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Biotic and abiotic factors predicting 
the global distribution and 
population density of an invasive 
large mammal
Jesse S. Lewis1, Matthew L. Farnsworth1, Chris L. Burdett2, David M. Theobald1, 
Miranda Gray3 & Ryan S. Miller4

Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species 
distributions. However, the relative importance of biotic and abiotic factors in predicting species 
distributions is unclear. In particular, biotic factors, such as predation and vegetation, including 
those resulting from anthropogenic land-use change, are underrepresented in species distribution 
modeling, but could improve model predictions. Using generalized linear models and model selection 
techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to 
evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting 
population density of an invasive large mammal with a global distribution. Incorporating diverse biotic 
factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution 
modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and 
potential evapotranspiration, were also important predictors. The predictive map of population density 
revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. 
This information can be used to proactively create conservation/management plans to control future 
invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic 
and abiotic factors shape species distributions across broad scales, can be advanced by incorporating 
diverse biotic factors.

Predicting and mapping species distributions, including geographic range and variability in abundance, is fun-
damental to the conservation and management of biodiversity and landscapes1. The ecological niche defines 
species-habitat relationships2–4 and provides a useful framework for understanding the range and abundance of 
species in relation to biotic and abiotic factors. Further, niche relationships across local scales can provide novel 
information about the ecology, conservation, and management of species at macro scales5. Most studies evaluat-
ing a species’ niche across their distribution focus on presence-absence occurrence data to predict the geographic 
range6; however, conservation and management plans for species can be improved by understanding patterns of 
population abundance and density across a species’ range7. In particular, evaluating population density, compared 
to occurrence, can reveal novel patterns of species distributions in relation to landscape factors8.

There is an ongoing paradigm shift in understanding how biotic and abiotic factors shape species distribu-
tions. Until recently, it was widely accepted that abiotic factors, such as temperature and precipitation, played 
the primary role in shaping distributions of species and biodiversity at broad scales (e.g., regional, continental, 
global extents) and that biotic factors were most important at fine scales (e.g., site, local extents)9–11. It is increas-
ingly recognized, however, that biotic factors are important determinants of species distributions at broad spatial 
scales, especially when considering biotic interactions12–16. Although interspecific competition can be an impor-
tant biotic determinant in species distribution models at broad scales, other forms of biotic interactions, such as 
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predation and symbioses, can also be important determinants15,17, but have received less attention18. In addition, 
although researchers have evaluated the effects of biotic interactions on geographic range limits18, relatively few 
studies have evaluated how biotic factors influence population density across a species’ range19,20, which can be 
more informative in understanding macro-ecological patterns7,21.

In addition to species interactions, biotic factors related to vegetation can influence species distributions and 
abundance at broad scales. In particular, anthropogenic land-use change is rarely considered when evaluating 
species distributions at broad scales; however, given the human footprint globally22 and projections for expand-
ing human impacts on the environment23,24, biotic factors created by human activities are potentially important 
predictors that can contribute to a better understanding of species distributions8. For example, agricultural crops 
are a dominant biotic factor across continents that are facilitated by human engineering and the redistribution of 
ecological resources and energy, which can have profound impacts on plant and animal populations across broad 
extents; agriculture can increase populations for some species through increased food, resource availability, and 
landscape heterogeneity, or decrease populations due to loss of habitat25–27. Ultimately, further evaluation is nec-
essary to understand the relative importance of abiotic and biotic factors in shaping species distributions across 
broad spatial scales13,15.

Invasive species are a primary driver of widespread and severe negative impacts to ecosystems, agriculture, 
and humans across local to global scales28. These introduced plants and animals often exhibit broad geographic 
distributions, can be relatively well studied across local scales, and provide novel opportunities to evaluate 
broad-scale patterns of niche relationships29. Predictions of potential geographic distribution of invasive species 
can provide critical information that can inform the prevention, eradication, and control of populations, which 
has been evaluated for many taxa, including plants30, amphibians31, and invertebrates32. However, few studies have 
predicted the potential ranges and abundance of non-native mammals33. Especially for wide-ranging species that 
can occur across broad extents of landscapes, predictions of how population density varies spatially can provide 
important information for prioritizing conservation and management actions.

