (26%)

    pN2 (≥4) 163 (14%) 56 (11%) 65 (15%) 42 (20%)

TNM stagec 0.0001

    I 308 (26%) 141 (27%) 124 (27%) 43 (19%)

    II 385 (32%) 186 (36%) 141 (31%) 58 (26%)
(Continued )
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higher colorectal cancer-specific mortality not only in 
MSI-high cancers (for 20% decrease in tumor LINE-1 
methylation level: multivariable HR, 6.14; 95% CI, 2.27 to 
16.6) but also in MSI-low/MSS cancers (for 20% decrease 
in tumor LINE-1 methylation level: multivariable HR, 
1.44; 95% CI, 1.04 to 2.01).

DISCUSSION

We conducted this study to test the hypothesis 
that the prognostic association of tumor LINE-1 

hypomethylation might differ by colorectal cancer 
location. Utilizing the database of 1,317 colorectal cancer 
cases in the two U.S.-nationwide prospective cohort 
studies, we found a statistically significant interactive 
association of tumor LINE-1 methylation level and 
tumor location in colorectal cancer mortality analysis. 
The adverse prognostic association of tumor LINE-1 
hypomethylation was stronger in proximal colon cancers 
than in distal colorectal cancers.

Colorectal cancers are a heterogeneous group of 
diseases that result from the accumulation of differing sets 

Characteristica Total No. 
 (n = 1,317)

Tumor LINE-1 methylation level P valueb

High (≥65%)  
(n = 579)

Intermediate 
(55-64.9%)  
(n = 496)

Low (<55%)  
(n = 242)

    III 342 (28%) 131 (25%) 137 (30%) 74 (33%)

    IV 168 (14%) 60 (12%) 58 (12%) 50 (22%)

MSI status < 0.0001

    MSI-low/MSS 1,071 (84%) 416 (75%) 433 (89%) 222 (93%)

    MSI-high 209 (16%) 141 (25%) 51 (11%) 17 (7.1%)

MLH1 
hypermethylation

< 0.0001

    Absent 1,073 (86%) 440 (79%) 413 (89%) 220 (94%)

    Present 179 (14%) 116 (21%) 50 (11%) 13 (5.6%)

CIMP status < 0.0001

    Low/negative 1,032 (82%) 412 (74%) 403 (87%) 217 (93%)

    High 220 (18%) 144 (26%) 60 (13%) 16 (6.9%)

BRAF mutation < 0.0001

    Wild-type 1,095 (85%) 440 (79%) 438 (89%) 217 (91%)

    Mutant 194 (15%) 120 (21%) 53 (11%) 21 (8.8%)

KRAS mutation 0.88

    Wild-type 729 (58%) 311 (59%) 281 (58%) 137 (58%)

    Mutant 519 (42%) 214 (41%) 204 (42%) 101 (42%)

PIK3CA mutation 0.44

    Wild-type 1,007 (84%) 443 (84%) 373 (83%) 191 (86%)

    Mutant 195 (16%) 86 (16%) 79 (17%) 30 (14%)

CIMP, CpG island methylator phenotype; LINE-1, long interspersed nucleotide element-1; MSI, microsatellite instability; 
MSS, microsatellite stable; SD, standard deviation.
a Percentage (%) indicates the proportion of cases with a specific clinical, pathological, or tumor molecular feature in 
colorectal cancer cases with each tumor LINE-1 methylation level. There were cases that had missing values for any of the 
characteristics except for age, sex, year of diagnosis, and tumor location.
b To assess associations between categorical data, the chi-square test was performed. To compare mean age, an analysis of 
variance was performed. We adjusted two-sided α level to 0.003 (= 0.05/15) by simple Bonferroni correction for multiple 
hypothesis testing.
c TNM stage was based on the classification of the American Joint Committee on Cancer staging system.
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of genomic and epigenomic alterations, and tumor-host 
interactions and, hence, research on tumor biomarkers is 
important for clinical medicine and public health [26–32]. 
Few studies have considered colorectal cancer location in 
evaluating clinical outcome by tumor LINE-1 methylation 
level. In 76 patients with stage III proximal colon cancer, a 
lower tumor LINE-1 methylation level is associated with 
poor disease-free survival [23]. In 94 patients with stage 
I and II rectal cancer, a lower tumor LINE-1 methylation 
level is associated with poor recurrence-free and overall 
survival [33]. However, these previous studies were 
limited by small sample sizes, and did not examine the 
interactive association of tumor LINE-1 methylation level 
and tumor location with clinical outcome. By utilizing a 

large collection (n = 1,317) of colorectal cancer cases, our 
population-based data support the interactive association 
of tumor LINE-1 methylation level and tumor location in 
colorectal cancer mortality analysis.

