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Abstract

The past two decades reveal a growing role of continuum biomechanics in understanding 

homeostasis, adaptation, and disease progression in soft tissues. In this paper, we briefly review 

the two primary theoretical approaches for describing mechano-regulated soft tissue growth and 

remodeling on the continuum level as well as hybrid approaches that attempt to combine the 

advantages of these two approaches while avoiding their disadvantages. We also discuss emerging 

concepts, including that of mechanobiological stability. Moreover, to motivate and put into context 

the different theoretical approaches, we briefly review findings from mechanobiology that show 

the importance of mass turnover and the prestressing of both extant and new extracellular matrix 

in most cases of growth and remodeling. For illustrative purposes, these concepts and findings are 

discussed, in large part, within the context of two load-bearing, collagen dominated soft tissues – 

tendons/ligaments and blood vessels. We conclude by emphasizing further examples, needs, and 

opportunities in this exciting field of modeling soft tissues.

1 Introduction

Scholars have been aware of the importance of mechanical environment in the development 

of living organisms for at least four centuries. Galileo Galilei suggested in 1638 that 

mechanics naturally limits the size of animals due to a cubic scaling of gravitational forces 

[1, 2]. Nevertheless, the relation between mechanics and biology was conceptualized for a 

long time as static or predetermined; an active change of soft tissue mass in response to a 

change in its mechanical environment was considered “a physiological impossibility” [3]. 

This view was criticized by Henry Gassett Davis in 1867 who postulated that biological soft 

tissues are capable of functional adaptations to a changing mechanical environment [4]. He 

suggested that “Nature never wastes her … material” [5] but rather responds to an increased 

load by lengthening and the addition of material and to a decreased load by the opposite. 

Soon thereafter, Julius Wolff postulated a similar relation for bone, the famous Wolff’s law 

[6]. Together, these two 19th century concepts suggested that, despite their different 

structures and functions, both soft and hard tissues may be designed to promote mechanical 

optimality following a similar rationale.
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Nowadays the importance of the intimate relation between mechanical stimuli and biological 

growth and remodeling (G&R) is widely acknowledged in biology, biomedical engineering, 

and medicine, and forms an important part of the emerging field of mechanobiology [7]. 

Examples range from substrate stiffness determining the lineage fate of stem cells [8] to 

physical disuse of tendons [9] and bone [10, 11] leading to atrophy (that is, loss of tissue 

mass). Mechano-regulated G&R thus plays important roles in both morphogenesis and 

pathogenesis, including disease progression wherein normal tissue is simply altered (e.g., 

aortic aneurysms [12]) or abnormal tissue develops and accumulates (e.g., malignant tumors 

in cancer [13]). Likewise, G&R can occur under the action of physiological loads (e.g., 

enlargement of an aneurysm under normal blood pressures) or under the action of non-

physiological loads (e.g., post-surgical G&R due to surgical implantation of a medical 

device [14]). Notwithstanding the importance of understanding and modeling all aspects of 

G&R, from molecular to whole organism scales and related to all medical specialties from 

pathology to surgery, for illustrative purposes we focus on mature load-bearing soft tissues 

wherein collagen turnover dominates adaptive responses and multiple cases of disease 

progression. Moreover, we focus primarily on G&R of two types of tissues, blood vessels 

and tendons/ligaments. By growth, we mean a change of tissue mass, either an increase or a 

decrease (atrophy); by remodeling, we mean a change in tissue microstructure and thus 

mechanical properties. Although G&R need not occur simultaneously, they often go hand-

in-hand. Hence, basic concepts and theoretical frameworks should seek a unified approach 

that can recover, as special cases, these potentially separate processes.

Soft tissue G&R has attracted considerable interest since the mid-1990s [15–17] and now 

represents one of the primary areas of study in biomechanics. Novel experimental methods 

continue to provide an increasingly detailed understanding of molecular and cellular 

mechanisms as well as tissue-to-organism level manifestations. At the same time, theoretical 

frameworks and computational approaches continue to advance significantly. Nevertheless, 

as is often the case, there is much to learn from the early observations and theoretical ideas. 

Thus, we first briefly summarize in section 2 some of the seminal findings that continue to 

guide and motivate current studies. In section 3 we review the state of mathematical 

modeling; in section 4 we discuss important theoretical principles that have been identified; 

in section 5 we list a few illustrative examples found in key references.

2 Experimental and clinical observations

2.1 Tensional homeostasis

Comparative biology is a particularly powerful approach for revealing general principles that 

govern biological structure-function relationships. As an example, consider the aorta, the 

main blood vessel in the body. The mature aortic wall consists primarily of an elastic fiber/

smooth muscle rich parenchymal layer that has a lamellar structure that is surrounded by a 

collagen rich layer that serves as a protective sheath. Wolinsky and Glagov [18] compared 

values of tension and tension per lamellar unit in the normal, mature aortic wall from 

different species ranging from mice (28 g body mass) to pigs (200 kg body mass). They 

found that wall tension varied by a factor of 26 across these species, yet the tension per 

lamellar unit was remarkably similar (2 – 4 N/m) and varied by only a small factor (~2.8). 
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This finding suggested the existence of a cell-mediated mechanism aimed to establish the 

local mechanical environment near a preferred value and/or to ensure a nearly constant level 

of Cauchy stress (200 – 300 kPa) that is structurally favorable. This concept was supported 

further by observations in a single species that the aorta tends to thicken in response to 

sustained increases in blood pressure (i.e., hypertension) and thereby to restore Cauchy 

stress toward a nearly constant normal level of around 150 – 300 kPa [19, 20]. Related to 

this, Shadwick [21] subsequently reported that the aortic stiffness in vivo, evaluated at 

individual values of mean arterial pressure, differs in species ranging from toad, squid, and 

shark to rat and whale only by a factor of 1.4 (with an average value of ~0.4 MPa). Because 

many soft tissues, including arteries, exhibit a nearly exponential stresss–strain relationship 

[22], stiffness and stress relate nearly linearly, thus rendering it difficult to discern whether 

the cells seek to establish, maintain, or restore a preferred state of stress or stiffness. 

Nevertheless, these early findings in arterial biomechanics support the general hypothesis 

that there exists a preferred mechanical state for a load-bearing soft tissue, a so-called 

homeostatic state. Although not recognized previously, this hypothesis is consistent with 

Davis’ law [4], which suggests that perturbations from a preferred homeostatic state in soft 

collagenous tissues are answered by biological G&R processes aimed to restore normalcy.