Few species exhibit a global distribution that extends across Europe, Asia, Africa, North and South America, 
Australia, and oceanic Islands. Besides naturalized animals, such as the house mouse (Mus musculus) and brown 
rat (Rattus norvegicus), wild pigs (Sus scrofa; other common names include wild boar, wild/feral swine, wild/
feral hog, and feral pig) have one of the widest geographic distributions of any mammal; further, it exhibits the 
widest geographic range of any large mammal34, with the exception of humans. The expansive global distribu-
tion of wild pigs is attributed to its broad native range in Eurasia and northern Africa, widespread introduction 
by humans outside its native range, and superior adaptability, where it occurs in a wide variety of ecological 
communities, ranging from deserts to temperate and tropical environments35,36, with a corresponding diverse 
omnivorous diet37. Across its non-native range (Fig. 1; Supplementary Methods S1), including North and South 
America, Australia, sub-Saharan Africa, and many islands, wild pigs are considered one of the 100 most harmful 
invasive species in the world38 due to wide-ranging ecosystem disturbance, agricultural damage, pathogen and 
disease vectors to wildlife, livestock and people, and social impacts to people and property39–41. Wild pigs are 
therefore a model species to evaluate biotic and abiotic factors associated with population density because they 
exhibit a global distribution across six continents, are widely studied across much of their native and non-native 
(i.e., invasive or introduced) ranges, and previous research has indicated that their population density was related 
to abiotic factors across a continental scale, although it was ambiguous how biotic factors shape their abundance, 
warranting further study42.

To address these ecological questions and understand the relative importance of biotic and abiotic factors in 
shaping the global distribution of a highly invasive mammal, we evaluated estimates of population density of wild 
pigs across diverse environments on five continents. Specifically, we (1) evaluate how biotic (i.e., vegetation and 

Figure 1.  Geographic range of wild pigs across their native and non-native global distribution. Areas of 
white indicate locations in which wild pigs are likely not present. This map was created using ArcGIS 10.3.198. 
See Supplementary Methods S1 for a description of methods and citations used for creating the map of wild pig 
global distribution across its native and non-native ranges.
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predation) and abiotic (i.e., climate) factors (Table 1) shape population density across a global scale and (2) create 
a predictive distribution map of potential population density across the world. We also compare population den-
sity between island and mainland populations. Our results contribute novel insight into the relative roles of biotic 
and abiotic factors in shaping the distribution of species’ population densities across continental and global scales, 
particularly relating to human-mediated land-use change, which can provide critical information to management 
and conservation strategies.

Results
We compiled 147 estimates of wild pig density (# animals/km2), which resulted in 129 estimates of density across 
their global distribution used in our analyses (Fig. 1; Supplementary Table S2). Some areas contained >​ 1 density 
estimate, and these were averaged. Population density of wild pigs was higher on islands (n =​ 11) compared to on 
the mainland (n =​ 118) (t =​ 4.72, df =​ 10.93, p <​ 0.001; Supplementary Figure S3). For the untransformed den-
sity estimates, mean population density for on the mainland equaled 2.75 (se =​ 0.38) and islands equaled 18.52 
(se =​ 4.15). The highest estimates of population density occurred on islands, which reached upwards of 40 wild 
pigs/km2 (Supplementary Table S2). Due to differences in population density between islands and on the main-
land, we used density estimates from mainland populations in our subsequent analyses.

Population density was influenced by both biotic and abiotic factors across the global distribution (Tables 2 
and 3; Supplementary Table S4). The suite of best models all included combinations of biotic and abiotic factors 
(Table 2) and the top model (AICc =​ 237.94; model weight =​ 0.68; adjusted R2 =​ 0.55) had >​ 1,000 times more 
support as the best approximating model than the top model considering only abiotic factors (AICc =​ 311.30; 
model weight =​ 7.94 ×​ 10−17) (Supplementary Table S4). The variables with the greatest importance included 
potential evapotranspiration, large carnivore richness, precipitation during the wet and dry seasons, unvege-
tated area, and agriculture, which also exhibited 95% confidence intervals that did not overlap zero (Table 3). 
Density was greatest at moderate levels of potential evapotranspiration and agriculture, decreased with large 
carnivore richness and amount of unvegetated area, and increased with precipitation during the wet and dry sea-
sons (Fig. 2); percent forest cover was unsupported in models when considering the suite of variables in analyses.

