
Macroautophagy, more commonly referred to simply as 
autophagy, is a fundamental cellular process in eukary­
otes that is essential for responding and adapting to 
changes in the environment. In its most common form, 
autophagy involves sequestration of cytosolic material 
within a double-membrane-bound vesicle, termed the 
autophagosome, and the subsequent fusion of the auto­
phagosome with endolysosomal vesicles leads to deg­
radation and recycling of the sequestered substrates. 
A crucial function of autophagy is to breakdown macro­
molecules such as proteins to provide amino acids and 
other factors necessary to generate energy and synth­
esize new proteins. The ability to capture large material 
distinguishes this pathway from proteasomal degra­
dation, making autophagy necessary for maintaining 
cellular homeostasis in a variety of settings. Many of 
the substrates found within autophagosomes are those 
that threaten cell viability, such as damaged organelles, 
protein aggregates and intracellular pathogens.

Although autophagosomes are detected under 
steady-state conditions, their generation is increased 
substantially in response to stressors, of which nutrient 
deprivation is the best characterized. Depletion of amino 
acids or growth factors induces autophagy by inhibiting 
mechanistic target of rapamycin complex 1 (mTORC1), 
a master regulator of metabolism that inhibits the ULK1 
autophagy complex through phosphorylation under 
nutrient replete conditions (BOX 1). Once freed from 
inhibition, the ULK1 complex phosphorylates beclin 1 to 

activate the phosphoinositide 3‑kinase catalytic subunit 
type III (PI3KC3) complex1, which creates phosphatidyl­
inositol‑3‑phosphate (PtdIns3P)-rich subdomains at 
regions associated with the endoplasmic reticulum (ER), 
such as the ER–Golgi intermediate compartment or ER–
mitochondria contact sites2,3. PtdIns3P‑binding proteins 
then recruit the ATG16L1 complex to this autophago­
some precursor site (known as the isolation membrane)4. 
The ATG16L1 complex anchors the ubiquitin- 
like molecule LC3 to the lipid bilayer by conjugating 
LC3 to phosphatidylethanolamine (PE) (BOX 1). Next, 
the LC3–PE complex mediates membrane tethering and 
fusion to extend the isolation membrane by recruiting 
lipids, which are likely to be derived from multiple mem­
brane sources, including endosomal vesicles harbour­
ing the transmembrane protein ATG9L1. The growing 
isolation membrane eventually fuses with itself to form 
the enclosed double-membrane structure, and class C 
vacuolar protein sorting (VPS) and SNARE-like proteins 
mediate fusion with endolysosomal vesicles leading to 
the degradation and recycling of the contents.

In this article, the function and regulation of auto­
phagy in the context of inflammatory signals is reviewed. 
It is now appreciated that autophagy is critical to both 
cell-autonomous defence and multicellular immunity, 
and autophagy dysfunction appears to be a recurring 
theme in inflammatory disease. First, the general func­
tions of autophagy in immunity are summarized. The 
focus of the second section is on specific modes of 
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Autophagy
An evolutionarily  
conserved process in which 
double-membrane vesicles 
sequester intracellular contents 
(such as damaged organelles 
and macromolecules) and 
target them for degradation 
through fusion with lysosomes.
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Abstract | Autophagy has broad functions in immunity, ranging from cell-autonomous defence to 
coordination of complex multicellular immune responses. The successful resolution of infection 
and avoidance of autoimmunity necessitates efficient and timely communication between 
autophagy and pathways that sense the immune environment. The recent literature indicates 
that a variety of immune mediators induce or repress autophagy. It is also becoming increasingly 
clear that immune signalling cascades are subject to regulation by autophagy, and that a return 
to homeostasis following a robust immune response is critically dependent on this pathway. 
Importantly, examples of non-canonical forms of autophagy in mediating immunity are pervasive. 
In this article, the progress in elucidating mechanisms of crosstalk between autophagy and 
inflammatory signalling cascades is reviewed. Improved mechanistic understanding of the 
autophagy machinery offers hope for treating infectious and inflammatory diseases.
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Xenophagy
A cell-intrinsic defence 
mechanism involving the 
selective degradation of 
microorganisms (such as 
bacteria, fungi, parasites  
and viruses) through an 
autophagy-related mechanism.

Sequestosome 1
(SQSTM1). A prototypical 
adaptor protein that targets 
ubiquitylated proteins for 
selective autophagy by  
binding ubiquitin and LC3. 
Through incorporation into  
the autophagosome, SQSTM1 
itself becomes a substrate for 
autophagic degradation.

intersection between autophagy and immune pathways, 
specifically signalling pathways downstream of innate 
immune sensors. The third section provides examples 
of how these mechanisms contribute to multicellu­
lar immune responses, with an emphasis on adaptive 
immunity and inflammatory disease. Finally, the barriers 
for targeting the autophagy pathway to treat disease 
are discussed.

The role of autophagy in immunity
Autophagy can eliminate an infectious threat by 
promoting a form of autophagy termed xenophagy, 
whereby intracellular pathogens such as viruses, bac­
teria and protozoa are trapped within an autophago­
some and targeted to the lysosome for destruction. 
Xenophagy depends on adaptor molecules that crosslink 

pathogens with the autophagy machinery. For instance,  
sequestosome 1 (SQSTM1; also known as p62), nuclear 
domain 10 protein NDP52, optineurin (OPTN) and 
TAX1‑binding protein 1 (TAX1BP1) bind LC3, in con­
junction with host molecules associated with damaged 
Salmonella-containing vacuoles, including ubiquitin and 
galectin 8 (REF. 5). These binding events allow the isola­
tion membrane to grow around the bacteria, resulting in 
its sequestration within the autophagosome. One of the 
most compelling evidence that autophagy is an impor­
tant cell-intrinsic defence mechanism is that many inva­
sive pathogens encode virulence factors that counteract 
the pathway, as exemplified by the LC3‑deconjugating 
enzyme RavZ secreted by Legionella pneumophila6. Also, 
enteroviruses can use autophagy to provide a membrane 
coat that enhances cell‑to‑cell spread7.

Box 1 | Autophagosome biogenesis and autophagy-related proteins

The generation of the autophagosome is mediated by the sequential 
activities of three key protein complexes: the ULK1 complex (comprising 
ULK1, FIP200, ATG13 and ATG101), the phosphoinositide 3‑kinase catalytic 
subunit type III (PI3KC3) complex (comprising beclin 1, vacuolar protein 
sorting 34 (VPS34), VPS15 and ATG14L), and the ATG16L1 complex 
(comprising ATG16L1, ATG5 and ATG12). Inhibition of mechanistic target 
of rapamycin complex 1 (mTORC1), such as through nutrient deprivation, 
allows the ULK1 complex to activate the PI3KC3 complex (see the figure). 
Following the creation of phosphatidylinositol‑3‑phosphate (PtdIns3P)-rich 
regions on the surface of the endoplasmic reticulum (ER)–Golgi 
intermediate compartment or other membranes, the ATG16L1 complex is 
recruited by the PtdIns3P‑binding protein WIPI2 to the autophagosome 
precursor structure (that is, the isolation membrane). The ATG16L1 complex 