In vivo studies provide considerable insight and motivation, but in vitro studies often provide 

complementary understanding. Early cell culture studies revealed that aortic smooth muscle 

cells change their production of important extracellular matrix proteins and 

glycosaminoglycans directly in response to changes in mechanical loading [23]. Subsequent 

studies confirmed this mechanobiological response and showed, in the case of cyclically 

stretched smooth muscle cells, that altered mechanical loading changes both the production 

of different biomolecules by the cell and the number or sensitivity of associated membrane-

bound receptors [24]. That is, these studies proved that smooth muscle cells change their 

production and secretion of biomolecules (i.e., mass) directly in response to changes in 

mechanical loading, thus confirming mechano-mediated growth processes. To similarly 

simplify studies of cell-matrix interactions under mechanical loading, many investigators 

turned to so-called tissue equivalents. Typically consisting of reconstituted collagen or fibrin 

gels, having various geometries and boundary conditions, these gels are seeded with smooth 

muscle cells or fibroblasts and monitored over short periods (hours) to study responses to 

mechanical stimuli [25]. In a particularly important early study, uniaxial collagen gels fixed 

at both ends were observed to develop within a few hours an internal stress to a certain 

(apparently homeostatic) plateau level when seeded with fibroblasts. If this homeostatic state 

was perturbed by suddenly stretching or relaxing the gel, an immediate elastic change of 

stress in the gel was followed by a slow, exponential return back toward the homeostatic 

level [26, 27]. It is important to distinguish this behavior from passive viscoelastic stress 

relaxation common in many biological soft tissues [28]. Passive stress relaxation always 

releases strain energy. In contrast, active G&R restores a certain stress level even if this 

requires an increase in stress and strain energy as illustrated in Figure 1. Such studies 

confirmed that cells actively change the microstructure and stress of the matrix in which they 

reside directly in response to changes in mechanical loading, thus confirming mechano-

mediated remodeling processes. Subsequent reports showed further that this active 

remodeling, and even initial production, of extracellular matrix requires actomyosin activity 
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[29], hence revealing that cells not only synthesize and secrete diverse extracellular 

constituents, they also actively fashion these constituents to control structure, stiffness, and 

strength [30]. Collectively, these many findings support the notion of “tensional 

homeostasis”, that is, cells attempt to establish, maintain, or restore a homeostatic 

mechanical state.

2.2 Turnover

An important difference between living tissues and traditional engineering materials is mass 

turnover. Cells in living soft tissues not only produce (synthesize and secrete new) and 

remodel (rearrange extant) structural constituents within the extracellular matrix, they also 

actively remove (degrade) these constituents. The combined deposition and degradation of 

constituents is referred to as turnover. It can occur either within a cell (over short time 

scales, often minutes) or within the extracellular space (over longer time scales, possibly 

hours but often days to months); it can also be either balanced (homeostasis) or unbalanced 

(adaptive or pathologic). Two extreme examples of unbalanced matrix turnover are fibrosis 

(excessive deposition of matrix, as in scars) and atrophy (unbalanced degradation, as in 

disuse). Importantly, homeostasis is often thought of as a state, yet this word actually 

describes a process – one by which cells attempt to maintain a preferred state, a biological 

equilibrium. Given that all biological cells have finite life-spans and all biological molecules 

have finite half-lives, homeostasis necessarily requires continuous turnover even when there 

is no macroscopic change in geometry or mechanical properties. Such a case is called tissue 

maintenance.

In arteries, for example, the half-life of collagen fibers has been studied using radioactive L-

[2,3-3H]proline. Given that the normal half-life of arterial collagen appears to be on the 

order of 60 – 70 days, cells must continually produce new collagen fibers to maintain tissue 

normal. This half-life can decrease significantly in cases of disease, for example, down to 17 

days in hypertension [31]. Hence, synthetic arterial cells must not only increase their 

production of collagen to increase wall thickness to restore wall stress toward normal in 

hypertension, they must further increase production to offset the increased loss of collagen. 

Altered rates of collagen turnover (production and removal) similarly appear to be critical in 

other cases of arterial disease, including aneurysms [32].

Whereas collagen fibers experience different rates of turnover within the arterial wall in 

normalcy and disease, elastic fibers do not turnover. Functional arterial elastic fibers are 

unique; they alone are exclusively produced prior to adulthood and yet persist for many 

years because of a remarkably long half-life, on the order of 25 – 70 years [33, 34]. For this 

reason, although arteries are subject to 31 × 106 load cycles per year in humans due to the 

pulsatile blood pressure, mechanical fatigue is important only in relation to the structural 

integrity of the elastic fibers. That is, living soft tissues appear to avoid most issues of 

mechanical fatigue via the process of mass turnover; extant tissue is normally replaced prior 

to its mechanical degradation by fatigue. In other words, one could hypothesize that one 

purpose of mass turnover is to serve as a continuous repair mechanism to replace extant, 

possibly damaged, tissue by new intact tissue. Regardless, there is abundant experimental 

evidence that mass turnover is controlled by both the biomechanical and biochemical 
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environment. Increased mechanical stress correlates with an increased synthesis and 

secretion of structural proteins (mass production) as well as proteolytic enzymes [35], the 

latter of which can hasten mass removal. Moreover, changes in stress or strain can alter the 

rate at which matrix is degraded by proteases [36, 37]. Mechanically dependent degradation 

rates likely contribute to the overall process by which the arterial wall thickens in 

hypertension until a homeostatic wall stress is restored. Finally, whereas rates of matrix 

production and removal are governed, in part, by mechano-stimulated changes in gene 

expression, it is becoming increasingly clear that final gene products are also influenced by 

microRNAs (e.g., [38, 39]). There is a need to explore the effects of mechanical and other 

factors on microRNA activity as well.

It is important to recall that soft tissue properties also depend on the degree of cross-linking 

of particular constituents as well as other matrix-to-matrix interactions. In general, fibers 

within the extracellular matrix can interact in different ways, as, for example, by mechanical 

entanglements (kinematic constraints) or chemical bonds. Among other enzymes, lysyl 

oxidases and transglutaminases play important roles in covalently cross-linking molecules 

such as collagen. The former may be important in cross-linking newly synthesized 

molecules (i.e., in growth) whereas the latter may be important in cross-linking extant 

molecules (i.e., in remodeling). Recalling the desire to construct general theoretical 

frameworks for G&R, note that one can use the concept of “mass turnover” to describe also 

effects of altered cross-linking. For example, one can conceptualize the cross-linking of 

extant fibers simply as the removal of non-cross-linked fibers and the simultaneous 

production of (i.e., replacement with) cross-linked fibers. Cross-linking collagen is not only 

important for increasing structural properties such as stiffness and strength, it is also 

important in tensional homeostasis. For example, inhibition of tissue transglutaminase in 

initially stress-free collagen gels seeded with fibroblasts reduced the ability of the cells to 

compact the gels, which by inference reduced their ability to achieve a preferred mechanical 

environment [40]. This observation is consistent with the thought that macroscopic 

remodeling of matrix by cells must occur in increments, with incremental changes preserved 

by cross-linking. These observations suggest that cell-mediated microstructural 

reorganization of both the orientations of and the cross-links between fibers plays an 

important role in establishing, maintaining, or restoring matrix homeostasis. Although the 

precise underlying mechanisms remain unknown, the breaking and reforming of cross-links 

appears to be an efficient complement to frank mass turnover and should be explored further 

both experimentally and computationally.