Using the full model-averaged results of parameter estimates, we created a predictive map of global wild 
pig population density (Fig. 3; Supplementary Figure S5). Wild pig populations were predicted to occur at low 
to high population densities across all continents, including large areas of land where wild pigs are currently 
absent. The highest predicted densities occurred in southeastern, eastern, and western North America, through-
out Central America, northern, eastern, and southwestern South America, western, southern, and eastern 
Eurasia, throughout Indonesia, central and southern Africa, and northern and southeastern Australia (Fig. 3; 
Supplementary Figure S5). Results of k-fold cross validation demonstrated that the model had good predictive 
ability with a mean squared prediction error (MSPE) of 0.22 and a Pearson’s correlation between observed and 
predicted values of 0.80 (t =​ 17.711, df =​ 181, p-value <​ 0.001).

Discussion
Population density of an invasive large mammal was strongly influenced by both biotic and abiotic factors across 
its global distribution. Consistent with the prediction that abiotic factors drive broad-scale patterns of species 
distribution, potential evapotranspiration (PET) and precipitation variables were important predictors of popu-
lation density on a global scale. In addition, contributing to growing evidence that biotic factors are also impor-
tant determinants of broad-scale patterns of species distributions, both biotic interactions and vegetation played 
important roles in predicting the distribution of wild pig populations globally. Further, land-use change mediated 
by human activities strongly predicted the broad-scale distribution of an invasive large mammal. Consistent with 
previous studies evaluating how population density of ungulates varied across broad scales, both bottom-up 
(resource-related) and top-down (predation) factors influenced the distribution of wild pig populations19,42,43. 
Ultimately, wild pig populations across their global distribution appeared to respond to biotic and abiotic factors 
related to plant productivity, forage and water availability, cover, predation, and anthropogenic land-use change.

Using both biotic and abiotic factors to evaluate broad-scale species distributions can create more realistic 
maps of range and density with better predictive ability16,44, which can better inform management and conserva-
tion strategies for species. For example, population density of wild pigs was highest in landscapes with moderate 
levels of agriculture and PET, lower large carnivore richness and amount of unvegetated area, and greater pre-
cipitation during the wet and dry seasons. Using these relationships, we created a predictive map of population 
density across the world, which can be used to manage existing populations and predict areas where wild pig 
populations are likely to expand or invade if given the opportunity. Ultimately, this information can be used to 
prioritize management activities in areas at risk of invasion and with expanding populations.

Abiotic factors, such as temperature and precipitation, are consistently found to be primary determinants of 
species distributions at broad scales11. Potential evapotranspiration can be especially informative for understand-
ing broad-scale ecological patterns45, such as species distributions. This was supported in our research where PET 
was the most important predictor of population density across the global distribution of wild pigs. Potential evap-
otranspiration is highly correlated with temperature variables, thus indicating that wild pig density was greatest at 
relatively moderate temperatures and density was lower in areas exhibiting extreme low and high temperatures. 
In addition, the strong support of precipitation variables in our models is consistent with the association of wild 
pigs with vegetation cover, forage, and water36. In particular, precipitation likely facilitates rooting behavior by 
wild pigs by softening the soil substrate46.

Biotic factors were among the most supported variables predicting population density across a global scale. 
Our results indicated that the presence of large carnivores can influence wild pig population density. Large carni-
vore richness was strongly supported in our models and exhibited a negative relationship with wild pig density; 
as the number of large carnivore species increased, wild pig density decreased, which is consistent with studies in 
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Eurasia and Australia42,47,48. In addition, interspecific competition can influence the distribution of species and 
it has been hypothesized that wild pigs have not extensively invaded wildlands in some regions of sub-Saharan 
Africa due to the presence of other pig species that exhibit similar niches49. Although competition with other 
species might influence wild pig populations and their distribution49–51, in other cases wild pigs are reported to 
spatially and temporally partition habitat use to reduce niche overlap with potential competitors52–54 and not 
show evidence for interference competition with related mammals (e.g., species within the suborder Suiformes), 
such as native peccary species55, thus, it is unclear how interspecific interactions influence wild pig populations 
across their global distribution. Further, understanding potential interspecific competition for invasive species 
can be especially challenging in non-native habitat because invaders have not coevolved with competitors or 
predators and thus it is difficult to predict which species will be subordinate or dominant in potential competitive 
interactions or how competition might influence species distributions in unoccupied habitat17,18,56. Because it was 

Landscape Variable
Category, Description of Variable, and 
Calculation Method

Predicted 
Relationship

Supporting Citations for 
Prediction Data Source

Agriculture
Biotic/Vegetation; all agricultural crop 
lands; proportional area within 10 km 
radius buffer

Positive, quadratic
Geisser and Reyer99, 
Honda59, Ballari and 
Barrios-García37, Morelle 
and Lejeune100

Global Land Cover by National 
Mapping Organizations 
(GLCNMO) 2008; cropland 
cover types