Exact mechanisms by which colorectal tumors that 
exhibit LINE-1 hypomethylation have been associated 
with aggressive tumor behavior remain uncertain. It has 
been known that colorectal cancers develop through 
the accumulation of genetic and epigenetic alterations, 
influenced by microbial and other environmental 
exposures and host responses to the exposures [34–39]. 
Our previous study has shown that the frequencies of 
key molecular features such as MSI, CIMP-high, BRAF 
and PIK3CA mutations change gradually along the 

Table 2: Tumor LINE-1 hypomethylation and patient survival according to colorectal cancer location

No. of 
cases

Colorectal cancer-specific mortality Overall mortality

No. of 
events

Univariable 
HR 

 (95% CI)

Multivariable HR 
 (95% CI)a

No. of 
events

Univariable 
HR (95% CI)

Multivariable 
HR  

(95% CI)a

Proximal colon 
cancer

  �  LINE-1 
hypomethylation 
(20% decrease 
as a unit)

621 176 2.37 (1.74-
3.23)

1.66 (1.21- 
2.28)

344 1.53 (1.21-
1.93)

1.40 (1.10-
1.78)

    Pb < 0.0001 0.002 0.0004 0.007

Distal colon 
cancer

  �  LINE-1 
hypomethylation 
(20% decrease 
as a unit)

409 111 1.30 (0.91-
1.86)

1.18 (0.81- 
1.72)

211 1.04 (0.79-
1.36)

1.14 (0.86-
1.50)

    Pb 0.16 0.40 0.78 0.36

Rectal cancer

  �  LINE-1 
hypomethylation 
(20% decrease 
as a unit)

287 95 0.92 (0.60-
1.41)

0.87 (0.57- 
1.34)

162 0.79 (0.57-
1.09)

0.72 (0.52-
1.00)

    Pb 0.69 0.53 0.15 0.052

    Pinteraction
c 0.0002 0.011 0.0007 0.002

CI, confidence interval; HR, hazard ratio; LINE-1, long interspersed nucleotide element-1.
a The multivariable Cox regression model initially included sex, age, year of diagnosis, family history of colorectal cancer 
in parent or sibling, disease stage, tumor differentiation, microsatellite instability, CpG island methylator phenotype, and 
KRAS, BRAF, and PIK3CA mutations. A backward elimination with a threshold of P = 0.05 was used to select variables in 
the final models.
b P value was calculated by the Wald test (two-sided).
c Pinteraction values (two-sided) were calculated by the Wald test on the cross-product term of tumor LINE-1 methylation level 
as a continuous variable and colorectal cancer location as an ordinal variable (proximal colon [1], distal colon [2], and 
rectum [3]).
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length of the colorectum [7], suggesting effects of gut 
contents and microbiota on colorectal tumorigenesis 
[40]. It is conceivable that tumor-host interactions in the 
tumor microenvironment including immune response 
and inflammation might influence the progression of 
colorectal tumors that exhibit LINE-1 hypomethylation. 
An increasing body of evidence suggests that microbiota 
can influence host immunity, and that microbiota, luminal 
contents, and colonic mucosal immunity may change from 
the proximal to distal colorectal segments [5, 6, 12, 41–
44], future investigations are necessary to examine effects 
of microbiota on colorectal tumor progression.

Studies have shown that tumor LINE-1 
hypomethylation in colorectal cancer is inversely 
associated with MSI-high, and that the prognostic 
association of tumor LINE-1 hypomethylation in 
colorectal cancer is stronger in MSI-high colorectal 
cancers than in MSS colorectal cancers [24, 25, 45–47], 
suggesting a complex biological interaction between 
MSI and LINE-1 hypomethylation in colorectal tumor 
progression. MSI-high colorectal cancers have been 
characterized by numerous somatic mutations [48], which 
might interact with genomic DNA methylation. Future 
studies are needed to clarify the underlying mechanisms 
of the association between tumor LINE-1 methylation and 
MSI status in colorectal cancer progression.

There are biological and clinical differences between 
colon and rectal cancers including treatment approaches 
and metastatic pattern [49]. Multiple studies have 
demonstrated that proportions of colorectal cancers with 

specific molecular features such as MSI, high-level CIMP, 
and BRAF and PIK3CA mutations gradually increase 
along the bowel subsites from rectum to ascending 
colon [7–9]. Hence, we included both colon and rectal 
carcinoma cases in the current study. This continuum 
model is a more advanced model than the simple colon-vs-
rectum dichotomy model, because a continuous difference 
(along the colorectum) will surely lead to a difference in 
the dichotomy model. We have examined proximal colon 
vs. distal colon vs. rectum, considering statistical power. 
Future studies with larger sample size are needed to 
investigate the prognostic significance of tumor molecular 
features in the detailed colorectal cancer subsites.

