An essential member of the HSP70 gene family of *Saccharomyces cerevisiae* is homologous to immunoglobulin heavy chain binding protein

(yeast/endoplasmic reticulum/evolution)

RICHARD C. NICHOLSON*, DAVID B. WILLIAMS, AND LAURENCE A. MORAN[†]

Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada

Communicated by Bruce M. Alberts, July 28, 1989

Immunoglobulin heavy chain binding protein ABSTRACT (BiP) is present in the lumen of the mammalian endoplasmic reticulum, where it associates transiently with a variety of newly synthesized secretory and membrane proteins or permanently with mutant proteins that are incorrectly folded. We describe a unique member of the Saccharomyces cerevisiae 70-kDa heat shock protein gene family (HSP70) that encodes a protein homologous to mammalian BiP. The DNA sequence contains a 2046-nucleotide open reading frame devoid of introns, and examination of the predicted amino acid sequence reveals features not found in most other yeast HSP70 proteins but which are present in BiP. Most notable are a 42-residue sequence at the N terminus that exhibits characteristics of a cleavable signal sequence and a C-terminal sequence, -His-Asp-Glu-Leu, that is involved in determining endoplasmic reticulum localization in yeast. The 5' flanking region of this gene contains two overlapping sequences between nucleotides 146 and -169 that closely resemble consensus heat shock elements. The yeast BiP gene is strongly heat shock-inducible, whereas the BiP genes in various other species are either weakly or non-heat-inducible. We demonstrate that a functional BiP gene is essential for vegetative growth. An evolutionary comparison of amino acid sequences of 34 HSP70 proteins from 17 species suggests that BiP genes share a common ancestor, which diverged from other HSP70 genes near the time when eukaryotes first appeared.

Members of the 70-kDa heat shock protein multigene family are among the most highly conserved genes known. Eukaryotic genomes contain several related members of this family. All of the proteins encoded by these genes probably interact with other cellular proteins and catalyze inter- and intramolecular rearrangements (folding) in a reaction that is probably coupled to hydrolysis of ATP (1, 2). Such enzymes have been referred to as molecular chaperones (3).

The most prominent members of the gene family are the genes encoding the so-called heat shock cognate proteins of 70 kDa (hsc70). Most eukaryotes have several hsc70 genes; and one or more of these genes is transcribed in all cells producing an abundant cytoplasmic protein. hsc70 catalyzes the uncoating of clathrin-coated vesicles by disrupting clathrin-clathrin interactions (4, 5), but this is undoubtedly only one of many similar activities that it carries out (6, 7).

The second class of HSP70 genes includes the classic heat-inducible genes after which the family is named. Most eukaryotic genomes contain several closely related members of this class of genes (8–10). Upon induction by stress, the \approx 70-kDa heat shock proteins (hsp70) concentrate in the nucleus and nucleolus, where they are likely to mediate protein repair or reassembly after stress damage (11).

The HSP70 gene family includes a gene that encodes a 78-kDa glucose-regulated protein (GRP78) also known as immunoglobulin heavy chain binding protein (BiP; refs. 1, 12, and 13). The product of the BiP gene is localized to the lumen of the mammalian ER, where it has been shown to associate transiently during the normal biogenesis of a variety of newly synthesized membrane and secretory proteins and permanently with underglycosylated or mutant proteins that fail to leave the ER (13-16). Mammalian BiP is synthesized constitutively, but its rate of synthesis can be enhanced by a variety of stress conditions including glucose starvation, inhibition of N-linked glycosylation, calcium ionophores, amino acid analogues, and overproduction of improperly folded proteins that accumulate in the ER, but not substantially by heat shock (12, 17-19). Based on these findings it has been proposed that BiP recognizes incorrectly folded proteins in the ER, preventing their aggregation and possibly promoting proper folding (1, 2).

We have sought to identify the gene[‡] encoding a protein homologous to BiP in *Saccharomyces cerevisiae* with the intention of generating mutants that may be useful in elucidating the function of this member of the HSP70 gene family.

MATERIALS AND METHODS

Strains. The S. cerevisiae strains used were: LL20 ($MAT\alpha$, leu2-3, leu2-112, his3-11, his3-15, can1), W3031A-H (MATa, can1-100, leu2-3, leu2-112, trp1-1, ura3-1, ade2-1), W3031B-T ($MAT\alpha$, can1-100, leu2-3, leu2-112, his3-11, ura3-1, ade2-1), and LP112-HT produced by mating W3031A-H and W3031B-T (20).