Enhanced Vegetation Index 
(EVI)*

Biotic/Vegetation; plant productivity; 
mean value within 10 km radius buffer Positive Plant productivity: Melis, 

et al.42.
Google Earth Engine; Landsat 
5 TM 32-Day EVI Composite 
1984–2012

Forest Canopy Cover
Biotic/Vegetation; all forest over 5 m; 
mean value of canopy cover within 
10 km radius buffer

Positive Honda59, Morelle, et al.60.
Google Earth Engine; Hansen 
Global Forest Change v1.0 year 
2000

Forest Minus Agriculture*
Biotic/Vegetation; difference between 
the proportion of forest and agriculture 
within 10 km radius buffer

Positive
See forest (classified as 
present or absent for this 
variable) and agriculture 
descriptions

See data sources for forest canopy 
cover and agriculture

Normalized Difference 
Vegetation Index (NDVI)*

Biotic/Vegetation; plant productivity; 
mean value in 10 km radius buffer Positive Plant productivity: Melis, 

et al.42.
Google Earth Engine; Landsat 
5 TM 32-Day NDVI Composite 
1984–2012

Unvegetated Area
Biotic/Vegetation; cover types lacking 
vegetation, including bare, snow and 
ice, and urban; proportion within 10 km 
radius buffer

Negative Plant productivity: Melis, 
et al.42.

Global Land Cover by National 
Mapping Organizations 
(GLCNMO) 2008; sparse 
vegetation, bare area, urban, and 
snow and ice cover types

Large Carnivore Richness

Biotic/Predation; number of terrestrial 
large carnivores presented by Ripple, 
et al.63, excluding the panda bear and 
adding the dingo; mean value within 
40 km radius buffer

Negative
Woodall47, Jedrzejewska, 
et al.50., Sweitzer101, Ickes48, 
Melis, et al.42., Mayer and 
Brisbin36, Massei, et al.58.

Large carnivore distributions 
from IUCN79, Dingo distribution 
in Australia102

Actual Evapotranspiration*
Abiotic/Climate; combination of 
evaporation of water and transpiration 
from plants; mean value within 40 km 
radius buffer

Positive, quadratic Fisher, et al.45.
Global High-Resolution Soil-
Water Balance: 1950–2000; 
Trabucco and Zomer103

Potential Evapotranspiration
Abiotic/Climate; combination of 
evaporation of water and transpiration 
from plants; mean value within 40 km 
radius buffer

Positive, quadratic Fisher, et al.45.
Global High-Resolution Soil-
Water Balance: 1950–2000; 
Trabucco and Zomer103

Precipitation Annual *
Abiotic/Climate; total precipitation 
during annual period; mean value within 
40 km radius buffer

Positive Woodall47, Weltzin, et al.104 
but see Geisser and Reyer99

Bioclim WorldClim World 
Climate Data – Bio 12 Annual 
Precipitation (mm); 1950–2000

Precipitation Driest Season
Abiotic/Climate; total precipitation 
during driest 3 month annual period; 
mean value within 40 km radius buffer

Positive
Mortality related to periods 
of low precipitation, 
especially during 
summer105

Bioclim WorldClim World 
Climate Data – Bio 17 
Precipitation of Driest Quarter 
(mm); 1950–2000

Precipitation Wettest Season
Abiotic/Climate; total precipitation 
during wettest 3 month annual period; 
mean value within 40 km radius buffer

Positive Woodall47, Weltzin, et al.104 
but see Geisser and Reyer99

Bioclim WorldClim World 
Climate Data – Bio 16 
Precipitation of Wettest Quarter 
(mm); 1950–2000

Temperature Annual*
Abiotic/Climate; mean temperature over 
annual period; mean value within 40 km 
radius buffer

Positive, quadratic Jedrzejewska, et al.50.
Bioclim WorldClim World 
Climate Data – Bio 1 Annual 
Mean Temperature (C); 
1950–2000

Temperature Summer*
Abiotic/Climate; mean temperature over 
warmest 3 month annual period; mean 
value within 40 km radius buffer

Positive, quadratic
Geisser and Reyer99, 
McClure, et al.57., but see 
Groves106

Bioclim WorldClim World 
Climate Data – Bio 10 Mean 
Temperature of Warmest 
Quarter; 1950–2000

Temperature Winter*
Abiotic/Climate; mean temperature over 
coldest 3 month annual period; mean 
value within 10 km radius buffer