Previous studies have shown that tumor LINE-1 
hypomethylation in colorectal cancer is associated with 
worse clinical outcome, and that LINE-1 hypomethylated 
colorectal cancers are associated with young age of onset 
and a family history of colorectal cancer [21, 47, 50]. 
These findings suggest that LINE-1 methylation level 
may serve as a potential tumor biomarker for prognosis as 
well as for familial cancer risk assessment. In addition, our 
current study found that the adverse prognostic association 
of tumor LINE-1 hypomethylation was stronger in 
proximal colon cancers than in distal colorectal cancers. 
Our current data may help us further stratify patients with 
colorectal cancer into more individualized prognostic 
groups based on tumor location, and can guide future 
mechanistic studies.

We acknowledge limitations of our current study. 
First, data on cancer recurrence were limited in the two 

Figure 1: Kaplan-Meier curves for colorectal cancer-specific survival according to tumor LINE-1 methylation level in 
proximal colon cancer (A), distal colon cancer (B), and rectal cancer (C). P value was calculated by the log-rank test for trend 
(two-sided). The tables (bottom) show the number of patients who remained alive and at risk of death at each time point after the diagnosis 
of colorectal cancer.
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Table 3: Tumor LINE-1 hypomethylation and patient survival according to colorectal cancer location and MSI 
status

No. of 
cases

Colorectal cancer-specific mortality Overall mortality

No. of 
events

Univariable 
HR (95% CI)

Multivariable 
HR 

 (95% CI)a

No. of 
events

Univariable 
HR (95% CI)

Multivariable 
HR 

 (95% CI)a

MSI-low/MSS 
proximal colon 
cancer

  �  LINE-1 
hypomethylation 
(20% decrease as 
a unit)

440 153 1.77 
 (1.26-2.50)

1.44  
(1.04-2.01)

259 1.41 (1.07-
1.84)

1.27  
(0.97-1.66)

    Pb 0.001 0.030 0.014 0.08

MSI-high 
proximal colon 
cancer

  �  LINE-1 
hypomethylation 
(20% decrease as 
a unit)

181 23 4.51  
(1.78-11.4)

6.14  
(2.27-16.6)

85 1.62  
(0.96-2.74)

2.30 
 (1.30-4.06)

    Pb 0.002 0.0003 0.07 0.004

MSI-low/MSS 
distal colon 
cancer

  �  LINE-1 
hypomethylation 
(20% decrease as 
a unit)

388 108 1.21  
(0.84-1.76)

1.13  
(0.76-1.66)

203 0.97  
(0.73-1.28)

1.06 
 (0.80-1.41)

    Pb 0.31 0.55 0.82 0.69

MSI-high distal 
colon cancer

  �  LINE-1 
hypomethylation 
(20% decrease as 
a unit)

21 3 3.05 
 (0.74-12.6)

2.76  
(0.75-10.1)

8 2.38  
(0.89-6.36)

2.00  
(0.87-4.60)

    Pb 0.12 0.13 0.08 0.10

Rectal cancer

  �  LINE-1 
hypomethylation 
(20% decrease as 
a unit)

287 95 0.92 
(0.60-1.40)

0.87 
 (0.57-1.34)

162 0.79  
(0.57-1.09)

0.72  
(0.52-1.00)