Isolation of the Yeast BiP Gene. A yeast (strain LL20) genomic library was provided by A. Percival-Smith and J. Segall (21). Six different recombinants were isolated from this library by screening for homology to a *Drosophila* HSP70 gene (22). Plasmid YG2C2 contained a single yeast HSP70 gene within a 18-kilobase (kb) insert of genomic DNA. Most of the sequence was determined by using a modification of the supercoiled template technique (23).

Gene Disruption. Plasmid YG2C2 was digested with Xho I and Xba I and the fragment, containing part of the 5' flanking region and most of the coding region of the BiP gene

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: BiP, immunoglobulin heavy chain binding protein; ER, endoplasmic reticulum; GRP78, glucose-regulated protein of 78 kDa (=BiP); hsp70, heat shock-induced protein of \approx 70-kDa; hsc70, heat shock cognate protein of 70-kDa (the major constitutively expressed protein); HSP70, the gene family to which hsp70, hsc70, and BiP belong.

^{*}Present address: Laboratoire de Genetique Moleculaire des Eucaryotes, Institut de Chimie Biologique, 11 rue Humann, 67085 Strasbourg Cedex, France.

[†]To whom reprint requests should be addressed.

[‡]The sequence reported in this paper has been deposited in the GenBank data base (accession no. M31006).

(nucleotides -243 to 1783 in Fig. 1), was subcloned into pUC13 and designated YG2C2SX. Subsequently, the 0.68-kb *Bgl* II fragment within the coding region was removed and replaced with a 3.0-kb *Bgl* II fragment carrying the *LEU2* gene. The disrupted BiP gene was excised from the plasmid and used for integrative transformations of both diploid (LP112-HT) and haploid (W3031A-H and W3031B-T) strains by the spheroplast method (24).

RESULTS AND DISCUSSION

Identification and Characterization of the Yeast BiP Gene. In the yeast S. cerevisiae, the HSP70 gene family has been extensively characterized by E. Craig and her co-workers; they have isolated eight members of the family (25-27). We have independently detected and cloned five members of the yeast HSP70 gene family by screening a genomic library with a Drosophila hsp70 gene probe. One of these genes (contained on plasmid YG2C2) was shown to be a single-copy gene not closely related to the other members of the family (22). Transcripts of this gene are present at a low level during optimal growth temperature (28°C) but increase dramatically (5- to 10-fold) after transfer of the cells to the stress temperature (42°C) (data not shown). The entire sequence of this gene is shown in Fig. 1.

A long open reading frame begins at the indicated ATG (underlined, nucleotide +40) and continues, without introns, for 2046 nucleotides. The hypothetical protein encoded by this gene has a predicted molecular mass of 74,400 daltons. The 5' flanking sequence of this HSP70 gene contains up-