Positive, quadratic
Bieber and Ruf107, Geisser 
and Reyer99, Melis, et al.42., 
Honda59, McClure, et al.57., 
but see Groves106

Bioclim WorldClim World 
Climate Data – Bio 11 Mean 
Temperature of Coldest Quarter; 
1950–2000

Table 1.   Description of landscape variables considered in analyses evaluating how biotic and abiotic 
factors influenced wild pig population density across their global distribution. An asterisk (*) indicates 
landscape variables that were excluded from the final analyses due to high correlation with other variables.
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unknown how competitive interactions between wild pigs and other species might influence their distribution, 
particularly outside their native range, competition was not included in our analyses. To understand how compe-
tition between non-native and native species influences species distributions, field studies evaluating interspecific 
competition are necessary across the wild pig’s native and non-native geographic range, particularly across local 
spatial scales.

Although biotic interactions between animals are the primary biotic factors evaluated in species distribution 
models at broad scales, the role of plant communities has received less consideration. In particular, anthropogenic 
land-use change increasingly influences vegetation communities across continents and warrants a better under-
standing for how human activities are shaping broad-scale distributions of plant and animal populations22,24. For 
example, agriculture is a dominating land cover type across continents23,25, which can potentially benefit species 
distributions in at least two ways. Agriculture can (1) increase population density within areas of a species’ cur-
rent geographic range through supplemental food and increased resource availability and (2) allow geographic 
ranges to expand by creating habitat in areas that were previously unsuitable. In contrast, as agriculture increas-
ingly dominates landscape patterns at broad extents, cover and other resources correspondingly decrease, which 
can negatively impact the geographic range and population density of some species. Our results demonstrate that 
agriculture can produce both positive and negative effects on populations, depending on the levels of agriculture. 
At intermediate levels of agriculture, population density of wild pigs was greatest, likely due to an optimal mix 
of food and cover. Whereas, at high levels of agriculture, population density decreased precipitously, which was 
likely a result of inadequate cover. Our results indicate that heterogeneous landscapes with a mix of agriculture 
and cover will support the greatest populations of wild pigs, which is consistent with broad-scale patterns of wild 
pig populations in North America and Eurasia57–59. Due to relatively high predicted population densities of wild 
pigs inhabiting heterogeneous landscapes, these regions would likely experience the greatest crop damage, lead-
ing to high economic loss to farmers.

Forest is considered a key habitat type preferred by wild pigs59,60. In univariate analyses, forest was an impor-
tant positive predictor of wild pig density (β​ =​ 0.170, se =​ 0.056). When considering additional predictor variables 
in our models, however, forest was relatively unimportant in predicting wild pig density, which is also consistent 
when evaluating wild pig occurrence over broad scales57. Thus, the interpretation of how forest influences the 
distribution of wild pigs must be considered in the context of other variables included in models, where abiotic 
factors might adequately explain forest distribution (see discussion below). However, as predicted, vegetation 
and cover play a strong role in predicting wild pig density; as the amount of unvegetated area increased across 
the landscape, wild pig population density decreased, which is consistent with geographic distribution maps of 
wild pigs61.

In some systems, abiotic factors can be stronger predictors of species distributions, than biotic factors, because 
of high correlations between these two factors62. Our study indicated that both factors can be important predic-
tors of species distributions, potentially because abiotic factors may poorly predict biotic factors stemming from 
human activities. In addition, human influences might weaken the correlation between abiotic and biotic factors. 
For example, humans can significantly reduce the number of large carnivores in an area63, although these species 
would be predicted to occur across broad areas based on abiotic factors and historic biotic conditions. In addition, 
human land use change can lead to unpredictable biotic patterns in relation to abiotic factors, such as through 
agricultural landscape conversion. Although soil types might support crop production, many agricultural areas 
occur in arid landscapes requiring irrigation of water and application of fertilizer to maintain production25. Thus, 
agricultural crops could not grow in many areas based on broad-scale climate factors alone, and therefore, abiotic 
factors can be poor predictors of agricultural practices in some regions. Indeed, there likely are other examples 
where abiotic and biotic factors may exhibit low correlation in some systems (e.g., location of human activities 
and development, altered interspecific interactions due to human activities, and other forms of anthropogenic 
land use change). Ultimately, it can be useful to consider biotic factors in species distribution models that might 
be poorly predicted by abiotic factors due to human activities.