2.3 Prestress (or deposition stretch)

A vital aspect of cellular regulation of matrix is the mechanical state of the matrix that is 

either deposited de novo or remodeled within extant matrix. In particular, early G&R 

theories [41] conjectured and computational [42] and theoretical [43] studies confirmed that 

replacement of stressed fibers with initially unstressed fibers could not achieve homeostasis 

– initially stress-free or under-stressed fibers would likely extend until reaching the in vivo 

level of stress, which would necessarily result in tissue elongation or expansion, not 

maintenance. In other words, it is natural to imagine that newly produced or remodeled 

matrix must be prestressed and, under optimal conditions, the value of prestress should equal 
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the homeostatic target [30]. Indirect evidence that cells prestress the matrix that they 

produce or remodel continues to accumulate. For example, assembly of vascular collagen 

requires both integrins and actomyosin activity [29], presumably so the cells can hold onto 

and work on the collagen. This concept is supported by experiments on collagen fiber 

alignment by tendon fibroblasts; these cells can produce collagen in the absence of 

intracellular actin, but they cannot organize it without actin [44]. Indeed, it has been 

suggested that elaborate control of gene expression and intracellular signaling related to 

actomysin activity is fundamental to tensional homeostasis [45], which is important in both 

normalcy and disease [46].

Contractile forces exerted by cells seem essential to endow matrix with prestress in the first 

place. This prestress is, however, only partially maintained by continued cellular contraction. 

A large and probably often dominant part of the prestress is maintained by permanent cross-

links that are established between the prestressed and surrounding matrix [47]. Prestress is 

then maintained primarily by the matrix itself, not by the cells (which would have to 

consume ATP to this end). How cells actually build-in stresses within new or extant matrix 

remains unclear and further experiments are required. One hypothesis, however, is a lock-

step or ratchet mechanism [48]. Regardless of the biological complexity, linear momentum 

balance must always be respected [49]. Prestress permanently incorporated in the matrix can 

balance external loads and thus significantly reduce the stress experienced by the cells. 

Indeed, the associated “stress shielding” [50] would seem to be mechanically favorable, 

allowing mechano-sensitive cells merely to probe the matrix to assess whether there is a 

need for further G&R due to increased stress rather than carrying excessive stress 

themselves. Finally, note that the existence of prestress in matrix (and similarly in cells, cf. 

[51]) influences both its stiffness (since stiffness is proportional to stress in a nonlinear 

material) and its role as a reservoir for a host of growth factors, cytokines, and proteases. It 

has been suggested, for example, that a prestressed matrix can prime latent cytokines such as 

transforming growth factor-beta, hence facilitating their activation via additional stresses 

generated through actomyosin activity [52].

2.4 Pathologic growth and remodeling

In healthy tissues, G&R enables a favorable adaptation to a changing mechanical 

environment, for example, by restoring nearly normal levels of wall stress in arteries despite 

sustained increases in blood pressure. There are, however, many cases where neither growth 

nor remodeling can maintain or appropriately adapt the geometry or mechanical properties 

of a tissue or organ. Two prominent examples in the arterial tree are aneurysms and 

tortuosity. Aneurysms are focal dilatations of the arterial wall; some aneurysms can enlarge 

to a new stable state whereas others continue to enlarge over years and eventually rupture. 

That is, aneurysmal G&R may or may not result in a new mechanobiologically stable state 

[43, 53]. Tortuosity, on the other hand, is defined as an abnormal lengthening of a blood 

vessel that results in a distorted geometry. It appears that tortuosity is irreversible [54], 

though it is yet unclear whether it can achieve a stable state. It remains an important 

challenge to understand the mechanisms governing these and many other forms of 

pathological G&R, which serves as additional motivation for the development of 

computational models, as noted below.
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3 Mathematical modeling

G&R of load-bearing soft tissues typically involves finite deformations and thus must be 

treated within the context of nonlinear continuum mechanics [55]. Toward this end, a recent 

review summarized roles of general balance relations in G&R within a continuum 

mechanical framework [16]. To complement that work, we focus herein on how important 

biological and micromechanical aspects (such as tensional homeostasis, mass turnover, and 

prestress) can be appropriately addressed within a general constitutive framework, again 

based on nonlinear continuum mechanics.

Let us begin by considering a reference configuration κ(0) that is deformed (elastically and 

inelastically) into a current configuration κ(s) at G&R time s > 0 (note: since G&R typically 

occurs over time scales greater than normal in vivo time scales, such as the cardiac cycle or 

gait frequency, we use G&R time s and reserve time t for other temporal processes). Of 

course, valid reference configurations need not be experienced by the physical tissue nor do 

they need to be stress-free. Without loss of generality, we assume the reference configuration 

to be the normal (homeostatic) in vivo loaded configuration at time s = 0. A differential 

volume element in the reference configuration dV is mapped to a volume element in the 

current configuration dv = det(F)dV, with F the standard deformation gradient that maps the 

tangent space of the reference configuration to the one of the current configuration. In 

general, G&R in soft tissues typically happens on the time scale of days to months whereas 

elastic deformations occur on the time scale of seconds or less. Thus, G&R is often modeled 

as a quasi-static process, subject to the usual balance of linear momentum

(1)

with P the 1st Piola-Kirchhoff stress tensor, b0 the body force per unit mass, and ϱ0 the mass 

density per unit reference volume. In the quasi-static setting with hyperelastic materials 

typically assumed in soft tissue growth and remodeling, we have P = ∂Ψ/∂F. Hence, to 

compute deformations and stresses resulting from G&R, one typically has to define a strain 

energy function Ψ and a mass balance equation that allows computation of ϱ0 at every in 

time.

Within this standard setting of nonlinear continuum mechanics two major approaches have 

been proposed to address G&R (see Figure 2), namely, kinematic growth and constrained 

mixture models, which can essentially be understood as two fundamentally different ways to 

compute the strain energy Ψ and mass density ϱ0.

3.1 Kinematic growth models

The fundamental basis for current theories of kinematic growth of soft tissues [56] arose 

from seminal concepts by Richard Skalak that were published in the early-to-late 1980s. It 

appears that many of these ideas were motivated, in large part, by the desire to understand 

residual stresses in soft tissues (see Fig. 4 in [56]). Growth was thus conceptualized 

primarily as changes in the size and shape of a growing unloaded body, which could be 

described via two deformations: an inelastic “growth” deformation (gradient) Fg capturing 
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stress-free changes by mass added or lost in (infinitesimal) volume elements and a 

subsequent elastic “assembly” deformation (gradient) Fa that ensures geometric 

compatibility by assembling the grown volume elements into a contiguous unloaded body. 