-591																
-595	ARCEL		000						-				~	-	A	TICA
-505	mmmon	IAAI	GCI	IGAGO	AGAI	GCA	ACA	TATA	CACO	GTT	TACA	GTAA	CATA	TAGA	GTAA	TGTC
-520	TTTG	ACAC	GTC	ACA	CTCC	TCGC	GAGO	CCAP	CATC	GCC	TGAT	CTG	ATCG/	TCCC	CATO	AACT
-455	CAGCI	ATGTO	CTAC	CTCC	GTT	ATG	ACTTO	STTCO	STATO	GTTO	ATGO	CATA	AGCC	ATCA	CCTO	GCCA
-390	GTTG	SCGT	ATGT/	ACAA	GATO	CAA	SCTA	CGG	GTCI	CATO	GTGG	TCAN	GAGO	GTAT	CTAC	CCAA
-325	> ACGGACAGCTGTCCTCATATGTTTAATATGCTGCATAGTGTGAGAGTCCTCTAAGAAAAATGGCG															
-260	TCGGTGGTCGGCGAACTCGAGCAAAGTGTAGATCCCATTAGGACTCATCATTCAT															
-195	5 TATGTTAGCTGCAACTTTCTATTTTAATAGAACCTTCTGGAAATTTCACCCGGCGCGCGC															
-130	130 GGAACTGGACAGCGTGTCGAAAAAGTTGCTTTTTTTTTT															
-65 AGATATAAATATGGCTATGTAATTCTAAAGATTAACGTGTTACTGTTTTACTTTTTAAAGGCTATGCC																
+1	+1 CAAGAGTAGTCTCAAGGGAAAAAGCGTATCAAACATACC ATG TTT TTC AAC AGA CTA															
58	AGC	CCT	coc	ANG	CTG	CTC	CTN CTN	CCA	CTC	TCC	CTC	CTC	CTC	TAC	CCC	CIR
106	TTC	CTC	CEN	303	010	CIG	GIA	CUA	210	mom	GIG mmo	GIC	mag	TAC	SCC.	
164	110	GIG	JOIN	AIA	114	CUT	11A	CAG	AAT	TCT	TIC	CAC	TCC	TCC	AAT	GTT
1.54	114	GIT	AGA	GGT	GCC	GAT	GAT	GTA	GAA	AAC	TAC	GGA	ACT	GTT	ATC	GGT
202	ATT	GAC	TTA	GGT	ACT	ACT	TAT	TCC	TGT	GTT	GCT	GTG	ATG	AAA	AAT	GGT
250	AAG	ACT	GAA	ATT	CTT	GCT	AAT	GAG	CAA	GGT	AAC	AGA	ATC	ACC	CCA	TCT
298	TAC	GTG	GCA	TTC	ACC	GAT	GAT	GAA	AGA	TTG	ATT	GGT	GAT	GCT	GCA	AAG
346	AAC	CAA	GTT	GCT	GCC	AAT	CCT	CAA	AAC	ACC	ATC	TTC	GAC	ATT	AAG	AGA
394	TTG	ATC	GGT	TTG	AAA	TAT	AAC	GAC	AGA	TCT	GTT	CAG	AAG	GAT	ATC	AAG
442	CAC	TTG	CCA	TTT	AAT	GTG	GTT	AAT	AAA	GAT	GGG	AAG	CCC	GCT	GTA	GAA
490	GTA	AGT	GTC	AAA	GGA	GAA	AAG	AAG	GTT	TTT	ACT	CCA	GAA	GAA	ATT	TCT
538	GGT	ATG	ATC	TTG	GGT	AAG	ATG	222	CAA	ATT	CCC	GAA	GAT	TAT	TTA	coc
586	ACT	ANG	GTT	ACC	CAT	CCT	GTC	CTT	ACT	GTT	CCT	COT	TAT	TAL	220	CNC
634	CCC	CNA	ACA	CNN	CCC	ACC	NAC.	CNT	COT	CCT	2001	NTC N	COR	200	MMC	UNC NO
6034	COD	mmo	AGA	200	GCC	ACC	AAG	GAI	GCI	GGI	ACC	AIC	GCT	GGT	116	AAC
720	GII	TIG	AGA	ATT	GTT	AAT	GAA	CCA	ACC	GCA	GCC	GCC	ATT	GCC	TAC	GGT
/30	TTG	GAT	AAA	TCT	GAT	AAG	GAA	CAT	CAA	ATT	ATT	GTT	TAT	GAT	TTG	GGT