is generated through an ubiquitin-like (UBL) conjugation reaction in which 
the UBL molecule ATG12 is conjugated to ATG5 by the sequential action of 
ATG7 and ATG10. ATG16L1 non-covalently binds the ATG5–ATG12 
conjugate to form a multimeric complex. In parallel, another UBL molecule, 
LC3, is processed by the ATG4 protease and subjected to a second UBL 
conjugation reaction involving ATG7 and ATG3. The ATG16L1 complex 
conjugates LC3 and phosphatidylethanolamine (PE) to complete the 
reaction. LC3–PE mediates membrane tethering and fusion to extend 
the isolation membrane by recruiting membranes from multiple sources, 
eventually leading to self-fusion and the formation of the autophagosome. 
Subsequent fusion with the lysosome, mediated by class C vacuolar 
protein sorting (VPS) and SNARE-like proteins (not shown), leads to the 
degradation of the sequestered substrates.
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Some pathogens are neutralized by non-canonical 
functions of the autophagy machinery, herein referred 
to as ‘non-canonical autophagy’ (BOX 2). For instance, 
LC3‑associated phagocytosis (LAP) mediates phagosome 
maturation and requires many of the same proteins as 
conventional autophagy, but it occurs independently 
of autophagosome formation8. Another form of non-
canonical autophagy induced by interferon‑γ (IFNγ) 
restricts the replication of norovirus and Toxoplasma 
gondii in macrophages in a lysosome-independent man­
ner9–11. In the case of T. gondii infection, the ATG16L1 
complex and LC3 disrupt the parasitophorous vacuole 
by recruiting the p47 immunity-related GTPases (IRGs) 
and the p65 guanylate-binding proteins (GBPs)9,12–15. 
Although it is not always clear whether the classical or 
an unconventional form of autophagy is involved in host 
defence, autophagy proteins remain strong candidates 
as drug targets in infectious disease. Indeed, inducing 
autophagy with a cell-permeable beclin 1 peptide protects 
against several pathogens in vitro and in vivo, including 
chikungunya virus and West Nile virus16.

Autophagy also reduces the amount of damage 
caused by pathogens. For example, during Sindbis 
virus infection, autophagy protects against neuronal 
cell death without affecting the degree of viral replica­
tion17. Similarly, in the absence of ATG16L1, the benefi­
cial intestinal virus murine norovirus (MNV)18 triggers 
intestinal pathologies in mice through the cytokines 
tumour necrosis factor (TNF) and IFNγ19. Viral rep­
lication is unaltered in these mice19, consistent with a 
role for autophagy in suppressing the negative impact 
of inflammatory cytokines produced in responses to 
an enteric virus. Furthermore, expression of transcrip­
tion factor EB (TFEB), a master regulator of autophagy 
and lysosomal genes, protects Caenorhabditis elegans 
from Staphylococcus aureus infection by promoting a 
cytoprotective transcriptional response20. Autophagy 
is also essential for the survival of mice with S. aureus-
mediated bacteraemia and pneumonia: instead of 
reducing bacterial burden in these animals, autophagy 
promotes the viability of endothelial cells in the pres­
ence of a pore-forming toxin produced by widely circu­
lating methicillin-resistant S. aureus (MRSA) strains21. 
The vulnerability of autophagy-deficient endothelial 
cells is due to an increase in the expression of the toxin 
receptor ADAM10 at the protein level21, indicating that 
the protein turnover function of autophagy can indi­
rectly contribute to infectious disease susceptibility. 
Therapeutically increasing autophagy also improves 
survival in a mouse model of sepsis by reducing the 
level of inflammation in the lungs22. Thus, in addition 
to resistance mechanisms aimed at reducing the number 
of intracellular infectious agents, autophagy facilitates 
tolerance mechanisms that reduce the adverse effect of 
an infection23.

A related function of autophagy is to inhibit the pro­
duction of soluble inflammatory mediators, which can 
come at the cost of diminishing host defence. Deficiency 
in autophagy proteins protects against intestinal infection 
by Citrobacter rodentium, improves survival during lung 
infection by influenza virus and prevents reactivation 

Box 2 | Non-canonical autophagy and immunity

Several processes have been described in which subsets of the canonical autophagy 
pathway (see box figure, part a) contribute to immune responses, frequently 
independent of autophagosome formation. LC3‑associated phagocytosis (LAP) 
mediates the maturation of phagosomes containing TLR ligands independently of the 
ULK1 complex, but requires the association of rubicon with the phosphoinositide 3‑ 
kinase catalytic subunit type III (PI3KC3) complex8 (see box figure, part b). Brucella 
abortus subverts the ULK1 and PI3KC3 complexes, but not the ATG16L1 complex or 
LC3, to generate pathogen-containing vacuoles that can either be single or double 
membrane structures160 (see box figure, part c). The recruitment of interferon-γ (IFNγ) 
effector molecules (such as immunity-related GTPases (IRGs) and guanylate-binding 
proteins (GBPs)) to the parasitophorous vacuole during Toxoplasma gondii infection is 
dependent on the ATG16L1 complex but not autophagosome formation or 
lysosomes11 (see box figure, part d). A similar process is involved in inhibition of 
norovirus replication by IFNγ10.

In addition to non-canonical autophagy, there is a growing list of examples in which 
autophagy proteins have been observed to function independently of other components 
of the autophagy machinery in ways that were previously not considered possible. ATG5 
prevents neutrophil-mediated lung damage during Mycobacterium tuberculosis infection 
independently of the other ATG16L1 complex members, and it is unclear whether this 
function represents a type of non-canonical autophagy or a new function of ATG5 
(REF. 161). Coronavirus replication occurs on endoplasmic reticulum‑derived membranes 
decorated by the unconjugated form of LC3 and does not require the rest of the 
autophagy machinery162. ATG9L1 represses DNA stimulation of STING independently of 
the LC3 conjugation machinery73. LC3 can be recruited to double-membrane structures 
containing internalized Salmonella spp. in the absence of ATG9L1 and subunits of the 
ULK1 and PI3KC3 complexes163, challenging the assumption that the mechanism of 
autophagy in response to starvation is conserved during xenophagy. Furthermore, the 
inhibitory activity of ATG16L1 on nucleotide-binding oligomerization domain 1 (NOD1) 
and NOD2 signalling can occur independently of the autophagy function of this 
protein164. CD4+ T cell-mediated recognition of dendritic cells harbouring T. gondii was 
shown to depend on ATG5 and not ATG7 (REF. 165). This finding is unexpected because 
incorporation of ATG5 into the ATG16L1 complex is dependent on ATG7 and suggests 
the existence of another unknown function for ATG5 in dendritic cells. These findings 
collectively indicate that investigating one autophagy protein is insufficient to make 
conclusions about the role of canonical or non-canonical autophagy in a given immune 
process. NOX2, NADPH oxidase 2; TLR, Toll-like receptor.
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Inflammasome
A multi-protein oligomer that 
catalyses the autoactivation  
of caspase 1, which cleaves 
pro‑IL‑1β and pro‑IL‑18 to 
produce the active forms of 
these cytokines.

Pyroptosis
An inflammatory form of 
programmed cell death  
that is dependent on  
inflammasome-mediated 
activation of caspase 1.

of latent murine herpesvirus 68 (MHV68)24–26. The 
enhanced host defence in these models is associated 
with large scale increases in cytokine levels and/or 
inflammatory gene expression. Although inhibition of 
autophagy confers a short-term benefit during infection 
by these specific pathogens, the long-term consequence 
of this heightened immunity may be chronic inflamma­
tory disease. Additionally, as the above examples with 
S. aureus, Sindbis virus and a large number of other 
studies illustrate, autophagy is usually beneficial to the 
host during a life-threatening infection. Therefore, 
the ultimate function of autophagy in immunity may be 
to mediate a balanced immune response whereby the 
majority of infectious threats are neutralized while mini­
mizing damage to the host, thereby staving off long-term 
disease.

Convergence of autophagy and immune signalling
Amino acid starvation during bacterial infection can 
induce autophagy27, raising the possibility that sensing 
changes in nutrient availability is an ancient mechanism 
to initiate autophagy in response to infectious threats. 
As the immune system evolved, autophagy and related 
pathways have been integrated into the complex sig­
nalling networks that coordinate multicellular defence 
strategies. An array of pathogen- and damage-associated 
molecular patterns (PAMPs and DAMPs) can induce or 
inhibit autophagy in specific contexts. In addition, auto­
phagy can feedback on the process of PAMP and DAMP 
recognition to suppress an over-exuberant response. 
This creates a set of feedback loops between autophagy 
and immune signalling pathways that mediate host 
defence while limiting tissue damage.