That is, growth of individual volume elements is thought, in general, to be geometrically 

incompatible and the assembly of these volume elements to result in residual stresses in the 

contiguous but yet unloaded body. Effects of external loads then require, while enforcing 

equilibrium, an additional elastic deformation (gradient) FE so that the total elastic 

deformation (gradient) is Fe = FEFa and the total deformation (gradient)

(2)

The stored energy Ψ at any time s depends on the deformation, thus

(3)

Given in Fg(s) in (2), the elastic constitutive equation (3) allows one to solve the mechanical 

equilibrium problem (1) in the traditional way. Kinematic growth theory thus requires, in 

addition to the elastic constitutive equation (3), a second constitutive (evolution) equation for 

the inelastic deformation (i.e., growth) Fg(s), typically assumed to not include rigid body 

rotations.

Overall, this general Kinematic Theory of Growth, which is illustrated in Figure 2, continues 

to be used widely (e.g., [16, 17]) due to its simplicity and low computational cost. It is 

conceptually similar to well-known models for viscoelastic fluids (cf. Eq. (10) in [57]) and 

plasticity (cf. chapter 9 in [58]). Nevertheless, a major challenge in the kinematic growth 

theory remains the specification of a constitutive relation for Fg. Recalling that soft tissue 

seeks to maintain some mechanical quantity, say G, near its homeostatic value, two 

approaches to model mechano-regulated G&R are common. First, one can postulate an 

evolution equation of the form

(4)

where ΔG = G − Gh is the assumed growth stimulus with Gh the value of the mechanical 

quantity in homeostasis; the colon denotes a double contraction product and  is some fourth 

order sensitivity-type tensor. The basis assumption of (4) is that Fg can be written as a 

smooth function of G with  so that Taylor expansion renders the first order 

approximation (4). Second, one can define Fg starting from a decomposition

(5)
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into second-order basis tensors Bj with scalar βj(s). The Bj define growth directions, and 

from experimental and clinical observations one can try to define evolution equations for 

each βj that define the growth in each direction. Again, one may, for example, assume some 

stimulus ΔG as in (4) and approximate βj by a Taylor expansion around ΔG = 0 with 

. Models based on (5) often assume, for example, isotropic growth with Fg = 

β(s)I, with identity tensor I, or else fiber growth with Fg = β(s)A⊗A + (I − A⊗A) for fiber 

direction A [16]. There continues to be debate about the mechanical quantity G governing 

G&R. In [56] G was identified with the (corotated) Cauchy stress, which is motivated by 

experimental observations as summarized in section 2.1. Alternatively, strain [59] or, 

motivated from plasticity theory, the Eshelby stress [60] or Mandel stress [61] have been 

suggested. Another major problem is the proper definition of  in (4) or the βj and Bj in (5). 

Typically, these quantities are not chosen on the basis of micromechanical or biological 

arguments, but rather so as to mimic phenomenologically a certain observed growth 

behavior (i.e., macroscopic changes in size and shape) [15, 17]. The resulting significant 

arbitrariness in the choice of , G, βj, and Bj remains one of the greatest limitations of 

kinematic growth models.

The spatial density ϱ of a soft tissue is often assumed to remain constant not only during 

elastic deformation (“incompressibility”) but also during G&R. That is, ϱ = ϱ0(s)/det(F(s)) = 

const with the density per unit reference volume ϱ0. From (2) we know det(F) = 

det(Fe)det(Fg) = det(Fg) with the incompressibility condition det(Fe) = 1. Thus, one has the 

net mass production per unit reference volume

(6)

This mass balance becomes, in the case of (4) always and in case of (5) at least 

approximately in the neighborhood of the homeostatic state,

(7)

where the colon again denotes a double contraction product and kσ is a gain-type parameter 

(a second order tensor that depends in general on Fg). Equation (5) can not only be used for 

mechano-regulated growth but also in various other cases where mass deposition in a body 

or tissue has to be modeled. Finally, it is worth mentioning that in kinematic growth models 

one often defines not only evolution equations for the inelastic deformation gradient Fg but 

also for material properties such as structural tensors characterizing anisotropic constitutive 

properties. This way, for example, mechano-regulated reorientation of collagen fibers in 

vitro and in vivo was studied [62–64].

In summary, most implementations of the kinematic growth theory are computationally 

convenient, yet mechanobiologically limited. Reasons for the latter are to be expected, in 

part, because the theory was designed to model the growth of initially stress-free 
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configurations of whole tissues. Growth and remodeling in vivo necessarily occurs in 

stressed configurations via the production, removal, or remodeling of different types of 

constituents at different rates and having different prestresses. These processes are not 

considered in kinematic growth theory, and Fg is typically defined heuristically. There is 

also generally no attempt to model the mechanics of separate constituents, such as elastic 

fibers (with a normal half-life of several decades) versus collagen fibers (with a normal half-

life of 70 days) in arteries. Given that G&R of arteries in aging, aneurysms, atherosclerosis, 

and so forth depend strongly on the evolving relative roles of these constituents, a single 

phenomenological descriptor would not be expected to capture key aspects of the disease 

progression. Indeed, it appears that even normal residual stresses in arteries arise due to 

spatial heterogeneities in the different constituents that have different prestresses, hence a 

traditional kinematic growth model could only be expected to predict the overall change in 

size and shape when residual stress is relieved, not to predict how it arose or why it changes 

in disease.

3.2 Constrained mixture models

Whereas Richard Skalak advocated the use of finite strain kinematics to describe growth, 

Y.C. Fung suggested that G&R should be described in terms of mass-stress relations. 

Motivated by the latter as well as the desire to better incorporate mechanobiological data as 

they become available, so-called constrained mixture models were proposed for G&R of soft 

tissues [41]. These models represent a fundamentally different approach. It is assumed that, 

in each volume element, there exists a mixture of n structurally significant constituents. 