//8	GGT	GGT	ACT	TTC	GAT	GTC	TCT	CTA	TTG	TCT	ATT	GAA	AAC	GGT	GTT	TTC
826	GAA	GTC	CAA	GCC	ACT	TCT	GGT	GAT	ACT	CAT	TTA	GGT	GGT	GAA	GAT	TTT
874	GAC	TAT	AAG	ATC	GTT	CGT	CAA	TTG	ATA	AAA	GCT	TTC	AAG	AAG	AAG	CAT
922	GGT	ATT	GAT	GTG	TCT	GAC	AAC	AAC	AAG	GCC	CTA	GCT	AAA	TTG	AAG	AGA
970	GAA	GCT	GAA	AAG	GCT	AAA	CGT	GCC	TTG	TCC	AGC	CAA	ATG	TCC	ACC	CGT
1018	ATT	GAA	ATT	GAC	TCC	TTC	GTT	GAT	GGT	ATC	GAC	TTA	AGT	GAA	ACC	TTG
1066	ACC	AGA	GCT	AAG	TTT	GAG	GAA	TTA	AAC	CTA	GAT	CTA	TTC	AAG	AAG	ACC
1114	TTG	AAG	CCT	GTC	GAG	AAG	GTT	TTG	CAA	GAT	TCT	GGT	TTG	GAA	AAG	AAG
1162	GAT	GTT	GAT	GAT	ATC	GTT	TTG	GTT	GGT	GGT	TCT	ACT	AGA	ATT	CCA	AAG
1210	GTC	Chh	CAA	TTG	TTA	CAA	TCA	TAC	TTT	CAT	COT	MG	MG	600	TCC	MC
1258	COT	3.77	AAC	CC3	CAT	GNA	COT	CTT	CCN	TAC	COT	CCA	CCC	CTT	222	COT
1206	001	CTC	mma	TCC	COR	CNA	GCI	CCT	GUA	CNN	CM	3 mm	GUU	011	mmo	GUI
1254	001	and and		mmc	301	ORA	GAA	3001	GIC	JAA NO	SAI	A11	GII	11A	110	NORI
1354	GTC	AAC	GCT	TTG	ACT	CTT	GGT	ATT	GAA	ACC	ACT	GGT	GGT	GTC	ATG	ACT
1402	CCA	TTA	ATT	AAG	AGA	AAT	ACT	GCT	ATT	CCT	ACA	AAG	AAA	TCC	CAA	ATT
1450	TTC	TCT	ACT	GCC	GTT	GAC	AAC	CAA	CCA	ACC	GTT	ATG	ATC	AAG	GTA	TAC
1498	GAG	GGT	GAA	AGA	GCC	ATG	TCT	AAG	GAC	AAC	AAT	CTA	TTA	GGT	AAG	TTT
1546	GAA	TTA	ACC	GGC	ATT	CCA	CCA	GCA	CCA	AGA	GGT	GTA	CCT	CAA	ATT	GAA
1594	GTC	ACA	TTT	GCA	CTT	GAC	GCT	AAT	GGT	ATT	CTG	AAG	GTG	TCT	GCC	ACA
1642	GAT	AAG	GGA	ACT	GGT	AAA	TCC	GAA	TCT	ATC	ACC	ATC	ACT	AAC	GAT	AAA
1690	GGT	AGA	TTA	ACC	CAA	GAA	GAG	ATT	GAT	AGA	ATG	GTT	GAA	GAG	GCT	GAA
1738	AAA	TTC	GCT	TCT	GAA	GAC	GCT	TCT	ATC	AAG	GCC	AAG	GTT	GAA	TCT	AGA
1786	AAC	AAA	TTA	GAA	AAC	TAC	GCT	CAC	TCT	TTG	AAA	AAC	CAA	GTT	AAT	GGT
1834	GAC	CTA	GGT	GAA	AAA	TTG	GAA	GAA	GAA	GAC	AAG	GAA	ACC	TTA	TTA	GAT
1882	GCT	GCT	AAC	GAT	GTT	TTA	GAA	TGC	TTA	GAT	GAT	AAC	TTT	GAA	ACC	GCC
1930	ATT	GCT	GAA	GAC	TTT	GAT	GAA	ANG	TTC	GAA	TCT	TTC	TCC	AAG	GTC	GCT
1070	ጥልጥ	001	አጥጥ	ACT	TOT	ANC	TTC	TAC	662	COT	101	C3.T	000	TOT	010	GCC
2026	COT	GAT	-	GAC	GAC	GNA	CAT	CNA	CAT	GAC	CAT	COT	CAT	T . T	770	CAA
2020	GCT	GAT	CAR	GAC	TAC	A TRUE	AAA	A no	GAT AAAA	2010	UAI TTCC	TCOM	GAT	CODE	ric	GAA