NOD-like receptors. NOD-like receptors (NLRs) are 
cytosolic sensors of PAMPs and DAMPs. Many NLRs 
are inflammasome subunits that mediate interleukin‑1β 
(IL‑1β) and IL‑18 production and pyroptosis. The 
NLRP3 inflammasome, for instance, is activated by 
diverse stimuli that disrupt mitochondrial integrity, 
including ATP, bacterial toxins and uric acid crystals. 
Mitophagy, which is a selective form of autophagy 
that removes damaged mitochondria, inhibits IL‑1β 
and IL‑18 production in response to these stimuli by 
preventing the accumulation of mitochondria-derived 
DAMPs, such as reactive oxygen species (ROS) and 
mitochondrial DNA (mtDNA)28–30 (FIG. 1). Autophagy 
also removes or prevents leakage of bacterial prod­
ucts from Shigella- or Salmonella-containing vacuoles 
into the cytoplasm, thereby limiting the detection 
of microbial factors in the cytosol by the caspase 11 
inflammasome31,32. This model is consistent with a 
role for autophagy in repairing damaged pathogen-
containing vacuoles33 and with the observation that 
autophagy prevents pyroptosis in the presence of inva­
sive bacteria32,34,35. In addition to these examples, in 
which autophagy limits the availability in the cytosol 
of inflammasome activators (such as ROS, mtDNA and 
lipopolysaccharide (LPS)), one study has shown that 
SQSTM1 can target the inflammasome subunit ASC 
for incorporation into an autophagosome, leading to 

its inactivation36. These examples illustrate the crucial 
role of autophagy in suppressing inflammation through 
the removal of PAMPs, DAMPs and inflammatory sig­
nalling intermediates from the cytosol, a theme that will 
be reinforced throughout this article.

NLRs also have a role in inducing autophagy in 
response to the presence of PAMPs and DAMPs in the  
cytosol. The sensing of uric acid and nigericin by NLRP3, 
or recognition of poly(dA:dT) double-stranded DNA 
by AIM2, induces autophagy by triggering nucleotide 
exchange on the small GTPase RALB36. Amino acid dep­
rivation also signals through RALB to induce autophagy 
by creating a large multiprotein complex with the exocyst 
complex component EXO84 that links the ULK1 and 
PI3KC3 complexes37. Interestingly, autophagy induc­
tion downstream of the eukaryotic translation initiation  
factor 2α (eIF2α) kinase GCN2, which senses amino acid 
depletion, dampens inflammasome-mediated intestinal 
damage following chemical injury38. Thus, nutrient sens­
ing pathways may have been repurposed for inducing 
autophagy during inflammatory stress.

NLR activation by infectious agents generally induces 
autophagy. During L. pneumophila infection of macro­
phages, flagellin that leaks from the vacuole into the 
cytosol is recognized by NLR family, apoptosis inhibi­
tory protein 5 (NAIP5) and NLRC4, and the forma­
tion of the inflammasome complex induces autophagy 
by releasing beclin 1 from an inhibitory interaction 
with NLRC4 (REF. 35). Also, the NLRP6 inflammasome 
is required for autophagosome formation in the intesti­
nal epithelium39. Together, these examples indicate that 
activation of inflammasomes is coupled with induction 
of autophagy, which is most likely to reflect a regulatory 
feedback loop that allows some inflammasome activa­
tion essential for defence but prevents irreparable dam­
age to the host by inhibiting excessive cytokine release 
and pyroptosis by the inflammasome.

Nucleotide-binding oligomerization domain  1 
(NOD1) and NOD2, the founding members of the 
NLR family, also induce autophagy. In the presence of 
bacterial peptidoglycan derivatives, these molecules 
signal through the adaptor kinase receptor-interacting 
protein 2 (RIP2) to induce nuclear factor‑κB (NF‑κB) 
and mitogen-activated protein kinase (MAPK) signal­
ling. Both NOD1 and NOD2 mediate the recruitment of 
LC3 to vesicles containing internalized bacteria to initi­
ate xenophagy (FIG. 1), but there is disagreement regard­
ing whether this process involves signalling through 
RIP2 or direct binding between the NLR and ATG16L1 
(REFS 40–45).

The induction of autophagy following NOD1 and 
NOD2 activation can dampen an immune response. 
Specifically, cytokine production by myeloid cells in 
the presence of bacteria or bacterial ligands that acti­
vate NOD2 is increased in the absence of autophagy 
proteins46–49. NOD2 also recognizes viral RNA, and 
subsequent RIP2 signalling induces mitophagy through 
ULK1 phosphorylation. Consequently, NOD2 or RIP2 
deficiency increases ROS production by mitochon­
dria and NLRP3 inflammasome activation, which 
exacerbates lung inflammation during influenza virus 
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infection50. Similarly, NOD2–RIP2 signalling induces 
autophagy in alveolar macrophages to suppress inflam­
mation caused by the inflammasome during acute lung 
injury51. Additionally, following internalization of outer 
membrane vesicles (OMVs) derived from the commen­
sal bacterium Bacteroides fragilis, NOD2 is required 
for induction of a LAP-like process in dendritic cells 
(DCs) in the intestine that mediates regulatory T cell 
(Treg cell) differentiation — a process that prevents an 

unwanted inflammatory response directed towards 
the microbiota52. Although the mechanistic contribu­
tion of LAP in this setting remains unclear, this study 
demonstrates a novel role for non-canonical autophagy 
in suppressing immune responses at barrier sites where 
microbial encounters are common. Altogether, these 
studies indicate that a major function of autophagy is to 
keep the immune system in check by counteracting the  
pro-inflammatory functions of NLRs.

Figure 1 | Crosstalk between Toll-like receptor and NOD-like receptor signalling and autophagy. Exposure to 
exogenous agents including ATP, bacterial toxins and uric acid crystals damages mitochondria, which results in the release 
of factors such as reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) that activate the NLRP3 inflammasome. 
Autophagy inhibits inflammasome activation by sequestering damaged mitochondria and the NLRP3‑binding protein 
ASC to prevent caspase 1‑mediated cleavage of pro‑interleukin‑1β (pro‑IL‑1β) and pro‑IL‑18 into the active forms, as well 
as to prevent pyroptosis. Nucleotide-binding oligomerization domain 2 (NOD2) in the cytosol recognizes bacterial 
peptidoglycan and viral RNA from internalized pathogens and subsequently induces autophagy, either by signalling 
through receptor-interacting protein 2 (RIP2) or by directly recruiting ATG16L1 in a complex with immunity-related 
GTPase family M protein (IRGM). Incorporation of the bacteria into the autophagosome is achieved by LC3‑binding 
proteins, such as sequestosome 1 (SQSTM1), optineurin (OPTN) and NDP52, which recognize the damaged vacuole or 
mitochondrion tagged by ubiquitin and galectin 8 (GAL8). In addition to inhibiting pathogen replication, this process 
reduces leakage of bacterial lipopolysaccharide (LPS) into the cytosol to prevent activation of the caspase 11 
inflammasome. Following LPS-mediated activation of Toll-like receptor 4 (TLR4), myeloid differentiation primary-response 
protein 88 (MYD88) and TIR-domain-containing adaptor protein inducing IFNβ (TRIF) signal through TNFR-associated 
factor 6 (TRAF6) and TRAF3 to facilitate autophagy by inducing the K63‑linked ubiquitylation and release of beclin 1 from 
inhibition, through the phosphorylation and activation of OPTN through TANK-binding kinase 1 (TBK1) ubiquitylation, 
and by inducing nuclear factor-κB (NF‑κB) signalling and transcription of SQSTM1 and the autophagosome maturation 
protein DNA damage-regulated autophagy modulator protein 1 (DRAM1). Recognition of internalized fungal glycans and 
immune complexes by TLR2 and the Fcγ receptor (FcγR) triggers LC3‑associated phagocytosis (LAP). As the phagosome 
acidifies, the fungal pathogen is degraded and activates TLR9 to induce signals through interferon regulatory factor 7 
(IRF7) and type I interferon (IFN) transcription. PI3KC3, phosphoinositide 3‑kinase catalytic subunit type III.
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Toll-like receptors. Toll-like receptors (TLRs) sense 
PAMPs at the cell surface or in the lumen of vesicles and 
signal through the adaptor proteins myeloid differen­
tiation primary-response protein 88 (MYD88) and/or 
TIR-domain-containing adaptor protein inducing IFNβ 
(TRIF) to activate TNFR-associated factor 6 (TRAF6), 
which catalyses lysine 63 (K63) ubiquitylation of several 
signalling intermediates upstream of NF‑κB and MAPK 
to induce inflammatory gene expression. Both MYD88 
and TRIF signalling promote autophagosome formation 
(FIG. 1), perhaps explaining why a broad range of TLR lig­
ands can induce autophagy53,54. On LPS exposure, TLR4 
promotes the assembly of the PI3KC3 complex through 
TRAF6‑mediated K63 ubiquitylation of beclin 1 to free 
it from an inhibitory interaction with B cell lymphoma 2 
(BCL‑2)55. Signalling through MYD88 and NF‑κB fur­
ther increases autophagosome maturation by inducing 
the expression of DNA damage-regulated autophagy 
modulator protein 1 (DRAM1), a lysosomal transmem­
brane protein involved in lysosomal acidification56. The 
ability to target specific substrates to the autophagosome 
is facilitated by the transcriptional induction of SQSTM1 
downstream of TLR4 (REF. 57). In addition, LPS- and 
NF‑κB‑induced SQSTM1 recognizes ubiquitin-tagged 
mitochondria to promote mitophagy-mediated suppres­
sion of the NLRP3 inflammasome30 (FIG. 1). Thus, the 
induction of SQSTM1 explains why NF‑κB signalling  
is sometimes counterintuitively anti-inflammatory.