Given the aforementioned continuous turnover of most constituents, mass increments of 

each constituent i = 1, 2, …, n are allowed to be deposited within the body at each time τ ∈ 
[0, s]. These increments possess different natural (stress-free) configurations and yet deform 

together with the overall tissue (i.e., in a constrained manner). Let mass increments of 

constituent i be incorporated within the extant matrix under the elastic pre-stretch 

(relative to the stress-free configuration of the mass increment) at time τ. If the body 

subsequently deforms between time τ and s such that the total mixture deformation gradient 

changes from F(τ) to F(s), then the prestressed mass increment will experience at time s the 

elastic stretch (cf. Figure 2)

(8)

Obviously, this constituent-specific elastic stretch depends on the deposition time τ and the 

pre-stretch of that constituent, and will in general be different for all mass increments within 

an infinitesimal volume element. Note that (8) allows a decomposition of the deformation of 

each mass increment into an elastic part  and an inelastic part , 

similar to (2). One difference between kinematic growth theory and classical constrained 

mixture theory is, however, that in the latter in each volume element there is a mixture of 

different mass increments deposited at different times and experiencing an, in general, 

different elastic and inelastic deformation.
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Let  be the constituent-specific (apparent) mass density per unit reference volume and 

 the associated true mass production rate per unit reference volume for the i-th 

constituent at any G&R time s ≥ 0. Once deposited, all biomolecules have a finite half-life 

and thus degrade over time. Let the fraction of the mass initially existing at time 0 and still 

surviving at time s be Qi(s) ∈ [0,1], with Qi(0) = 1, and similarly the fraction of mass 

deposited at time τ and still surviving at time s be qi(s − τ) ∈ [0,1]. Thus, directly from the 

mass balance relation for a mixture, the mass density of the i-th constituent in the 

constrained mixture, at G&R time s, is

(9)

which, when divided by the mass density of the whole tissue (i.e., constrained mixture) 

 yields the evolving mass fraction for each constituent. The strain energy 

density of the constrained mixture of mass increments in each infinitesimal volume element 

is assumed, according to a simple rule of mixtures,

(10)

where the strain energy density of the i-th constituent is typically assumed to be

(11)

with some standard strain energy function  such as a Fung exponential function. This 

formulation reveals the need for three classes of constitutive relations: constituent-specific 

stored energy functions , rates of mass production, and survival functions, all depending 

on the specific time at which the constituent is incorporated within extant matrix.

Unlike in kinematic growth theory, in the constrained mixture theory net production rate 

is understood as a difference between true production  and degradation  rates, 

with

(12)

One often assumes a stress-dependent true mass production rate
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(13)

where σh is the (corotated) homeostatic Cauchy stress, Ti a time constant, and  some 

second order tensor (containing gain-type parameters). The first term in the brackets on the 

right-hand side is called the basal mass production rate (i.e., the one at homeostasis) and the 

second term is the stress-dependent mass production rate. With (12) and (13) at homeostasis

(14)

so that Ti can be interpreted as an average survival time of mass at homeostasis. With (12), 

(13), (14) and the often made assumption of a constant mass removal rate, we arrive at a net 

mass production rate

(15)

which is similar to (7) found in kinematic growth theory with ΔG = σ(τ) − σh.

In constrained mixture models, constituents such as collagen or smooth muscle are often 

represented by quasi-one-dimensional fiber families. In this case, Cauchy stress in (13) and 

(15) can simply be expressed by the scalar stress in the fiber direction and  by a scalar gain 

factor. Moreover, in practice, exponential survival functions are often assumed, that is,

(16)

For given gain factors  and survival functions qi and Qi, mass turnover is completely 

defined by (13) and (9). With a given mass turnover and deposition pre-stretch (often chosen 

to be constant), (10) and (11) define the mechanical behavior of soft tissue subject to growth 

and remodeling completely.

Unlike kinematic growth models, constrained mixture models naturally account for the 

simultaneous presence of multiple constituents in soft tissues and moreover for the 

differential turnover of these constituents in living organisms. They are based on a 

micromechanical model of G&R, which has helped to clarify several fundamental 

mechanisms of G&R (cf. section 4). Nevertheless, these models require one to track a large 

number of different reference configurations. As can be seen from (8) – (11), the strain 

energy is calculated separately for each of the n constituents on the basis of an integral 

which, in practice, is evaluated in a discrete manner at nt time points in the past. Thus, the 

configuration of the body has to be stored for each of these past times and a nonlinear strain 
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energy function has to be evaluated for each of them in each time step. In general nt is 

determined by the survival functions and time step size; in practice nt will often range 

between 20 and 60. Both computational cost and implementation effort are therefore much 

higher for constrained mixture models than for kinematic growth models, which is the main 

disadvantage of constrained mixture approaches. For this reason, hybrid models have been 

developed that are as easy to implement as kinematic growth models but yet capture in some 

ways the effects of mass turnover as included in constrained mixture models.

3.3 Hybrid models

3.3.1 Evolving recruitment stretch models—In a series of papers published over the 

past decade [65–70], a hybrid approach to G&R was developed to study the enlargement of 

aneurysms. The tissue is modeled as a constrained mixture of n constituents with, in general, 

individual reference configurations. Unlike in the classical constrained mixture model [41], 

however, the mass of each constituent is not modeled as a constrained mixture of mass 

increments deposited at different times with different reference configurations. Rather only 

the change in the average stress-free configuration of each constituent due to increments of 

deposition and degradation of mass is tracked by the evolution of a “recruitment” stretch . 

This approach has been implemented for G&R of tissues containing quasi-one-dimensional 

fiber families so that a scalar recruitment stretch (in fiber direction) is sufficient. The general 

idea is that wavy fibers in a soft tissue start to carry load only once their initial undulations 

disappear at the recruitment stretch. A change of this recruitment stretch is thus equivalent to 

an inelastic remodeling deformation of the material, that is, to an inelastic deformation 

gradient

(17)

with fiber direction Ai. Evolution of the recruitment stretch is often modeled by a simple rate 

equation (e.g., Eq. (27) in [65])

(18)

where  is the current elastic stretch of the i-th fiber family and  the prestretch 

(“attachment stretch”) with which new fibers are incorporated within the matrix during mass 

turnover (comparable to  in the classical constrained mixture model in section 3.2). The 

idea is that degradation of extant fibers with elastic stretch  and deposition of new fibers 

having an elastic pre-stretch  should make the average elastic stretch of a constituent 

approach the pre-stretch. This is realized by a  increasing until . For simplicity, 

this process is assumed to follow a first order rate equation determined by parameter α. At 
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the same time, net mass production (that is, mass production minus mass degradation) is 

defined as (cf. Equation (29) in [65])

(19)

with some parameter β. This relation is similar to the one usually assumed in constrained 

mixture models (cf. (15)), but based on stretch rather than stress. Models with evolving 

recruitment stretch were originally used in two-dimensional membrane models of blood 

vessels, but recently have been extended to volumetric growth [65]. There they are combined 

with a volumetric-deviatoric split to enforce incompressibility of the soft tissue during 

transient loading, which is equivalent to an assumed isotropic inelastic growth deformation 

accommodating an appropriate volume for the changing mass during growth. The inelastic 

growth deformation (gradient) is thus

(20)

In general, the inelastic deformation of a constituent can be written as

(21)

where the evolution of  is governed by (17) and (18). Similar to (2), one can thus 

decompose the total deformation gradient F into an elastic part  and an inelastic part 

with

(22)

with the strain energy determined at any G&R time by

(23)

This approach can be considered a hybrid. Similar to classical constrained mixture models, it 

uses the concept of a constrained mixture to account for the simultaneous presence of 

different constituents with different stress-free configurations. It also incorporates the idea of 

mass turnover and prestress (attachment stretch) for deposited mass. Yet, mass turnover is 

not accounted for by tracking mass increments deposited at each time. Rather, effects of 

mass turnover and growth are captured by an effective inelastic deformation for each 
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constituent, whose evolution is governed by mass production and a rate equation that 

describes how the current stretch approaches the attachment stretch if, during turnover, 

extant mass is replaced by new mass deposited with the attachment stretch. Comparing (2) 

and (7) with (19) – (22) further reveals a conceptual similarity with kinematic growth theory. 