Additional biotic factors that can influences species distributions on a broad scale, particularly invasive 
species, include the role of humans in distributing the founding individuals of new populations. For example, 
invasive wild pig populations have arisen across several continents recently through human activities. Illegal 
translocations by humans for hunting purposes can facilitate the long-distance expansion of wild pig populations 
into new areas64–66, which is currently a primary source of new populations globally39,41. Further, in countries 
such as Canada, Brazil, and Sweden, wild pig farms were the propagule source for recent populations of wild 
pigs across broad regions, which are currently spreading into new areas67–69. Indeed, propagule pressure (i.e., the 
number of individuals introduced and release events) determines both the likelihood of invasive species becom-
ing established, as well as the rate of geographic range expansion60,70. In addition, invasive species that exhibit 
r-selected characteristics (e.g., early maturity, short generation time, and high fecundity) can be more likely to 
successfully invade novel landscapes71. Even at low population densities, invasive species with high reproductive 
output are more likely to establish populations in areas of lower quality habitat72. Given that wild pigs are one of 
the most fecund large mammals (e.g., mean litter sizes ranging from 3.0 to 8.4 piglets per sow with the potential 
for >​1 litter annually)36, their reproductive characteristics might increase the probability of establishment and 
enable them to compensate for small population sizes when introduced into novel environments across a range 
of habitat qualities.

Population density, compared to presence-absence occurrence, can provide more informative conclusions 
of species distributions in relation to biotic and abiotic factors7,8. For example, although large carnivores likely 
do not exclude wild pigs from habitat across broad scales, our study revealed they can influence abundance. 
However, occurrence of species would remain constant across varying population densities, unless it resulted in 
species exclusion. Ultimately, population densities can provide more detailed information about species distribu-
tions, which can better inform conservation and management plans and policy7. Studies analyzing presence-only 
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data with logistic regression and Maximum Entropy (MaxEnt) models have examined methods to address spatial 
sampling bias73–75 and additional evaluations would be useful for studies using population density data with 
multiple linear regression. Further, global analyses of population genetics could be used to identify groups and 
the proportion of wild and domestic genes across wild pig populations, which could be used to incorporate pop-
ulation structure into analyses to better understand population characteristics.

Predicting species distributions provides critical information to the management and conservation of bio-
diversity, especially for controlling invasive species. Without intensive management actions, our study predicts 
that there is strong potential for wild pigs to expand their geographic range and further invade expansive areas 
of North America, South America, Africa, and Australia. Although wild pigs currently occupy broad regions of 
predicted habitat in their non-native range, many regions of predicted habitat are currently unoccupied and may 
be at high risk for future invasion. These areas might warrant increased surveillance by local, state, and federal 
agencies to counter the establishment of populations. Although attention in unoccupied areas that are predicted 
to support high densities of wild pigs might warrant priority for countering population introductions, wild pigs 
can persist in relatively low quality habitat (e.g., arid and/or cold regions) and these areas also warrant attention 
to halt invasions. Given the potential for wild pig populations to rapidly expand once established36, predictions of 
potential population density in unoccupied habitat can provide critical information to land managers, which can 
be used to proactively develop management plans to prevent introductions and control or eradicate populations 
if they become introduced.

Methods
Density Estimates.  To evaluate the population density (i.e., number of individuals per unit area) of wild 
pigs throughout their global distribution, we compiled density estimates from the literature throughout its native 
and non-native ranges across each continent and island for which data were available (Supplementary Table S1). 
Previous research evaluated how population density of wild pigs varied across western Eurasia42 and we incor-
porated these 54 estimates of population density into our analysis. In addition, we followed the methodological 
recommendation of Melis et al.42. to average data when multiple estimates were available for >​1 season or year 
at a study area. Island populations typically exhibit higher population density compared to mainland popula-
tions76,77. We thus compared estimates of wild pig population density between island and mainland populations; 
if population density for islands was significantly higher than on the mainland, we focused on only evaluating 
mainland populations in subsequent analyses.

Potential 
Evapotranspiration 

Large 
Carnivore

Precipitation Wet 
Season Unvegetated Agriculture

Precipitation Dry 
Season Forest K AICc Δ AICc weight log(L)

* * * * * * 10 237.94 0.00 0.68 −​108.33

* * * * * * * 11 240.18 2.24 0.22 −​108.32

* * * * * 9 243.00 5.06 0.05 −​111.98

* * * * * * 10 244.40 6.46 0.03 −​111.56

* * * * * 8 246.14 8.20 0.01 −​114.65

* * * * * * 9 248.20 10.26 0.00 −​114.58

* * * * * 9 248.25 10.31 0.00 −​114.60

* * * * * * 10 249.14 11.20 0.00 −​113.93

* * * * * 9 252.95 15.01 0.00 −​116.95

* * * * 7 253.93 15.99 0.00 −​119.64

Table 2.   Model selection results using Akaike Information Criteria (AICc) from analyses evaluating 
how population density of wild pigs was related to biotic and abiotic factors. A “*” in the covariate 
columns indicates whether the variable was included in the model. K is the number of variables included in 
the model. Note that Potential Evapotranspiration and Agriculture include both main and quadratic effects 
(thus accounting for two parameters for each of these variables). Only the top 10 models are reported. See 
Supplementary Table S4 for AICc model selection results of all possible variable combinations.