    Pb 0.69 0.52 0.15 0.052

CI, confidence interval; HR, hazard ratio; LINE-1, long interspersed nucleotide element-1; MSI, microsatellite instability; 
MSS, microsatellite stable.
a The multivariable Cox regression model initially included sex, age, year of diagnosis, family history of colorectal cancer 
in parent or sibling, disease stage, tumor differentiation, CpG island methylator phenotype, and KRAS, BRAF, and PIK3CA 
mutations. A backward elimination with a threshold of P = 0.05 was used to select variables in the final models.
b P value was calculated by the Wald test (two-sided).
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cohorts and were not examined. However, colorectal 
cancer-specific mortality is a reasonable cancer-
specific outcome in the current study, which utilized the 
population-based data of long-term patient follow-up, 
since median survival for recurrent (local or metastatic) 
colorectal cancer was approximately 10 to 20 months 
during much of the time period of this study [51]. 
Second, the information on cancer treatment including 
chemotherapy use and regimens was also limited. 
However, distributions of chemotherapy use and its 
regimens would unlikely substantially differ according 
to tumor LINE-1 methylation level, because these data 
were not generally utilized for treatment decisions. The 
comprehensive genome-scale DNA methylation analysis 
in colorectal cancer by Hinoue et al. [52] has suggested 
distinct DNA methylation subgroups of colorectal 
cancer. Although we assessed well-established LINE-1 
methylation as a surrogate of global DNA methylation 
status, this method might not capture methylation 
status in other CpG sites. Despite this limitation, LINE-
1 hypomethylation was significantly associated with 
mortality in proximal colon cancer patients. This finding 
suggests the importance and clinical usefulness of 
LINE-1 methylation status, while more comprehensive 
methylation profile is warranted to gain new insights into 
roles of DNA methylation in carcinogenesis.

Strengths of this study include the use of the 
molecular pathological epidemiology [53–56] database 
of 1,317 colon and rectal carcinoma cases within the two 
U.S.-nationwide prospective cohort studies. Importantly, 
our colorectal cancer sample represented a group of 
patients in a large number of hospitals in diverse settings 
across the U.S., which increases the generalizability of 
our findings. Additionally, our database integrates clinical, 
pathologic, and key tumor molecular features of colorectal 
cancer. Finally, the sample size and the comprehensiveness 
of this population-based colorectal cancer database 
enabled us to achieve a sufficient statistical power to assess 
the interactive association of tumor LINE-1 methylation 
level and colorectal cancer location with colorectal cancer 
mortality, controlling for potential confounders.

In conclusion, we have shown that the adverse 
prognostic association of tumor LINE-1 hypomethylation 
is stronger in proximal colon cancers than in distal 
colorectal cancers. Our data suggest the interactive effect 
of tumor LINE-1 methylation level and tumor location on 
clinical outcome.

MATERIALS AND METHODS

Study population

We utilized the database of colon and rectal 
carcinoma cases in two U.S.-nationwide prospective 
cohort studies, the NHS (121,701 women enrolled in 1976) 
and the HPFS (51,529 men enrolled in 1986) [57, 58]. 

Every 2 years, we sent follow-up questionnaires to collect 
information on lifestyle factors, and asked whether they 
had received diagnoses of major disease including cancers. 
The National Death Index was used to identify unreported 
fatal colorectal cancer cases. Study physicians reviewed 
medical records for colorectal cancer cases, and assigned 
the cause of death for all deceased cases. We collected 
formalin-fixed paraffin-embedded tissue blocks from 
hospitals across the United States where participants 
with colorectal cancer had undergone tumor resection. A 
single pathologist (S.O.), who was unaware of other data, 
reviewed hematoxylin and eosin-stained tissue sections of 
all colorectal carcinoma cases, and recorded pathological 
features. Tumor differentiation was classified as well to 
moderate vs. poor (>50% vs. ≤50% glandular area). We 
analyzed available data on tumor LINE-1 methylation 
level, tumor location, and patient survival among 1,317 
colorectal cancer cases diagnosed up to 2008. Patients 
were followed until death or January 1, 2012, whichever 
came first. The procedures and protocols of this study 
were approved by the institutional review boards for 
the Harvard T.H. Chan School of Public Health and the 
Brigham and Women’s Hospital (Boston, MA, USA).

Assessment of tumor location

Study physicians, unaware of other data, reviewed 
medical and pathological reports, and recorded tumor 
location (cecum, ascending colon, hepatic flexure, 
transverse colon, splenic flexure, descending colon, 
sigmoid colon, rectosigmoid, and rectum). Proximal colon 
consists of cecum, ascending colon, hepatic flexure, and 
transverse colon, whereas distal colon consists of splenic 
flexure, descending colon, and sigmoid colon.

Analysis of LINE-1 methylation level

DNA was extracted from archival colorectal cancer 
tissue blocks. We performed bisulfite treatment of DNA, 
polymerase chain reaction (PCR), and a pyrosequencing 
assay to measure tumor LINE-1 methylation levels 
after assay validation [59]. We primarily used tumor 
LINE-1 methylation level as a continuous variable 
(20% decrease as a unit) in survival analyses. When we 
displayed tumor LINE-1 methylation level in relation 
to clinical, pathological, and tumor molecular features 
(Table 1), we categorized tumor LINE-1 methylation 
levels into low (<55% methylation) vs. intermediate (55-
64.9% methylation) vs. high (≥65% methylation) to keep 
consistency with our previous studies [25, 50].