TLR4–TRIF activation by Gram-negative bacteria 
can also induce TRAF3‑mediated K63 ubiquitylation 
of TANK-binding kinase 1 (TBK1), which phosphory­
lates optineurin to increase its binding affinity for LC3, 
thereby promoting xenophagy by crosslinking LC3 and 
bacteria bound by OPTN58. These studies indicate that 
pathogen sensing by TLRs triggers multiple signalling 
events that converge on autophagy.

Importantly, TLR-mediated induction of autophagy 
has been validated in vivo. Rift Valley fever virus triggers 
autophagy downstream of TLR7 signalling to restrict 
viral replication in Drosophila melanogaster59. In mice, 
MYD88‑dependent induction of autophagy in the intes­
tinal epithelium prevents dissemination of Salmonella 
enterica subsp. enterica serovar Typhimurium60. Unlike 
NLRs in the cytosol, the ability to detect the presence of 
PAMPs before a breach in the cell membrane may explain 
why a role for TLR-induced autophagy can be detected as 
early as 24 hours post-infection in this setting.

Communication between autophagy and TLRs is 
bi‑directional. Autophagy delivers viral RNA to the 
endosome for TLR7 recognition in plasmacytoid DCs 
(pDCs)61. In at least some examples, gene expression 
downstream of TLRs requires the recruitment of LC3 to 
phagosomes through LAP (FIG. 1). When antibody-bound 
DNA complexes are internalized by pDCs and bind Fcγ 
receptor (FcγR), LAP mediates the maturation of the 
phagosome to a vesicle that supports type I IFN produc­
tion downstream of TLR9 (REF. 62). The acidification of 
phagosomes containing TLR2 ligands in macrophages 
also occurs through LAP63. Furthermore, melanin in the 
cell wall of the fungal pathogen Aspergillus fumigatus 
inhibits ROS production by the NADPH oxidase, which, 

together with TLR recognition of fungal surface mol­
ecules, is a necessary step in the recruitment of autophagy 
proteins to the phagosome. When melanin is removed 
during A. fumigatus germination, LAP can mediate the 
degradation of the pathogen by promoting phagosome 
maturation8,64. These findings demonstrate how auto­
phagy and LAP support vesicle trafficking events that 
are crucial for TLR-mediated cytokine production and  
pathogen degradation.

In contrast to the above examples, there are situations 
in which autophagy proteins and TLRs have an antago­
nistic relationship. SQSTM1 has a dual function as both 
an adaptor molecule for autophagy and a scaffolding 
protein that binds TRAF6 to mediate NF‑κB signalling 
downstream of TLRs65. In keratinocytes, SQSTM1 is 
targeted for autophagic degradation through its binding 
to LC3, thereby disrupting TLR4 and TLR2 signalling66. 
Furthermore, MYD88 signalling upon TLR2 recogni­
tion of Mycobacterium tuberculosis induces a microRNA 
that inhibits autophagy by targeting UVRAG, a subunit 
of the PI3K3C complex, resulting in increased bacterial 
survival67. However, unlike the extensive antagonistic rela­
tionship observed between NLRs and autophagy, exam­
ples of autophagy and TLR antagonism have thus far been  
rare and may apply to specific cell types or pathogens.

Antiviral signalling. Whereas autophagy proteins 
typically promote TLR signalling in the presence of 
vesicle-bound nucleic acid, autophagy proteins mediate 
mitophagy to inhibit signalling downstream of cytosolic 
sensors of viral nucleic acid. The retinoic acid inducible 
gene I (RIG‑I)‑like receptors (RLRs) RIG‑I and melan­
oma differentiation associated gene 5 (MDA5) sense 
double-stranded RNA in the cytosol and signal through 
mitochondrial antiviral signalling protein (MAVS), which 
oligomerizes on the mitochondrial outer-membrane to 
induce type I IFN expression by activating the transcrip­
tion factors IRF3 and IRF7. Mitophagy suppresses type I 
IFN production by removing the platform for RLR sig­
nalling and causes degradation of signalling intermediates 
such as MAVS68–70 (FIG. 2a). ROS produced by accumulat­
ing mitochondria also contributes to excess type I IFN 
production when mitophagy is inhibited71. When MAVS 
signalling is triggered by a viral infection, the ATG16L1 
complex is recruited to mitochondria by NLR family 
member X1 (NLRX1), elongation factor Tu, mitochon­
dria (TUFM) and cytochrome c oxidase subunit 5B 
(COX5B)68,70 (FIG. 2a). For this reason, cells deficient in 
autophagy proteins, NLRX1 or COX5B display enhanced 
type I IFN production and are better able to restrict the 
replication of a variety of viruses68–72. Presumably, mito­
phagy is coupled to the detection of cytosolic RNA to  
prevent sustained, pathological type I IFN production,  
but this model has not been formally demonstrated.

Autophagy proteins are also involved in sensing 
cytosolic DNA, which is associated with viral infec­
tion, intracellular bacteria and autoimmunity. Cyclic 
dinucleotides generated by cyclic GMP–AMP synthase 
(cGAS) in the presence of double-stranded DNA acti­
vate the transmembrane protein stimulator of interferon 
genes (STING) to induce type I IFN expression. STING 
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colocalizes with autophagy proteins including LC3, and 
loss of ATG9L1 leads to aberrant STING trafficking and 
activation73. However, STING function was unaffected 
by the deletion of the canonical autophagy protein ATG7 

(REF. 73), implicating a non-canonical autophagy pathway 
in mediating STING localization. In another departure 
from canonical autophagy, ULK1 functions downstream 
of the PI3KC component VPS34 in this setting. Similar 
to autophagy induction during glucose starvation, cyclic 
dinucleotides induce the activation of AMP-activated 
protein kinase (AMPK), which leads to phosphoryla­
tion and activation of ULK1 (REF. 74). Instead of induc­
ing autophagy, ULK1 phosphorylates STING to inhibit 
IRF3 and aberrant type I IFN hyperexpression74 (FIG. 2b).