Potential 
Evapotranspiration

Large 
Carnivore

Precipitation 
Wet Season Unvegetated Agriculture

Precipitation 
Dry Season Forest

Variable Importance 
Values 1.00 1.00 1.00 0.99 0.98 0.92 0.25

Parameter Estimate 
(Standard Error) 

m: 0.443 (0.056)  
q: −​0.226 (0.046) −​0.243 (0.043) 0.233 (0.055) −​0.203 (0.061) m: 0.236 (0.076) 

q: −​0.118 (0.038) 0.100 (0.050) −​0.001 (0.029)

Table 3.   Model selection results for parameters evaluating how population density of wild pigs is 
influenced by biotic and abiotic factors. Variable importance values sum model weights across the entire data 
set for each variable. Unconditional model-averaged parameter estimates with associated standard errors are 
based on standardized values. Potential Evapotranspiration and Agriculture include both main effect (m) and 
quadratic (q) terms, whereas all other covariates report linear relationships.
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Models evaluating and predicting species distributions can be improved by including areas of absence (a.k.a., 
pseudo-absence or background locations) or zero density to sample the full range of available landscape con-
ditions1 to predict the potential range of a species, absence locations should occur outside the environmental 
domain of the species, but within a reasonable distance of the species’ geographic range78. Because wild pigs have 
occurred within their native range for thousands of years, we assumed that populations were at equilibrium and 
the species had colonized available habitat associated with its geographic distribution. Thus, regions adjacent to 
its native distribution that were classified as unoccupied were assumed to be unsuitable for population persistence 
due to unfavorable environmental conditions. In addition, spatial sampling bias (i.e., uneven sampling across 
geographic extents) can be addressed by increasing the number of background locations in areas with greater 
sampling73,74. The majority of density estimates used in our study occurred within the wild pig’s native range of 
Europe and Asia and we focused sampling of background locations associated with this region. To include loca-
tions with estimates of zero density in our analyses, we used a three-step approach. First, we created a buffered 
region that occurred across the area between 100–1000 km around the boundary of the wild pig’s native range79. 
Next, we calculated the spatial extent of the native range and buffered regions. Lastly, accounting for the area of 
each region, we selected a random sample of locations within the buffered region that was proportional to the 
number of estimates used in the native terrestrial range of wild pigs. Based on this approach, we used 65 locations 
of zero density in our analyses that occurred across central Russia, Mongolia, western China, Saudi Arabia, and 
northern African countries. Zero density estimates were used in analyses relating wild pig density to landscape 
variables and excluded when comparing population density between island and mainland populations.

Figure 2.  Relationships of biotic and abiotic factors with population density (natural log scale; #/km2) of wild 
pigs, including potential evapotranspiration (a), large carnivore richness (b), unvegetated (c), agriculture (d), 
precipitation during the wettest season (e), precipitation during the driest season (f), and forest canopy cover (g).
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Landscape Variables.  We considered a suite of biotic and abiotic landscape variables, which were divided 
into vegetation, predation, and climate factors (Table 1) that we hypothesized to influence population density of 
wild pigs. We used landscape variables that were available globally and, where possible, over long time periods 
(i.e., estimates averaged over several decades) that coincide with the density estimates we compiled for our analy-
ses. Geospatial data layers were acquired through either Google Earth Engine80 or were downloaded from online 
sources (Table 1).

The biotic factors that we evaluated included agriculture, broadleaf forest, enhanced vegetation index (EVI), 
forest canopy cover, difference in the proportion between forest and agriculture (to characterize landscape het-
erogeneity), normalized difference vegetation index (NDVI), large carnivore richness, and unvegetated area 
(Table 1). We expected a positive relationship between density and all vegetation factors, except unvegetated area, 
due to their association with increased food availability, plant productivity, and cover. In addition, we expected a 
quadratic relationship between population density and agriculture because we predicted density to be greatest at 
moderate levels of agriculture (due to a mix of cover and food) and low at high levels of agriculture (due to a lack 
of adequate cover). Finally, we expected a negative relationship between population density and large carnivore 
richness.