The advantage of this hybrid approach is its conceptual simplicity compared with classical 

constrained mixture models for G&R, as described in section 3.2. Its disadvantage is its 

rather phenomenological basis. The rate equation (18) describes an evolution towards a 

homeostatic state that can be expected to resemble qualitatively the one produced by detailed 

micromechanical models, as in classical constrained mixture models. The choice of (18) is 

yet heuristic and it has not yet been shown how this equation corresponds to specific 

micromechanical assumptions about G&R processes. Moreover, this hybrid approach has 

been implemented so far only for quasi-one-dimensional fiber families or – in the context of 

volumetric growth – isotropic growth. Generalizations of these two aspects are pending.

3.3.2 Homogenized constrained mixture models—Recently, a temporally 

homogenized constrained mixture model has been proposed as another hybrid approach to 

model G&R of soft tissue [71]. It is motivated by the constrained mixture models discussed 

in section 3.2. In constrained mixture models the total deformation gradient of each mass 

increment deposited at time τ can be decomposed into an elastic part  (cf. (8)) and an 

inelastic part  by

(24)

both of which depend explicitly on the time of constituent deposition and incorporation τ ∈ 
[0, s] within the extant material. The main difficulty in the practical application of 

constrained mixture models is the implementation and evaluation of the time integral in (11). 

The origin of this difficulty is that all mass increments are deposited in general in different 

configurations with different F(τ). The general idea of homogenized constrained mixture 

models is to perform a temporal homogenization across all mass increments within one 

constituent. This operation is performed on the basis of three assumptions. First, it is 

assumed that G&R changes the mechanical properties of a soft tissue, but the underlying 

strain energy function remains in the same so-called “similar set” in the sense of Definition 

3 in [72], that is, differences in the average stress-strain response of each constituent caused 

by G&R can be captured via a single average inelastic deformation  so that for each 

constituent the total deformation gradient can be decomposed into

(25)

with elastic deformation gradient . Second, exponential survival functions as in (16) are 

assumed. Third, it is assumed that the inelastic deformation can be decomposed into a 

growth-related part , accommodating an appropriate volume for growth-based changes of 

mass, and a turnover-related part  with
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(26)

The turnover-based inelastic deformation is assumed to evolve such that the rate of change 

of the average Cauchy stress in a given configuration equals the one that would occur in a 

classical constrained mixture model following [41]. Under these simple assumptions, the 

turnover-based inelastic deformation was shown [71] to be governed by

(27)

with  and Ti defined as in section 3.2 for the classical constrained mixture models. Here, 

the second Piola-Kirchhoff stress and deposition prestress are denoted Si and , the 

inelastic velocity gradient , and the elastic right Cauchy-Green deformation 

tensor .

This temporally homogenized constrained mixture model was shown to converge in the 

neighborhood of a homeostatic state to the same solution as classical constrained mixture 

models and also to render far from these states at least very similar results [71]. Temporally 

homogenized constrained mixture models thus share the same micromechanical basis of 

classical constrained mixture models while reducing computational cost and implementation 

effort to a level comparable to that of kinematic growth theory. In this way, these models 

combine advantages of the two thus far proposed major approaches to modeling G&R in 

load-bearing soft tissues.

4 Theoretical insights

Mathematical modeling of G&R in soft tissues has led to several non-trivial insights into the 

underlying mechanisms, which are briefly summarized in this section.

4.1 Prestress

G&R is characterized in load-bearing tissues by the reorganization or degradation of extant 

stressed constituents and the deposition of new constituents having a certain prestress. If the 

value of prestress does not equal the current stress, the internal stress in the material changes 

continuously by turnover, which requires a continued deformation to balance the given 

external loading. Thus in a mechanobiologically static state, prestress has to be the higher, 

the higher the external load, and:

Prestress defines a limit on the load that can be supported in a mechanobiologically 

static state by living soft tissue. Prestress can thus play a role in living tissues that is 

similar to yield stress in classical engineering materials, as discussed in [43].
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If the current stress in soft tissue is higher than the deposition prestress, this stress will 

decrease by turnover towards the value of the prestress; if the current stress is lower than the 

prestress, it will increase towards the level of prestress. Prestress may thus be identified with 

the homeostatic stress at which no further remodeling occurs. This behavior, which is 

captured both by classical constrained mixture (section 3.2) and hybrid (section 3.3) models 

can also be understood as a special form of inelasticity on the basis of a mechanical analog 

model consisting of a viscoelastic Maxwell fluid and a motor element in parallel (cf. Figure 

3) [71].

The essential role of prestress raises the question of what governs its preferred homeostatic 

value. In [73], energetic optimality was suggested as a governing principle. To fulfill their 

respective mechanical functions, tissues and organs need to support certain loads and exhibit 

a certain stiffness. Let the characteristic Cauchy stress in the tissue be σ in such cases. As an 

example, both the structural stiffness and the supported external load of tendons/ligaments or 

blood vessels scale linearly with the load bearing cross section and thus – for a given shape 

of the organ – with tissue mass m. On the other hand, for given organ shape and mass m, the 

supported load increases linearly with the tissue stress σ. Recalling the exponential strain 

energy function of soft collagenous tissues [22], and the thus nearly linear relation between 

stress and stiffness, this is also true for the material stiffness of the tissue. Thus to support a 

certain load in tensional homeostasis while maintaining a certain stiffness, a certain 

functional target value γ = σm has to be achieved. The energetic cost of mass turnover per 

unit time  in the tissue or organ can be divided into a chemical part 

and a mechanical part , where cchem is the energetic cost to degrade a 

unit tissue mass and replace it by new mass of the same type, Ψ is the strain energy of the 

soft tissue per unit volume, the mass density, and T the temporally averaged survival time of 

mass. Energetic optimization of mass turnover thus means minimization of

(28)

for given γ = σm a (that is, a given mechanical function that the tissue or organ can fulfill). 