Other examples in which autophagy proteins inter­
sect with cytosolic DNA sensing are more consistent 
with their functions in canonical autophagy. During 
herpes simplex virus 1 (HSV1) infection, beclin 1 binds 

and inhibits cGAS, which frees beclin 1 from inhib­
ition by rubicon (run domain beclin 1‑interacting and 
cysteine-rich domain-containing protein) to enhance 
PI3KC3 activity and autophagy-mediated degradation of 
viral DNA, thus reducing both the amount of cytosolic 
DNA and the levels of type I IFN production75 (FIG. 2b). 
Autophagy also prevents pathological STING activation 
by targeting damaged DNA that leaks from the nucleus 
to the lysosome where it is degraded by DNase2A76.

Spontaneous type I IFN signalling occurs upon 
autophagy inhibition in intestinal tissue and tumour 
cells24,77,78, indicating that autophagy in some organs or 
cell types is constitutively suppressing cytokine release. 
A type I IFN signature in the absence of an infectious 
trigger could reflect an inappropriate immune response 
to host nucleic acid, the microbiota and/or endogenous 
retroviruses. Given our growing appreciation of the 
contribution of type I IFN to cancer and autoimmunity, 
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Figure 2 | Intersection between autophagy and cytokines. a | Several examples have been reported in which autophagy 
regulates cytokine production, or is subject to regulation by cytokines. The recognition of viral RNA by retinoic acid 
inducible gene I (RIG‑I) induces mitochondrial reactive oxygen species (ROS) production and mitochondrial antiviral 
signalling protein (MAVS) signalling, leading to type I interferon (IFN) transcription. The recruitment of the ATG16L1 
complex by NLR family member X1 (NLRX1) and elongation factor Tu, mitochondria (TUFM; or COX5B, not shown) to the 
mitochondrion promotes mitophagy thereby inhibiting type I IFN production by removing the MAVS signalling platform 
and inhibiting ROS production. b | Cyclic GMP–AMP synthase (cGAS) converts cytosolic DNA (from viruses, bacteria or the 
host) to cyclic dinucleotides for recognition by stimulator of interferon genes (STING) and subsequent type I IFN production. 
cGAS activates ULK1, which mediates an inhibitory phosphorylation of STING. Also, the binding of beclin 1 to cGAS allows 
beclin 1 to induce autophagy through the PI3KC3 complex to remove the cytosolic DNA and simultaneously inhibits 
cGAS-dependent type I IFN production. c | IFNγ induces autophagy through Janus kinase 1 (JAK1), JAK2 and p38. This 
pathway is reinforced by mitophogy, which reduces the levels of mitochondrial ROS that activate SHP2, an inhibitor of 
IFNγ signalling. By contrast, interleukin‑10 (IL‑10) can inhibit autophagy by promoting binding between signal transducer 
and activator of transcription 3 (STAT3) and protein kinase R (PKR), which inhibits the activation of the autophagy inducer 
eukaryotic translation initiation factor 2α (eIF2α). d | In addition to suppressing IL‑1β production by inhibiting the NLRP3 
inflammasome, autophagy mediates the secretion of IL‑1β. Extracellular IL‑1β signals through IL‑1 receptor (IL‑1R) and 
myeloid differentiation primary-response protein 88 (MYD88) to induce autophagy, and autophagosome maturation  
and degradation of engulfed material including intracellular bacteria is dependent on TANK-binding kinase 1 (TBK1) and 
suppresses the NLRP3 inflammasome. e | High mobility group box 1 (HMGB1), both within the cell and upon release by 
dying cells, promotes autophagy. Binding of extracellular HMGB1 by receptor for advanced glycation end products (RAGE) 
induces autophagy by inhibiting mechanistic target of rapamycin (mTOR). Nuclear HMGB1 promotes mitophagy by 
inducing the expression of ROS, it induces autophagy by protecting beclin 1 from an inhibitory interaction with B cell 
lymphoma 2 (BCL‑2) or cleavage by calpain (not shown). HSPB1, heat shock protein B1.
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this autophagy-mediated control of cytokine expression 
under steady-state conditions is likely to be relevant to 
situations beyond infectious disease.

Cytokines. The T helper 1 (TH1) cytokines IFNγ and 
TNF generally upregulate xenophagy in target cells79–81, 
which is consistent with a role of autophagy in support­
ing cellular immunity. IFNγ induces autophagy through 
the Janus kinase 1 (JAK1)–JAK2 and p38 MAPK path­
way, independently of signal transducer and activator of 
transcription 1 (STAT1)82. In turn, autophagy promotes 
IFNγ signalling by limiting ROS production, which, 
if left to accumulate, would activate the JAK–STAT 
inhibitory phosphatase SHP2 (REF. 83) (FIG. 2c).

In addition to conventional autophagy, IFNγ induces 
a LAP-like process in hepatocytes infected by the malar­
ial parasite Plasmodium vivax. The deposition of LC3 
onto the parasitophorous vacuole leads to the recruit­
ment of lysosomes and killing of the parasite84. As men­
tioned earlier, IFNγ suppresses T. gondii and norovirus 
replication through an incompletely understood type of 
non-canonical autophagy9–11. Therefore, IFNγ induces 
canonical and non-canonical autophagy to inhibit 
intracellular pathogen replication.

By contrast, cytokines that signal through other STAT 
molecules can inhibit autophagy. Binding of protein kinase 
R (PKR) by STAT3 prevents PKR-mediated phosphory­
lation of eIF2α, a stress-responsive regulator of transla­
tion that promotes autophagy85 (FIG. 2c). Therefore, any 
cytokine that activates STAT3 can theoretically interfere 
with autophagy, as seen with the regulatory cytokine 
IL‑10 (REF. 86). STAT6 signalling downstream of the TH2 
cytokines IL‑4 and IL‑13 also inhibits the induction of 
autophagy by IFNγ in macrophages80. However, DCs 
that differentiate in the presence of IL‑4 display increased 
expression of RUFY4, a positive regulator of autophago­
some growth and fusion with lysosomes87, suggesting that 
IL‑4 can also enhance autophagy. The amount of time 
the cell is exposed to the TH2 cytokines, and the pres­
ence of other cytokines such as IFNγ and granulocyte–
macrophage colony-stimulating factor (GM‑CSF), may 
explain these contradictory effects of TH2 cytokines on 
autophagy. These studies establish a link between auto­
phagy and TH2 and regulatory cytokines, but the impact 
of this link on host defence requires further investigation.

As mentioned above, autophagy inhibits IL‑1β pro­
duction by repressing inflammasome activation but, 
conversely, can facilitate the secretion of this cytokine88. 
IL‑1β does not undergo conventional secretion owing to 
the absence of a signal peptide, but it can pass through 
a permeabilized plasma membrane89. Alternatively, when 
membrane integrity is intact, IL‑1β can be incorporated 
into the space between the inner- and outer-membrane 
of the autophagosome and is released from the cell fol­
lowing autophagosome fusion with the plasma membrane 
or multivesicular body90 (FIG. 2d). However, IL‑1β is ulti­
mately released from autophagy-deficient cells, probably 
through the permeabilized membrane that accompanies 
increased inflammasome activity and pyroptosis. Once 
secreted, IL‑1β continues to influence autophagy in the 
target cell through TBK1, which interacts with RAB8B, to 

promote autophagosome maturation91 (FIG. 2d). In addition, 
IL‑1β (as well as IL‑1α and IFNγ) induces ubiquitylation of  
beclin 1, suggesting that it can activate autophagy through 
a mechanism similar to that of LPS activation (FIG. 1).