FIG. 1. Sequence of the yeast BiP gene. The two overlapping heat shock elements beginning at -169 are underlined. There are two TATA homologies at -96 and -62 (boldface). The unique transcription start site (+1) occurs at CAAG. The open reading frame begins at the first ATG (+40). A potential transcription termination signal at the 3' end of the gene is indicated. This signal includes the termination codon (TAG) of the long open reading frame.

stream regulatory sequences known as heat shock elements (28, 29). Between nucleotides -146 and -169 there are two overlapping regions that match the heat shock element consensus sequence (C--GAA--TTC--G) in seven of eight nucleotides.

The DNA sequence shows two TATA homologies at positions -56 to -62 and -89 to -96. However, only a single transcriptional start site occurs *in vivo* (nucleotide +1) as determined by S1 nuclease digestion of DNA·RNA hybrids (not shown). In yeast cells, Zaret and Sherman (30) have proposed a consensus sequence of TAG. . . TAGT. . . (ATrich)TTT as a transcription termination signal in some genes. This gene contains an exact match to the proposed consensus sequence beginning at the stop codon TAG (nucleotide 2086).

The predicted amino acid sequence of the protein encoded by the yeast HSP70 gene that we have cloned is compared directly to the amino acid sequence of rat BiP, the amino acid sequence of yeast hsc70A1 (product of the SSA1 gene), and the consensus HSP70 sequence (Fig. 2). Small deletions (indicated by dashed lines) have been inserted in these sequences to maximize homology. The boxed regions of homology indicate that the gene we have isolated encodes a protein that is closely related to both the yeast hsc70A1 sequence and that of rat BiP. The homology to rat BiP is greater than that to the other yeast gene, although the differences are not striking. From amino acid 4 to the C terminus, the amino acid sequence is identical to rat BiP in 421 positions, compared with only 394 amino acids in common with the other yeast gene. The rat BiP and yeast hsc70A1 sequences, on the other hand, are identical at 404 positions.

A survey of 33 HSP70-related protein sequences from 17 species shows that the gene we have isolated and the rat and hamster BiPs share characteristics not common in other HSP70s. For example, most reported HSP70 protein sequences show a common, highly conserved, stretch of amino acids, Gly-Ile-Asp-Leu-Gly-Thr-Thr-Tyr-Ser-Cys-Val, which begins a few residues from the N terminus, but the predicted protein sequence of the gene that we have cloned contains an unusually long amino acid sequence (53 amino acids) preceding this highly conserved sequence. We suspect that a portion of this is a hydrophobic leader sequence found in many examples of proteins that are translocated across the membrane of the ER (32), including mammalian BiP (12). The N-terminal extensions of the yeast gene product and rat BiP, although quite different in length, share several features (Fig. 2). They both contain one or more basic amino acid residues near the N terminus, they both have a stretch of hydrophobic amino acids near the middle of the extension followed by basic residue(s) and then a group of acidic amino acids. Finally, both extensions contain the triplet Gly-Thr-Val immediately prior to the highly conserved sequence noted above. This triplet is not observed in this location in any other members of the gene family. The predicted cleavage sites for the leader sequence of rat BiP (residue 18; ref. 12) and for the yeast gene product (residue 42; see ref. 32) are shown in Fig. 2.

We have noted other differences between BiP sequences and those of the other members of the HSP70 family. For example, the highly conserved tryptophan-87 in most HSP70s is replaced by leucine in BiPs (the only other protein that does not have tryptophan at this position is the yeast hsc70A1 shown in Fig. 2). In the region from amino acid 232 to amino acid 298, the BiP sequence diverges from that of other HSP70s, but the putative yeast BiP and the rat BiP are more similar to each other than to the yeast hsc70A1 or the consensus sequence in this region. Secondary structure predictions suggest that in most HSP70s, this region is an extended α -helix with nine heptad repeats where the first and fourth amino acids are hydrophobic. Such sequences are likely to form coiled coils and are found in many multimeric structural proteins, including clathrin light and heavy chains and inter-

FIG. 2. Hypothetical amino acid sequences of several HSP70 genes. The consensus sequence in lines C was determined by comparing all known HSP70 sequences and choosing the amino acid that was most commonly found when different groups of proteins were examined (i.e., all mammalian hsp70 and hsc70 sequences count as a single group, thus avoiding the usual nonscientific bias towards the numerous mammalian sequences that have been determined). The predicted sequence from the longest open reading frame in Fig. 1 is shown in lines (-). The rat BiP gene sequence (12) is shown in lines r; the yeast gene SSA1 sequence (9, 10, 31) is shown in lines y. The sequences have been aligned for maximal homology based on the analysis of all available sequences. The boxed areas indicate that identical amino acids are present in at least two of the sequences. Dots designate residues that are identical to the consensus sequence. Amino acid positions are numbered with reference to the Drosophila HSP70 sequences of the gene at locus 87C until amino acid 550, where the numbering system corresponds to the consensus sequence. Gaps in all four sequences represent regions where insertions are present in other HSP70 genes. The standard single letter amino acid abbreviations are used except that "X" in the consensus sequence stands for any amino acid. Arrowheads indicate the predicted cleavage sites of the N-terminal leader sequence.

mediate filaments (33). The short sequence Ser-Glu-Thr-Leu (amino acids 291–294) appears to be a good indicator of BiP homology because it is not found in any other HSP70 protein and is present in the putative *Plasmodium* BiP (34).

The C-terminal amino acid sequence of the putative yeast BiP protein shows no similarity with the analogous sequence in yeast hsc70A1 or the consensus sequence (Fig. 2), but a comparison of this region with rat BiP shows remarkable homology. Five of the last eight amino acids in each of these proteins are identical. The three nonidentical amino acids represent relatively conservative changes. The rat BiP Cterminal sequence Lys-Asp-Glu-Leu has been implicated in the ER localization of the protein (35), and the analogous sequence His-Asp-Glu-Leu present in the putative yeast BiP has recently been shown to have the same effect when linked to the C terminus of invertase (36). This feature, in combination with the N-terminal extension, most clearly distinguishes BiPs from the other HSP70 family members and suggests that yeast BiP may also be localized to the lumen of the endoplasmic reticulum. These unique amino acids and the overall homology of our yeast gene to BiP suggest that the gene we have cloned corresponds to yeast BiP and that the BiP genes have evolved independently of the other members of the HSP70 gene family.