For a given mechanical function γ and turnover time T, minimization of  renders

(29)

as optimal tissue stress that allows mass turnover (i.e., maintenance) at minimal energetic 

cost. Chemical costs for synthesis and degradation of collagen during mass turnover are not 

exactly known, but it seems reasonable to assume a chemical cost of akBTK per monomer, 

with Boltzmann constant kB, absolute temperature TK, and a factor a between one and 

several hundred. Of course, the stored energy may vary significantly across different 

collagenous soft tissues. Therefore, we examined the energetic cost of mass turnover 

according to (28) for a = 1,10, or 100 and three different strain energy functions reported in 

the literature: one in Table 1 of [74], one in Table 2 of [75], and one reported in [76]. Results 
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are depicted on the right-hand side in Figure 3. In all cases, a steep increase in energetic cost 

is observed in the regime σpre < 100 kPa, due primarily to the large amount of mass required 

in cases of low stress to maintain a certain stiffness and support a certain load. On the other 

hand, energetic costs decrease only marginally above 300 kPa. Of course, the stress of 

collagen should remain well below its tensile strength (which some have reported to range in 

arteries around 1.5 MPa [77–79]). Therefore a homeostatic stress (prestress) around 200 – 

300 kPa appears optimal for aortic tissue in the sense that it ensures (nearly) minimal 

energetic cost of mass turnover and yet a sufficient safety factor relative to tensile strength. 

This is indeed the range of homeostatic stress typically observed in vascular tissue (cf. 

section 2.1). Therefore, one may hypothesize that the magnitude of homeostatic stress 

(prestress) can be understood from energetic optimality of mass turnover. While this 

hypothesis requires further critical examination, it may at least serve as a starting point for 

future research aiming to understand the biomechanical principles governing prestress in 

soft collagenous tissue.

4.2 Mechanobiological stability

Prestress is necessary to maintain a mechanobiologically static state in the presence of 

turnover. In living organisms, such a state is subject to continued perturbation (for example, 

changes in mechanical loading, minor insults, changes of the biochemical environment). 

Healthy tissue usually responds to such perturbations by G&R processes that recover 

tensional homeostasis and largely maintain the original geometry. In pathological cases, 

however, even minor perturbations may start an unstable process of continued G&R that 

ends in a loss of geometric integrity. A prominent example of such unstable growth 

processes are aneurysms [53], and possibly tortuosity. In aneurysms, an unstable dilatation 

of the vessel can be observed over time in certain conditions (cf. Figure 4) that often results 

in rupture of the blood vessel and thereby significant mortality and morbidity. In tortuosity, 

the vessel becomes contorted primarily in the axial direction.

This issue of mechanobiological stability can be understood from the mechanical analog 

model in Figure 3. In homeostasis, the Cauchy stress σi acting on each end of the model is 

balanced by a (pre)stress . If the external load is increased, σi increases and is no longer 

fully balanced by the prestress  and the Maxwell fluid in the upper branch of the analog 

model is subject to a non-zero stress, resulting in an inelastic extension. Especially in nearly 

incompressible soft tissue, this extension may be accelerated by a transverse contraction that 

contributes to a further increase in σi for a given external load and possibly a total loss of 

geometric integrity. To avoid such a loss of geometric integrity after even minor 

perturbations of the external loading, the system depicted in Figure 3 needs to recover a state 

of mechanobiological equilibrium, which means a state in which prestress once again 

balances the stress due to external loads. This is possible in two ways. First, prestress can 

increase. Second, by deposition of additional mass (i.e., growth), the load bearing cross 

section can be increased and thus σi decreased (for still the same increased external loading) 

until a state is recovered with . Therefore, to maintain a mechanobiologically stable 

equilibrium state in the presence of mass turnover, soft tissue needs to be endowed with the 
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capacity either to adapt its prestress or its mass turnover, or both, in response to mechanical 

cues.

From this point of view, mechanobiology (i.e., the capacity to control biological 

processes in response to mechanical stimuli) is not only a mechanism that helps 

soft tissues to adapt to changing mechanical environments, it is strictly necessary to 

maintain a stable state in tissues subject to mass turnover.

The extension of the tissue model in Figure 3 that starts after a perturbation of the 

equilibrium between external load and prestress will in general increase Cauchy stress in the 

body due to transverse contraction. If this happens faster than the adaptation of prestress or 

growth by mass addition to recover equilibrium, the tissue will experience a continued 

extension up to a loss of geometric integrity. This phenomenon has been termed 

mechanobiological instability and is examined in detail in [43, 53]. It was shown that 

mechanobiological instability is promoted by fast turnover (i.e., small average mass survival 

times Ti), low stiffness, and low capacity for mechano-regulated mass production (e.g., 

small kσ in (15)). It was suggested that mechanobiological stability could be the so far 

unknown biomechanical principle governing the continued enlargement of aneurysms, a 

hypothesis supported by comparisons with clinical and experimental evidence. Accelerated 

mass turnover is observed in aneurysms [32, 80] while individuals with stiffer vessels, such 

as diabetics [81, 82], have a lower risk for rupture. Moreover, in aneurysms (where the stress 

does in general not equal the homeostatic value) increased mass production or decreased 

degradation (corresponding to higher  in (15)) impairs further dilatation [38, 39]. Given 

these observations, the factors promoting mechanobiological stability correlate well with the 

factors protecting against aneurysmal enlargement and rupture. Mechanobiological stability 

could thus not only contribute to improved prediction of aneurysmal enlargement (via the 

identification of meaningful biomarkers), but perhaps also the development or 

pharmacological therapies (manipulating exactly the factors known to affect 

mechanobiological stability).

In [43, 53] it was also shown that mechanobiologically stable tissues tend not to return 

exactly to their initial equilibrium state following a perturbation in loading, but rather to a 

nearby new equilibrium state. That is, tissues are typically neutrally stable, not 

asymptotically stable. This mathematical property, which has been termed 

mechanobiological adaptivity, may explain why soft tissues often undergo minor irreversible 

changes of geometry. For example, elastic arteries are well-known to dilate during aging 

[83–85], though this process results from complicated changes in endothelial and smooth 

muscle cell biological activity beyond simply mechano-regulation of matrix.

The concepts of mechanobiological stability and adaptivity were developed in [43, 53] on 

the basis of Lyapunov’s stability theory and a linearization around homeostatic states. All 

the models discussed herein that account for mass turnover (i.e., the classical constrained 

mixture models from section 3.2 and the two hybrid models from section 3.3) can be shown 

to converge to the same behavior in such a linearized limit. Thus, the concepts of 

mechanobiological stability and adaptivity appear to be universally applicable to these 

models of G&R.
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5 Further examples

The above discussed mathematical models have been used to study G&R in diverse soft 

tissues. In this section, we present a brief summary of illustrative examples.