Although less appreciated, autophagy inhibits the 
production of other cytokines. For instance, secre­
tion of other IL‑1 family members, specifically IL‑1α 
and migration inhibitory factor (MIF), is increased in 
autophagy-deficient macrophages as a downstream 
consequence of mitochondrial ROS accumulation92,93. 
Autophagy may be particularly important for prevent­
ing TH17 cell responses because the cytokines that are 
suppressed by autophagy are key to inducing IL‑17 
expression by T cells: IL‑1α, IL‑1β, IL‑18, IL‑23, IL‑6, 
transforming growth factor-β (TGFβ) and macro­
phage MIF47,92–95. Excess IL‑1α released by autophagy- 
deficient macrophages induces TH17 cell differentiation 
and exacerbates lung inflammation during M. tuberculo-
sis infection92 (FIG. 3). Similarly, IL‑1β produced following 
autophagy inhibition in DCs acts in an autocrine manner 
to mediate IL‑23 production, leading to IL‑17 secretion 
by γδ T cells94. It is less clear whether TH1 cells and other 
branches of adaptive immunity are enhanced by auto­
phagy deficiency in macrophages and DCs. One reason 
may be that type I IFN, which is over-produced upon 
autophagy inhibition, inhibits IFNγ activity96. An inflam­
matory milieu could also cause T cell exhaustion. As dis­
cussed later, the role of autophagy in antigen presentation 
is another variable that requires consideration.

DAMPs. Cell death can lead to extracellular release of 
DAMPs that are usually confined within the cell, such as 
nucleic acids, ATP, high mobility group box 1 (HMGB1) 
and IL‑1β. Purinergic receptors and transporters that 
recognize exogenous ATP trigger autophagy through 
AMPK-mediated mTOR inhibition and dephosphory­
lation of AKT97–100. Before cell death, autophagy promotes 
the secretion of ATP by mediating the migration of ATP-
containing lysosomes towards the plasma membrane101. 
Owing to the importance of ATP as a chemotactic signal, 
loss of autophagy in tumour cells diminishes the ability 
of chemotherapeutic agents to trigger a robust antitumor 
immune response102. Thus, autophagy is induced by ATP 
and also promotes the secretion of ATP.

Like IL‑1β, autophagy facilitates the release of 
HMGB1, a chromatin-associated nuclear protein, from 
stressed or dying tumour cells103. Extracellular HMGB1 
is recognized by receptor for advanced glycation end 
products (RAGE), resulting in decreased mTOR activ­
ity and increased autophagy104. Nuclear HMGB1 regu­
lates the expression of heat shock protein B1 (HSPB1), 
a chaperone protein that promotes mitophagy105. 
Also, HMGB1 translocates to the cytosol in the pres­
ence of ROS, where it induces autophagy by releasing  
beclin 1 from inhibition by BCL‑2 (REF. 103). Endogenous 
HMGB1 can also promote autophagy by protecting bec­
lin 1 and ATG5 from calpain-mediated cleavage106 (FIG. 2e). 
Thus, when HMGB1 is removed from macrophages or 
intestinal epithelial cells, the balance shifts from auto­
phagy to apoptosis and favours exaggerated cytokine 
production to increase inflammation106,107.
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To summarize, extensive crosstalk has been observed 
between autophagy and immune signalling cascades 
downstream of the array of receptors that recognize 
PAMPs, DAMPs and cytokines. The finding that auto­
phagy is sometimes necessary for type I IFN produc­
tion (for example, by functioning together with TLRs in 
pDCs) but can also dampen type I IFN signalling (for 
example, through mitophagy) reinforces the fact that the 
relationship between autophagy and a given immune 
pathway is context dependent. However, one recurring 
observation is that pathways that induce autophagy are 
often inhibited by autophagy to prevent sustained activa­
tion. This negative-feedback loop is most obvious in the 
presence of inflammasome substrates and viral nucleic 
acids in the cytosol, where autophagy limits the levels 
of cytokines produced upon sensing of these molecules. 

This function of autophagy is not mutually exclusive 
from its antimicrobial functions (as in the case of xeno­
phagy); removing the infectious threat and removing the 
PAMPs that triggers the inflammatory response are both 
ways to restore homeostasis.

Autophagy in immunity and disease
Autophagy and adaptive immunity. A role for auto­
phagy can be seen in virtually all the cell types that 
participate in adaptive immunity: lymphocytes, antigen- 
presenting cells (APCs), dying cells and myeloid cells 
that contribute to the inflammatory milieu. Autophagy, 
most likely through the removal of damaged mitochon­
dria, is necessary for the survival and proliferation of 
CD4+, CD8+ and NK T cells108–114, memory responses 
of CD8+ T cells and activated NK cell maintenance115–119. 

Nature Reviews | Immunology

Autophagosome

Autophagy-
related
ATP release

Virally
infected
dying cell

ER

APC

Exogenous
protein

IL-1α

MHC
class II

EndolysosomeCitrullinated
peptide

TCR Peptide

MHC
class I

Cytosolic
protein

Virus

↓ ROS

LAP

LAP

Calpain

PAD

GCN2

GCN2

Damaged
mitochondrion

↓ T
H
17 cell 

differentiation

CD8+ T cellCD4+ T cell

Figure 3 | Autophagy coordinates a multicellular adaptive immune response. Autophagy activity in T cells, 
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B1a B cells
B1 B cells are a group of 
self-renewing, autoreactive 
B cells with a limited B cell 
receptor repertoire. These cells 
are mainly found in the 
peritoneal cavity and the 
pleural cavity. B1 cells are 
subdivided into the B1a (CD5+) 
and B1b (CD5−) subsets.

Citrullinated self-peptide
A self-peptide that incorporates 
the amino acid citrulline.  
These peptides are generated 
post-translationally by 
peptidylarginine deiminases. 
The citrulline moiety is the 
essential part of the antigenic 
determinant towards which 
characteristic autoantibodies  
in patients with rheumatoid 
arthritis are generated.

Cross-presentation
The initiation of a CD8+ T cell 
response to an antigen  
that is not present within 
antigen-presenting cells (APCs). 
This exogenous antigen must 
be taken up by APCs and then 
re‑routed to the MHC class I 
pathway of antigen 
presentation.

Crohn disease
Together with ulcerative colitis, 
Crohn disease is one of the  
two main forms of chronic 
inflammatory bowel disease 
(IBD). It most commonly affects 
the lower portion of the small 
intestine, resulting in symptoms 
of abdominal pain, diarrhoea, 
fever and weight loss. Analysis 
of the strong genetic 
predisposition led to the 
identification of mutations in 
the NOD2 gene that are 
particularly strongly associated 
with ileal disease, but not with 
ulcerative colitis.

ER stress pathway
(Endoplasmic reticulum stress 
pathway). A conserved stress 
response pathway that senses 
the accumulation of unfolded 
proteins in the endoplasmic 
reticulum.

Haematopoietic stem cell 
transplantation
(HSCT). A procedure in which 
HSCs from bone marrow or 
blood are transplanted to treat 
leukaemia and other disorders.

Graft-versus-host disease
(GVHD). A common 
complication of HSCT in which 
allogeneic T cells derived from 
a non-identical donor attack 
healthy tissue in the recipient.

In addition, autophagy activity generates the ATP neces­
sary for IL‑2 and IFNγ production by effector CD4+ 
T cells120. Autophagy may have analogous functions in 
maintaining organelle and metabolic homeostasis in the 
B cell lineage because Atg5 deletion leads to an absence 
of B1a B cells and a defect in antibody production by 
plasma cells121–123.

The induction of autophagy in naive CD4+ T cells 
following TCR stimulation is dependent on mTOR 
inhibition downstream of the ubiquitin-editing enzyme 
A20 (also known as TNFAIP3)114. TCR engagement also 
induces autophagy-mediated degradation of BCL‑10 
upstream of NF‑κB, thus preventing hyperactivation of 
effector T cells124. Autophagy also has an important role 
in maintaining Treg cells, as inhibition of autophagy causes 
apoptosis of Treg cells and lineage instability, due to aber­
rant metabolism, which leads to unrestrained TH2 cell 
responses and inflammation at intestinal barrier sites125,126. 
As expected, the role of autophagy in supporting these 
various lymphocyte lineages is necessary for optimal 
immune responses to viruses, parasites, self-antigens and 
tumours115,122,125,126.