Analyses of MSI, CIMP, and KRAS, BRAF, and 
PIK3CA mutations

MSI status was analyzed with use of 10 
microsatellite markers (D2S123, D5S346, D17S250, 
BAT25, BAT26, BAT40, D18S55, D18S56, D18S67, and 
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D18S487) as previously described [60]. We defined MSI-
high as the presence of instability in ≥30% of the markers, 
and MSI-low/microsatellite stable (MSS) as instability 
in <30% of the markers. Methylation analysis of eight 
promoter CpG islands specific for CIMP (CACNA1G, 
CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, 
and SOCS1) was performed as previously described [61, 
62]. PCR and pyrosequencing assay targeted for KRAS 
(codons 12, 13, 61, and 146) [63, 64], BRAF (codon 
600) [60], and PIK3CA (exons 9 and 20) [65, 66] were 
performed as previously described.

Statistical analysis

All statistical analyses were conducted using SAS 
(version 9.3, SAS Institute, Cary, NC) and all P values 
were two-sided. Our primary hypothesis testing was a 
statistical interaction of tumor LINE-1 methylation level 
and colorectal cancer location in colorectal cancer-specific 
mortality analysis. Overall mortality was a secondary 
outcome. The statistical interaction was assessed by the 
Wald test on the cross-product term of tumor LINE-1 
methylation level as a continuous variable and colorectal 
cancer location as an ordinal variable (proximal colon [1], 
distal colon [2], and rectum [3]) in a Cox proportional 
hazards regression model. A two-sided α level was set at 
0.05 for our primary hypothesis testing. For a secondary 
or exploratory analysis, we adjusted the two-sided α level 
by simple Bonferroni correction for multiple hypothesis 
testing, in addition to the use of the two-sided α level of 
0.05 for our primary hypothesis testing.

For analyses of colorectal cancer-specific mortality, 
deaths as a result of other causes were censored. The 
Kaplan-Meier method was used to describe the distribution 
of colorectal cancer-specific survival, and the log-rank test 
for trend was performed to assess a linear trend in survival 
probability across the ordinal categories (high [1] vs. 
intermediate [2] vs. low [3]) of tumor LINE-1 methylation 
level. To control for confounders, we used multivariable 
Cox proportional hazards regression models. In addition to 
the tumor LINE-1 hypomethylation variable (continuous; 
20% decrease as a unit), the multivariable model initially 
included sex, age at diagnosis (continuous), year of 
diagnosis (continuous), family history of colorectal cancer 
in a first-degree relative (present vs. absent), disease stage 
(I/II vs. III/IV), tumor differentiation (well to moderate vs. 
poor), MSI (high vs. MSI-low/MSS), CIMP (high vs. low/
negative), KRAS (mutant vs. wild-type), BRAF (mutant vs. 
wild-type), and PIK3CA (mutant vs. wild-type). A single 
analysis model could assess the prognostic association 
of tumor LINE-1 hypomethylation in each stratum of 
colorectal cancer location, using a reparameterization of 
the interaction term (of tumor LINE-1 hypomethylation 
and colorectal cancer location) as previously described 
[25, 57]. A backward elimination was carried out with 
P = 0.05 as a threshold, to select variables for the final 

model. For cases with missing information in any of the 
categorical covariates (family history of colorectal cancer 
in a first-degree relative [0.4%], disease stage [8.7%], 
tumor differentiation [0.6%], MSI [2.8%], CIMP [4.9%], 
KRAS [5.2%], BRAF [2.1%], and PIK3CA [8.7%]), we 
included these cases in the majority category of a given 
covariate to minimize the number of variables in the 
multivariable Cox models. We confirmed that excluding 
the cases with missing information in any of the covariates 
did not substantially alter results (data not shown). The 
proportionality of hazards assumption was assessed by 
a time-varying covariate, using an interaction term of 
colorectal cancer-specific survival and tumor LINE-1 
methylation level (P = 0.97).

All univariable analyses for associations of tumor 
LINE-1 methylation level with clinical, pathological, and 
tumor molecular features in colorectal cancer, and these 
associations according to proximal colon, distal colon, and 
rectal cancer were considered as secondary exploratory 
analyses. Given the 13 covariates in overall colorectal 
cancer and the 12 covariates in each of the three cancer 
locations, we adjusted the two-sided α level to 0.003 (= 
0.05/15) by simple Bonferroni correction for multiple 
hypothesis testing. To assess associations between 
categorical variables, the chi-square test was performed. 
To compare mean age, an analysis of variance assuming 
equal variances was performed.
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