The abiotic factors that we evaluated included two measures of ecological energy regimes, actual evapotran-
spiration (the amount of water loss from evaporation and transpiration, which is related to plant productivity) 
and potential evapotranspiration (PET; the amount of evaporation and transpiration that would occur with a 
sufficient water supply, considering solar radiation, air temperature, humidity, and wind speed;45). Actual evap-
otranspiration is a measure of water-energy balance and potential evapotranspiration is considered a measure of 
ambient energy and often highly correlated with temperature variables81. Although evapotranspiration variables 
can include elements of biotic (i.e., transpiration from plants) and abiotic (i.e., climate and water) factors, they 
were classified as abiotic for our analyses. In addition, we evaluated precipitation during dry and wet seasons, 
and annually, and temperature during summer and winter, and annually (Table 1). We predicted a positive rela-
tionship between density and precipitation variables due to associated increases in forage, water, and cover and 
quadratic relationships between density and evapotranspiration and temperature variables due to expected peak 
densities at intermediate levels and low densities at low and high levels.

Modeling.  We used data from the wild pig’s native and non-native range in our modeling. Although niche 
shifts between a species’ native and non-native range appear to be uncommon and it is often assumed that spe-
cies exhibit niche stasis or conservatism30,82–84 through space and time, models that use data only from a species’ 
native range can exhibit poor predictive power in the species’ non-native range85–87. Therefore, it is important to 
include data from the species’ entire distribution to increase the predictive ability of models across both the native 
and non-native ranges32,88,89. Because wild pigs have been established across much of their non-native range for an 
extended period of time (e.g., typically greater than a century), we assumed that populations used in our analyses 
had achieved a localized equilibrium with their environment.

Figure 3.  Map of predicted population density of wild pigs for habitat occurring across the world. For 
terrestrial environments, areas of white represent low density (1 individual/km2), orange moderate density  
(6 individuals/km2), and dark red high density (≥​11 individuals/km2). Maps were created using Google Earth 
Engine80 and QGIS 2.14.390. See Supplementary Figure S5 for finer scale maps of predicted population density 
of wild pigs for Europe, Asia, Africa, Australia, North America, and South America.
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All geospatial data layers were evaluated using QGIS90 and Google Earth Engine80 and statistical analyses 
were conducted using R91. Because there is uncertainty about the exact location of studies and the scale in which 
processes might influence wild pig densities, we evaluated multiple scales for each covariate using 10, 20, and 
40 km radius buffers around the location of each density estimate (Table 1). Thus a moving window approach 
was conducted so that each pixel within a spatial layer summarized the landscape within the buffered radius. To 
determine the best scale for analyses we used a multi-criteria approach. First, variables were centered and scaled 
to improve model fit92. Next, we considered quadratic relationships for landscape factors that were predicted to 
exhibit a curvilinear pattern (Table 1). Last, we selected the best scale and relationship for each covariate based 
on wild pig ecology, model comparisons using Akaike’s Information Criterion corrected for small sample size 
AICc;93, and plots of residuals. Once the appropriate scale was determined for each variable (Table 1), we eval-
uated the Pearson correlation among all variables and excluded highly correlated variables (r >​ 0.70) from our 
final analysis.

We used multiple linear regression to evaluate how population density was influenced by our final 
suite of biotic and abiotic factors (Table 1). The distribution of density estimates were right skewed, thus we 
log-transformed density estimates using the natural logarithm42. To compare the relative importance of biotic 
and abiotic factors and to determine parameter estimates of variables, we ranked all possible models using AICc, 
model-averaged parameter estimates (i.e., full conditional), and calculated variable importance values93–95. We 
used model weights and evidence ratios to evaluate if biotic factors improved model fit by comparing models 
including only abiotic factors to models also including biotic factors. Model averaged parameter estimates were 
used to create a predictive global map of wild pig density (1 km2 resolution). This map displays the maximal 
potential density of wild pigs in relation to the biotic and abiotic factors used in our modeling and reflects pre-
dicted densities that would be achieved if wild pigs had access to all landscapes, their movements were unre-
stricted, and management activities did not suppress populations. We validated our model using mean squared 
prediction error (MSPE)96 and k-fold cross validation and selected the number of bins based on Huberty’s rule 
of thumb (k =​ 4)97.
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