On the APC side, autophagy affects the repertoire of 
peptides presented on MHC class II molecules127, includ­
ing by thymic epithelial cells that mediate the selection 
of developing thymocytes128. The presentation of specific 
antigens has been shown to depend on autophagy: for 
example, autophagosomes transport peptidylarginine 
deiminases (PADs; which convert arginine to citrulline) 
to antigen-containing endolysosome, leading to the gen­
eration of citrullinated self-peptides implicated in rheuma­
toid arthritis129 (FIG. 3). Autophagy in virally infected cells 
generates antigens for presentation to CD4+ T cells by 
delivering cytosolic proteins to the endolysosome for 
antigen processing, such as the Epstein–Barr virus pro­
tein EBNA1 (REF. 130) (FIG. 3). In some cases, antigens 
are generated by autophagy from the uptake of ubiquity­
lated protein aggregates and pathogen-containing vac­
uoles that are recognized by SQSTM1, which become 
substrates for either MHC class I or MHC class II pres­
entation131,132. Autophagy can be augmented to enhance 
antigen presentation through various signals, such as 
IFNγ and NOD2 activation41,131,132. Autophagy or LAP 
has also been shown to be crucial for the processing of 
exogenous antigens in DCs by mediating the fusion 
of phagosomes containing TLR ligands or apoptotic 
corpses with lysosomes133–135 (FIG. 3). This process is 
necessary for the MHC class II presentation that drives 
the antiviral TH1 cell response during HSV2 infection136. 
Therefore, it is possible that the reason pathogens encode 
proteins that inhibit autophagy is to avoid recognition by 
CD4+ T cells. For instance, the HSV1 protein ICP34.5 
binds beclin 1 to inhibit autophagy-mediated MHC 
class II antigen presentation in DCs137.

DCs can also present exogenous antigens on MHC 
class I molecules through cross-presentation. Vaccination  
of humans with the yellow fever virus vaccine YF‑17D 
induces autophagy in DCs through induction of the 
amino acid starvation sensor GCN2. Inhibition of either 
autophagy proteins or GCN2 impairs the ability of DCs 
to mediate proliferation of CD8+ T cells when co‑cultured 

with infected cells138 (FIG. 3). This study provides a clin­
ically relevant example of autophagy-dependent MHC 
class I cross-presentation. However, as with certain exam­
ples of antigen presentation by MHC class II molecules, 
the role for autophagy proteins revealed by this study 
may reflect LAP rather than autophagy. Now that new 
tools are available, future studies will be able to distin­
guish the role of canonical versus non-canonical forms 
of autophagy in antigen presentation.

ATG16L1 in Crohn disease and graft-versus-host  
disease. Genetic variants that occur near or within auto­
phagy genes are implicated in several inflammatory dis­
orders (TABLE 1). One of the first indicators that autophagy 
dysfunction contributes to inflammatory disease was 
provided by the genetic link between Crohn disease and 
a common polymorphism in ATG16L1 (REF. 139). The 
disease polymorphism results in a threonine to alanine 
coding change (T300A) that destabilizes the ATG16L1 
protein product by introducing a caspase 3 cleavage 
site48,49. The function of autophagy in inhibiting cytokine 
production is consistent with the idea that Crohn disease 
stems from an exaggerated immune response directed 
towards the gut microbiota. Additionally, inhibiting auto­
phagy within the intestinal epithelium causes defects in 
antimicrobial granule formation by Paneth cells and 
reduced mucus secretion by goblet cells19,140–142. Together 
with xenophagy, autophagy helps maintain these secre­
tory cell lineages and prevents breaches of the epithelial 
barrier by both pathogenic and commensal bacteria60,143. 
The importance of these epithelial cell-specific func­
tions of autophagy is supported by the observation that 
knock‑in mice harbouring the ATG16L1T300A disease  
variant are susceptible to enteric bacterial infections and 
display defects in Paneth cells and goblet cells48,49. Also, 
the crosstalk between the ER stress pathway and auto­
phagy in Paneth cells was shown to have a central role in 
preventing intestinal inflammation142, directly implicat­
ing the organelle homeostasis function of autophagy in 
the function of this secretory cell type.

The same ATG16L1T300A polymorphism increases 
the risk of death following allogeneic haematopoietic  
stem cell transplantation (HSCT)144. Autophagy was 
found to prevent lethal graft-versus-host disease (GVHD) 
in a preclinical animal model of HSCT by suppress­
ing DC hyperactivity. These autophagy-deficient DCs 
displayed increased expression of genes implicated in 
endolysosomal trafficking, including those that affect 
NF‑κB and MAPK signalling144. Allogeneic T cell acti­
vation has fewer constraints on the antigen being pre­
sented than syngeneic T cell activation, which many 
explain why autophagy suppresses rather than promotes 
the ability of DCs to stimulate T cells in this situation. 
Given that GVHD frequently affects the gut, it would 
be interesting to determine whether autophagy in 
the intestinal epithelium also has a role in preventing  
disease following HSCT.

ATG5 non-coding variants. Polymorphisms associated 
with increased ATG5 expression are linked to asthma 
and systemic lupus erythematosus (SLE)145,146. Although 
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Chronic granulomatous 
disease
An inherited disorder caused 
by defective oxidase activity in 
the respiratory burst of 
phagocytes. It results from 
mutations in any of four genes 
that are necessary to generate 
the superoxide radicals 
required for neutrophil 
antimicrobial function. Affected 
patients suffer from increased 
susceptibility to recurrent 
infections.

it remains possible that these polymorphisms act through 
neighbouring genes and not through ATG5, autophagy 
contributes to biological processes that are relevant to 
these disorders including regulation of the cytokine 
milieu and antigen presentation. In airway epithelial 
cells, autophagy mediates goblet cell differentiation and 
mucus secretion in response to IL‑13 (REF. 147), sug­
gesting that enhanced autophagy contributes to the 
pathological overproduction of mucus observed in  
asthmatic individuals.

Markers of increased autophagy have been observed 
in B cells and T cells from patients with SLE148,149, which 
could reflect their genetic predisposition, or an attempt 
to further restrict cytokine production. The multi- 
organ inflammation observed in SLE is associated with 
immune complexes consisting of antibodies bound to 
nucleic acid and histones, which induce aberrant type I 
IFN production following their recognition by TLR7 and 
TLR9. LAP, which is dependent on ATG5, mediates TLR9 
activation and type I IFN production by promoting the 
maturation of the endosome containing these immune 
complexes after uptake by pDCs62. Also, ATG5 in B cells 
is necessary for TLR7‑dependent generation of autoanti­
bodies and for the induction of SLE pathologies, hinting at 
a role for autophagy proteins early in disease progression150.

By contrast, ATG5 and other autophagy proteins pre­
vent the production of self-reactive antibodies in mye­
loid cells. In LAP-deficient mice, dying cells taken up 
by macrophages are not properly degraded, leading to a 
general increase in serological markers of inflammation 
and signs of SLE with age151. Of note, rubicon-deficient 
mice (one of the LAP-deficient mouse strains used in this 
study) are known to display increased autophagy8. One 
interpretation of this result is that loss of LAP in mye­
loid cells has a greater impact on the development of SLE 
(in aged mice) than a potential increase in autophagy, 
which in B cells is predicted to promote autoantibody 
generation150. Studies that examine the effect of increased  
autophagy specifically in B cells are warranted.