Disruption of the Yeast BiP Gene. To determine whether the yeast BiP gene is essential, we constructed a plasmid in which the *Bgl* II fragment within the coding region of the gene was replaced by the yeast *LEU2* gene (Fig. 3). A restriction fragment containing the disrupted gene from this plasmid was used in integrative transformations to replace the wild-type gene. The diploid strain LP112-HT as well as the haploid strains, W3031A-H (*MATa*) and W3031B-T (*MATa*), were used as transformation recipients with selection for leucine prototrophy. No transformants were obtained with the haploid strains, suggesting that a complete copy of the gene is essential

FIG. 3. Disruption of the yeast BiP gene. (Lower Left) DNA from untransformed diploid cells (lane 1) and diploid cells transformed with the disrupted BIP gene (lanes 2–7) were probed with nicktranslated plasmid YG2C2SX. (Lower Right) Transformants were sporulated and 19 asci were dissected. Shown are results of tetrad analysis of 13 of the asci (spores numbered 1–4; colonies were grown on nutrient-rich plates).

for viability following transformation. The genomes of several independently isolated diploid transformants were analyzed for the presence of a new 7-kb *Hin*dIII fragment that would indicate that one of the endogenous genes had been disrupted. The results, shown in Fig. 3, revealed that the probe hybridized to three fragments, a 3.8-kb fragment and a 1.25-kb fragment originating from the wild-type gene, and the expected 7-kb fragment derived from the disrupted gene. Thus, insertion occurred at one of the two allelic wild-type loci.

Several transformed diploid strains were induced to sporulate to assess the effects of a disrupted BiP gene in haploid cells. Upon dissection of 19 tetrads, only one or two viable spores were recovered per tetrad (Fig. 3). Furthermore, all viable spores gave rise to colonies that were leucine auxotrophs, demonstrating that the disrupted gene carrying the *LEU2* marker cosegregated with the nonviable phenotype. Microscopic examination of the nonviable spores showed that no cell divisions had occurred. This is unlike the result obtained with the only other yeast HSP70 gene shown to be essential (*SSC1*), where residual protein in the haploid spore may be sufficient for several cell divisions (26). The viability of haploid cells containing the disrupted BiP gene has been restored by rescue with a centromere-containing plasmid possessing a complete copy of the intact gene (not shown). This rescue confirms that the disruption of the BiP gene is responsible for nonviability as opposed to some other alteration outside of the gene that may have occurred during cloning or transformation. We conclude that the yeast BiP gene is essential for growth under the conditions used in the experiment. The yeast BiP gene also has been isolated by M. Rose and by M.-J. Gething and J. Sambrook (see ref. 37); it is identical to the KAR2 gene.

There are at least nine members of the yeast HSP70 gene family (see ref. 37). Three of these, including the gene we have sequenced, are unique members of the family. One of these unique members, SSC1, is essential for normal growth, whereas another, SSD1, is not (26). The closely related pair of HSP70 genes, SSB1 and SSB2, encode hsc70-like proteins, and deletion of either one of them has no effect on cell growth. Disruption of both genes on the other hand renders yeast cells cold sensitive (25). The remaining genes, SSA1-SSA4, are a closely related group of genes whose products are functionally similar, and disruption of three of these genes is lethal (37). These results in combination with our current findings suggest that the SSC1 gene, the SSB1/SSB2 pair, the SSA group, and the gene for BiP each encode proteins with distinct functions and/or cellular locations in spite of their close relatedness.

FIG. 4. Comparison of HSP70related proteins. The diagram was derived from pairwise comparisons of all available sequences by using the minimum distances that were internally consistent. The length of each horizontal line corresponds to the number of amino acid differences between proteins from amino acids 3-610. The vertical lines are arbitrary. In many cases published sequences have been corrected and updated but the relationships shown here should be considered tentative because of the high probability of sequencing errors and cloning artifacts. The approximate time of divergence of some species is shown at the bottom of the dendrogram. Contact one of the authors (L.A.M.) for an annotated version of the data base with complete references.