5.1 Cardiovascular system

The vasculature adapts to altered mechanical loading via cell-mediated processes [12]. 

Smooth muscle cells and fibroblasts sense and respond to changes in their mechanical 

environment due to altered blood pressure and axial loads; endothelial cells similarly 

respond to changes in altered blood flow. Via complex signaling cascades, this sensing is 

translated into mechano-regulated G&R, which has been studied by kinematic growth 

models [60, 86, 87] and constrained mixture models [88–90]. In particular, the enlargement 

of aneurysms, focal pathological dilatations whose natural history may be linked to a form 

of unstable, ill-controlled G&R in extreme cases [53], has attracted increasing interest over 

the last decade. Constrained mixture models [42, 74, 91–93] as well as hybrid models [65–

67, 70, 71] have been used to examine the mechanisms driving aneurysmal enlargement 

(Figure 5).

Not only blood vessels, but also the heart itself is subject to mechano-regulated G&R. For 

example, in [95] concentric and eccentric cardiac growth through sarcomerogenesis was 

studied, using anisotropic kinematic growth models [95].

5.2 Skeletal muscle

Skeletal muscle is well-known to grow by increasing the number of sarcomeres in cases of 

chronic lengthening. This process was studied by finite element simulations using a 

kinematic growth model in [96].

5.3 Skin

Mechanical loading can make skin expand by G&R. This mechanism can be exploited in 

plastic and reconstructive surgery to grow in a controlled process in one region of the body 

additional skin that can be used to compensate for skin losses in other regions. Anisotropic 

kinematic growth models have been developed [98] to study this process computationally 

(Figure 7).

5.4 Eye

Soft tissue G&R in the eye may play important roles in diseases like glaucoma, and has thus 

been studied by kinematic growth models [99, 100]. In particular, mechano-regulated 

thickening of the lamina cribrosa in early glaucoma was modeled and reorientation of 

collagen fibers in the corneo-scleral shell (Figure 8).

5.5 Tissue cultures and tissue engineering

Collagen gels seeded with fibroblasts are important model systems to study fundamental 

mechanisms in soft tissue G&R [25, 40, 101]. To understand better the experimental 

observations made in such gels kept in tissue cultures, computational models of G&R have 

been increasingly used over the last decade [62, 102]. Similarly, such models [103–107] 
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have been successfully applied to help tissue engineer artificial blood vessels and heart 

valves (Figure 9).

6 Conclusions

Load-bearing collagenous soft tissues exhibit complex mechanical behaviors, but also a 

remarkable ability to adapt to perturbations in mechanical loading. The past two decades 

have seen significantly increased attention in the biomechanics community to 

mathematically modeling the associated growth (changes in mass) and remodeling (changes 

in structure). Because of the finite deformations involved, the kinematics of G&R 

necessarily includes multiplicative decompositions into elastic and inelastic deformations, 

independent of approach. Kinematic growth theory provides a computationally inexpensive 

means to capture consequences of G&R, though without detail on the mechanobiological 

processes of turnover of individual constituents having individual properties. Another 

approach, that of a constrained mixture, can capture many aspects of chemomechanically 

stimulated remodeling and turnover of individual matrix constituents, but requires a 

computationally expensive tracking of a multitude of reference configurations for each 

constituent. Hybrid approaches attempt to exploit advantages of kinematic theories while 

retaining some features of constrained mixture theories, though with the loss of some 

generality in describing actual history-dependent mechanobiological processes. As is the 

case with most constitutive formulations, the method chosen should be based upon the 

question at hand with an appreciation of the associated limitations. New concepts such as 

mechanobiological stability and adaptivity promise to yield increasing insight into principles 

of G&R, but much remains to be accomplished. Continued studies should be motivated 

directly by the unique mechanisms that cells use to establish, maintain, remodel, repair, or 

remove functional tissue and organs, including cell-mediated incorporation of new matrix 

under stress.
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Figure 1. 
If a uniaxial collagen gel seeded with fibroblasts is shortened from length L to L − ΔL at 

time t0 (left), a step-decrease of the elastic stress from the initial homeostatic level σh is 

followed by a slow return back toward the homeostatic stress (right).
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Figure 2. 
From a reference configuration κ(0), a mechanical body is deformed by external loading as 

well as growth and remodeling into current configurations κ(τ) and κ(s) at time τ and s. 

Kinematic growth theory assumes that the total deformation gradient F can be decomposed 

into an inelastic part Fg, capturing growth, and an elastic part Fg, that ensures mechanical 

equilibrium and geometric compatibility during deformation. In contrast, constrained 

mixture models conceptualize the body as composed of n constituents, with each constituent 

composed of a multitude of mass increments deposited at different times. The individual 

mass increments are deposited with an elastic pre-stretch  at time τ compared to their 

respective stress-free natural configurations . In each volume element, mass increments 

from different constituents deposited at different times form a constrained mixture, that is, 

they undergo the same elastic deformation over time.
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Figure 3. 
Left: mechanical analog model for soft tissue subject to G&R: a viscoelastic Maxwell fluid 

(spring and dashpot in series) in parallel with a motor element (circle) exerting an actively 

generated stress . Right: energy expenditure per unit time  invested in mass turnover 

within the aorta for a range of assumed strain energy functions and energetic costs for the 

synthesis and degradation of collagen (where  is the minimal value achieved by 

each curve, respectively).
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Figure 4. 
Illustration of the unstable dilatation of an aorta in case of an abdominal aortic aneurysm 

over the course of several years. In [50] it was suggested that this unbounded enlargement 

could be interpreted as a mechanobiological instability.
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Figure 5. 
von Mises stress [kPa] in an aneurysm (right) that has grown in an initially healthy aorta 

(left) within 2700 days (reprinted from [94], copyright 2012, with permission from Elsevier)
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Figure 6. 
Finite element simulation of temporal evolution of sarcomere stretch in skeletal muscle after 

stepwise permanent lengthening: elastic stretch is nearly completely released by 

sarcomerogenesis between day 0 and 14 (reprinted from [96] under Creative Commons 

License [97]);
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Figure 7. 
Finite element simulation of skin growth in pediatric scalp reconstruction using a kinematic 

growth model (reprinted from [98], copyright 2013, with permission from Elsevier)

Cyron and Humphrey Page 33

Meccanica. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Shown is a G&R simulation of early thickening in glaucoma of the lamina cribrosa, a porous 

collagen structure through which axons pass. Such models can help explain experimental 

findings, as noted in the original paper (reprinted from [100], copyright 2012, with 

permission from Elsevier)
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Figure 9. 
Finite element simulation of radial strain in tissue engineered heart valves after load-driven 

remodeling (reprinted from [107], DOI 10.1016/j.jmbbm.2015.10.001, under Creative 

Commons license [97]);
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