Inflammatory disease accompanied by autophagy 
dysfunction. The list of immunological diseases accom­
panied by autophagy dysfunction extends beyond 
those caused by mutations in autophagy genes. Chronic 
granulomatous disease (CGD) occurs in individuals har­
bouring loss‑of‑function mutations in subunits of the 
NADPH oxidase, which is necessary for generating ROS 
and recruiting LC3 to the phagosome152. Monocytes from 
patients with CGD are defective in LAP-mediated control 
of A. fumigatus64. Similarly, APCs deficient in NAPDH 

Table 1 | Examples of autophagy genetic variants associated with chronic inflammatory disorders

Disease Variant Proposed mechanism Refs

Crohn disease T300A coding 
variant of ATG16L1 
(rs2241880)

Destabilization of ATG16L1:
•	increased inflammasome activation
•	defects in secretory lineages of the intestinal epithelium
•	impaired xenophagy
•	failure to induce Treg cell differentiation
•	imbalanced relationship with the gut microbiota

48,49,52, 
139,140, 

166

Graft-versus-host 
disease

T300A coding 
variant of ATG16L1 
(rs2241880)

Hyperactive autophagy-deficient DCs induce enhanced 
proliferation of donor-derived T cells in allogeneic HSCT 
recipients

144

Systemic lupus 
erythematosus

Polymorphism in a 
non-coding region 
proximal to ATG5 
(rs548234)

Increased ATG5 expression:
•	enhanced autophagy or LAP
•	increased TLR-mediated responses to nucleic acids

Decreased ATG5 expression:
•	impaired clearance of dead cells, which can increase 

systemic cytokine levels downstream of LAP deficiency

62,146, 
148,150, 

151

Asthma Polymorphism in 
ATG5 promoter region 
(rs12201458, rs510432)

Increased ATG5 promoter activity:
•	augmented goblet cell differentiation and mucus 

production

145,147

Vici syndrome Loss‑of‑function 
mutations in EPG5 
(recessive coding 
variants)

EPG5* deficiency:
•	increased inflammation
•	immune dysfunction observed in some patients

26,167

Rheumatoid arthritis, 
type 1 diabetes, 
multiple sclerosis, 
Crohn disease, 
systemic lupus 
erythematosus, 
coeliac disease 
and primary biliary 
cirrhosis

Non-coding variants 
of PTPN22 (rs6679677, 
rs2476601 and 
rs1893217) and 
CLEC16A (rs2903692, 
rs725613 and 
rs17673553)

Loss of PTPN22‡ and CLEC16A§ function:
•	inhibited degradation of autophagy substrates
•	impaired antigen presentation by thymic epithelial cells 

and generation of autoreactive T cells
•	loss of pancreatic β-cell function through reduced 

mitophagy (CLEC16A mutant)
•	it is unclear how these findings fit with the requirement 

of autophagy for generating citrullinated peptides 
recognized by T cells in rheumatoid arthritis

129,166, 
168–174

CLEC16A, C‑type lectin domain family 16 member A; DC, dendritic cell; EPG5, ectopic P granules protein 5 homologue; HSCT, 
haematopoietic stem cell transplant; LAP, LC3‑associated phagocytosis; PTPN22, tyrosine-protein phosphatase non-receptor 
type 22; TLR, Toll-like receptor; Treg cell, regulatory T cell. * EPG5 mediates the degradative function of autophagy, which is 
necessary to prevent myopathies. ‡ PTPN22 regulated NOD2‑induced autophagy. §CLEC16A is a regulator of mitophagy.
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oxidase activity display reduced MHC class I and MHC 
class II presentation of fungal antigens133,153. Cells from 
patients with CGD also display defects in autophagy- 
mediated suppression of IL‑1β in the presence of the spiro­
chete Borrelia burgdorferi47. This failure of autophagy- 
mediated control of IL‑1β production contributes to 
TH17 cell-driven colitis in these patients, which can be 
treated with an antibody against IL‑1R (anakinra)154.

A defect in pathogen handling through autophagy 
may also explain why individuals with the lysosomal 
storage disorder Niemen–Pick disease type C 1 (NPC1) 
sometimes develop granulomatous inflammation in the 
intestine that resembles Crohn disease. A recent study 
has shown that macrophages derived from patients with 
NPC1 are unable to perform NOD2‑mediated xeno­
phagy155. In another example, a mutation in cystic fibro­
sis transmembrane conductance receptor (CFTR) leads to 
sequestration of the PI3KC3 complex into protein aggre­
gates and downregulation of autophagy156. This block in 
autophagy potentially contributes to chronic lung inflam­
mation and recurring pulmonary infections characteristic 
of cystic fibrosis. Indeed, the CFTR mutation increases the 
susceptibility of macrophages to Burkholderia cenocepacia 
infection and exacerbates IL‑1β production157. Autophagy 
is further inhibited following treatment of patients with 
cystic fibrosis with the antibiotic azithromycin and is 
associated with increased infection by nontuberculous 
mycobacteria158. Thus, restoration of autophagy may  
ameliorate many chronic inflammatory disorders.

Conclusion
Autophagy and related processes regulate intracellular 
trafficking of pathogens, the production of inflammatory 
mediators and the viability of cells that coordinate immu­
nity. Through these functions, the autophagy machinery 
controls complex multicellular immune responses at 
the whole organism level. The literature highlighted in 
this article reinforces three themes related to how these 
functions of autophagy are integrated into inflammatory 
signalling cascades to ensure an appropriate response to 
environmental threats and a return to homeostasis: one, 
pathways that induce autophagy are subject to regulation 
by autophagy; two, autophagy can increase or decrease 
different parts of the same inflammatory signalling 
cascade in a context-dependent manner; and three, 
non-canonical autophagy is pervasive. Although these 
principles apply to the role of autophagy across numerous 
physiological functions, they are perhaps most obvious in 

the recent literature examining the function of autophagy 
proteins in host defence and inflammatory disease.

These three themes have implications for the clinical 
application of autophagy inducers and inhibitors. Short-
term induction of autophagy is effective in reducing the 
burden of intracellular pathogens16, and it can simulta­
neously enhance TLR-mediated cytokine production 
and antigen presentation by DCs to improve adaptive 
immunity138. Treating chronic infections is potentially 
more challenging and will require consideration of the 
bidirectional communication between autophagy and 
inflammation. It is important to bear in mind that the 
measure of an effective immune response is not how 
vigorous it is, but how efficiently the threat is neutralized 
without damaging the host. The successful application of 
therapeutic intervention may require knowledge of when 
the role of autophagy in reducing inflammation com­
plements, rather than inhibits, the role of autophagy in 
reducing pathogen burden.

Treating complex inflammatory disorders by modulat­
ing autophagy has similar challenges. Before considering 
this strategy, it is important to identify the physiological 
situations in which the net effect of autophagy on the level 
of IL‑1β, type I IFN and other cytokines is positive ver­
sus negative. Also, the cell types and organs most affected 
by autophagy activity should be determined. Although 
the discovery of non-canonical forms of autophagy has 
increased the complexity of the field, we may be able to 
exploit the subtle differences in the function of different 
components of the autophagy machinery. Indeed, deleting 
some autophagy genes in macrophages leads to a more 
pronounced inflammatory outcome than deleting other 
autophagy genes25,151, perhaps indicating that inhibition 
of certain parts of the pathway can be compensated by 
other membrane-trafficking processes, and/or that some 
autophagy proteins have partially redundant functions. It 
may be possible to target different nodes of the autophagy 
pathway without broadly affecting all the downstream 
immune functions of autophagy proteins.

Finally, defects in autophagy coincide with ageing, 
metabolic disease, cancer, myopathies and neurodegen­
erative disorders. Indeed, transgenic mice engineered to 
overexpress Atg5 display increased lifespan and improve­
ments in glucose sensitivity and motor function159. 
If humans are to receive autophagy-based treatments for 
these conditions associated with ageing, it will be neces­
sary to understand the effect of altered autophagy on 
inflammation, which universally accompanies maladies.
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