Pelham (1) has suggested that heat shock proteins in general bind to proteins with exposed hydrophobic surfaces to limit their aggregation. The energy of ATP hydrolysis is then used to alter the conformation of the protein, releasing it from its substrate and simultaneously distorting the substrate (1). In yeast, hsc70 proteins have a specialized function in the cytosol; they promote the translocation of proteins through the ER and mitochondrial membranes, possibly by maintaining newly translated proteins in a relaxed conformation (6, 7, 38). They also play a role in uncoating clathrin-coated vesicles (4, 5). The SSC1 gene product is located in mitochondria, where it may promote disaggregation and proper folding of mitochondrial proteins subsequent to translocation (37). Similarly, yeast BiP probably catalyzes analogous reactions in the ER.

Species Variation of hsp70 Primary Structure. We have compared the amino acid sequence of yeast BiP with that of 33 other complete or partial sequences of related proteins. The relationships shown in Fig. 4 resemble a phylogenetic tree, but we prefer to call this diagram a sequence relationship dendrogram, since we have not included time (of species divergence) as a parameter. We have not attempted to correct for multiple substitutions at the same site, and we have not taken into account synonymous nucleotide substitutions, since only the amino acid sequence was analyzed. True phylogenetic relationships and mutation rates require complex manipulation of nucleotide sequence data, and the theoretical justification of these manipulations is not strong when inter-kingdom comparisons are made. In particular, extreme differences in codon bias ("A/T pressure") between different kingdoms complicate such comparisons.

The sequence relationship dendrogram shown in Fig. 4 reveals several interesting sequence relationships. As expected, yeast BiP protein is most closely related to the rat, hamster, and *Plasmodium* BiPs (12, 33, 39). Furthermore, the amino acid sequences of these four proteins are quite distantly related to all other sequences. Thus, the yeast, rat, hamster, and *Plasmodium* genes are likely to be orthologous, and presumably the first eukaryotes contained a gene from which BiP evolved independently of the other HSP70 genes. This hypothesis is consistent with the concept that selection in favor of organisms with internal membrane compartments required concomitant duplication of an ancestral HSP70 gene and subsequent divergence when the products of each gene became localized to either cytoplasmic (hsc70/hsp70) or ER (BiP) compartments.

The data in Fig. 4 also show that the other sequenced yeast HSP70 genes can be grouped into two pairs that are distantly related to each other. This observation suggests that early yeast ancestors contained at least three different members of the HSP70 multigene family. Furthermore, the dendrogram suggests that all of the known vertebrate proteins, with the exception of BiP, are closely related to each other; apparently they arose from a common ancestor after the evolution of the first chordates (although gene conversion between parologous genes could account for the observed similarities). These vertebrate proteins can be roughly divided into two groups; those that are related to the rat hsc70 protein and those more closely related to the mouse and human hsp70/ hsp68 proteins. The hsc70-like group contains proteins that are major components of normal cells (rat hsc70, mouse hsc70), others that are developmentally regulated (mouse hsc70B, testis specific), and proteins that are only synthesized in response to stress (chicken and trout 70.14). Thus, closely related HSP70 genes can be regulated in different ways. The fact that the yeast BiP gene is strongly heat inducible whereas the rat, hamster, and human BiP genes are either weakly inducible or unaffected by heat shock shows

that the sequences that regulate expression are not as conserved as the coding region.

Note Added in Proof. The yeast BIP gene has been characterized independently by M. D. Rose *et al.* (40) and K. Normington *et al.* (41).

We thank Tony Percival-Smith and Jacqueline Segall for the yeast genomic library and David Law for his advice on constructing the strain containing the disrupted gene. This work was supported by grants from the Medical Research Council of Canada. D.B.W. is a Scholar of the Medical Research Council of Canada.

- 1. Pelham, H. R. B. (1986) Cell 46, 959-961.
- 2. Pelham, H. (1988) Nature (London) 332, 776-777.
- 3. Ellis, R. J. (1987) Nature (London) 328, 378-379.
- Chappell, T. G., Welch, W. J., Schlossman, D. M., Palter, K. B., Schlesinger, M. J. & Rothman, J. C. (1986) Cell 45, 3-13.
- Ungewickell, E. (1985) *EMBO J.* 4, 3385–3391.
 Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A.
- & Shekman, R. (1988) Nature (London) 332, 800-805. 7. Chirico, W. J., Waters, M. G. & Blobel, G. (1988) Nature (London)
- 332, 805-810.
 Noidhardt E C. Van Basslan, D. A. & Vansha, V. (1994) Annual
- Neidhardt, F. C., Van Bogelen, R. A. & Vaughn, V. (1984) Annu. Rev. Genet. 18, 295-329.
- 9. Craig, E. A. (1985) CRC Crit. Rev. Biochem. 18, 239-280.
- 10. Lindquist, S. (1986) Annu. Rev. Biochem. 55, 1151-1191.
- 11. Craig, E. A. & Lindquist, S. (1988) Annu. Rev. Genet. 22, 631-677.
- 12. Munro, S. & Pelham, H. R. B. (1986) Cell 46, 291-300.
- Bole, D. G., Hendershot, L. M. & Kearney, J. F. (1986) J. Cell Biol. 102, 1558–1566.
- Gething, M.-J., McCammon, K. & Sambrook, J. (1986) Cell 46, 939–950.
- Dorner, A. J., Bole, D. G. & Kaufman, R. J. (1987) J. Cell Biol. 105, 2665–2674.
- Kassenbrock, C. K., Garcia, P. D., Walter, P. & Kelly, R. B. (1988) Nature (London) 333, 90–93.
- 17. Lee, A. S. (1987) Trends Biochem. Sci. 12, 20-23.
- 18. Kelley, P. M. & Schlesinger, M. J. (1978) Cell 15, 1277-1286.
- Kozutsumi, Y., Segal, M., Normington, K., Gething, M.-J. & Sambrook, J. (1988) Nature (London) 332, 462–464.
- 20. Law, D. T. S. & Segall, J. (1988) Mol. Cell. Biol. 8, 912-922.
- 21. Percival-Smith, A. & Segall, J. (1984) Mol. Cell. Biol. 4, 142-150.
- 22. Nicholson, R. C. (1986) Ph.D. Thesis (Univ. of Toronto, Toronto,
- ON).
 23. Haltiner, M., Kempe, T. & Tijian, R. (1985) Nucleic Acids Res. 13, 1015-1025.
- 24. Hinnen, A., Hicks, J. B. & Fink, G. B. (1978) Proc. Natl. Acad. Sci. USA 75, 1929–1933.
- 25. Craig, E. A. & Jocobson, K. (1985) Cell 38, 841-849.
- Craig, E. A., Kramer, J. & Kosic-Smithers, J. (1987) Proc. Natl. Acad. Sci. USA 84, 4156-4160.
- Craig, E. A., Slater, M. R., Stone, D. E., Park, H. O. & Boorstein, W. R. (1987) in *RNA Polymerase and the Regulation of Transcription*, 16th Steenbock Symposium, eds. Reznikoff, W. S., Burgess, R. R., Dahlberg, J. E., Gross, C. A., Record, M. T., Jr., & Wickens, M. R. (Elsevier, New York), pp. 267-278.
- 28. Pelham, H. R. B. (1982) Cell 30, 517-528.
- 29. Pelham, H. R. B. (1985) Trends Genet. 1, 31-35.
- 30. Zaret, K. S. & Sherman, F. (1982) Cell 28, 563-573.
- Ingolia, T. D., Slater, M. R. & Craig, E. A. (1982) Mol. Cell. Biol. 2, 1388-1398.
- 32. Von Heijne, G. (1985) J. Mol. Biol. 183, 99-105.
- Jackson, A. P., Seow, H.-F., Homles, N., Drickamer, K. & Parnham, P. (1987) Nature (London) 326, 154-159.
- Peterson, M. G., Crether, P. E., Thompson, J. K., Corcoran, L. M., Coppel, R. L., Brown, G. V., Anders, R. F. & Kemp, D. J. (1988) DNA 7, 71–78.
- 35. Munro, S. & Pelham, H. R. B. (1987) Cell 48, 899-907.
- Pelham, H. R. B., Hardwick, K. G. & Lewis, M. J. (1988) EMBO J. 7, 1757–1762.
- Deshaies, R. J., Koch, B. D. & Scheckman, R. (1988) Trends Biochem. Sci. 13, 384–388.
- Murakami, H., Pain, D. & Blobel, G. (1988) J. Cell Biol. 107, 2051–2057.
- Ting, J., Wooden, S. K., Kriz, R., Kelleher, K., Kaufman, R. J. & Lee, A. S. (1987) Gene 5, 147–152.
- 40. Rose, M. D., Misra, L. M. & Vogel, J. P. (1989) Cell 57, 1211-1221.
- 41. Normington, K., Kohno, K., Yasunori, K., Gething, M.-J. & Sambrook, J. (1989) Cell 57, 1223–1236.