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T cell costimulation blockade blunts pressure
overload-induced heart failure
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Heart failure (HF) is a leading cause of mortality. Inflammation is implicated in HF, yet clinical

trials targeting pro-inflammatory cytokines in HF were unsuccessful, possibly due to

redundant functions of individual cytokines. Searching for better cardiac inflammation targets,

here we link T cells with HF development in a mouse model of pathological cardiac

hypertrophy and in human HF patients. T cell costimulation blockade, through FDA-approved

rheumatoid arthritis drug abatacept, leads to highly significant delay in progression and

decreased severity of cardiac dysfunction in the mouse HF model. The therapeutic effect

occurs via inhibition of activation and cardiac infiltration of T cells and macrophages, leading

to reduced cardiomyocyte death. Abatacept treatment also induces production of

anti-inflammatory cytokine interleukin-10 (IL-10). IL-10-deficient mice are refractive to

treatment, while protection could be rescued by transfer of IL-10-sufficient B cells.

These results suggest that T cell costimulation blockade might be therapeutically exploited

to treat HF.
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H
eart failure (HF) is a major cause of hospitalization,
morbidity and mortality; it is often encountered as the
final stage of pathological cardiac hypertrophy and

fibrosis brought about by hemodynamic overload1. Some forms
of cardiomyopathy—termed inflammatory cardiomyopathies—
are caused by autoimmunity or by immune responses to
infection, indicating that cardiac dysfunction can also result
from disease of the immune system2. Intriguingly, recent studies
have uncovered that HF induced by hemodynamic overload also
involves a significant inflammatory component3–5. This
inflammation is characterized by the presence of innate
immune cells (macrophages) in the myocardium and
upregulation of pro-inflammatory cytokines, such as tumour-
necrosis factor-a, interleukin (IL)-6 and IL-1b, which impact
negatively on disease outcome3,6,7. Even though its absence can
be compensated8, IL-6 administration is sufficient to set off the
process leading to pathological cardiac hypertrophy9. Innate
immune cells and cytokines are believed to promote cardiac
inflammation, worsening disease outcome.

Although the concept of inflammation as a major component
of HF is consolidated10, clinical trials attempting to combat HF
by blocking cytokines have not been successful5,11. The reason for
this failure could be the redundant function of individual
cytokines8. Therefore, in order to identify more suitable
immunotherapy targets for HF, we need to better characterize
the involvement and hierarchy of different soluble and cellular
(innate and adaptive) immune mediators in the disease.

The innate immune system acts as a non-specific, but effective
and rapid, first line of defense against pathogens. During long-
lasting responses, however, it becomes subject to the control of
the adaptive immune system’s T lymphocytes (T cells)12, which,
along with B cells, mediate antigen-specific immune responses.
Therefore, T cells, if involved in HF pathogenesis, could become
attractive and more specific immunotargets for therapeutic
intervention. This assumption is supported by the implication
of T cells in pressure overload-induced cardiac fibrosis13.

Here we identified the immune mediators involved in pressure
overload-induced HF, finding that T cells infiltrated the
pathologically hypertrophic myocardium, in line with their role
in long-lasting inflammation. Indeed, inflammation was a key
factor distinguishing pathological hypertrophy from physiologi-
cal, ‘benign’ hypertrophy, which occurs during exercise training.
Taking advantage of the presence of T cells, we utilized
abatacept—an Food and Drug Administration (FDA)-approved
CTLA4-Ig fusion protein that blocks T cell costimulation,
selectively inhibiting pro-inflammatory T cell function14—to
significantly blunt cardiac dysfunction in a mouse HF model.
Inhibition of disease progression was achieved even when the
drug was administered at an advanced stage of the pathology.
Abatacept systemically inhibited T cell activation, cardiac
macrophage maturation and reduced cardiac T cell and
macrophage infiltration, leading to reduced cardiomyocyte
death. The protective effect was lost in the absence of
anti-inflammatory cytokine interleukin-10 (IL-10), which was
produced mostly by B cells. Adoptive transfer of IL-10-sufficient
B cells but not T cells into IL-10-deficient recipient mice in the
HF model rescued the loss of protection. Taken together, our
findings indicate that T cell-mediated responses are involved in
the development of pathological cardiac hypertrophy and that
interfering with these responses, using existing, clinically
validated strategies, has the potential to become a therapeutic
option for HF.

Results
Analysis of immune mediators during the progression to HF.
We subjected mice to transverse aortic constriction (TAC), the

standard model for pathological cardiac hypertrophy15, and
assessed the presence of soluble and cellular immune mediators
within the myocardium via quantitative PCR (qPCR) at 1 and
4 weeks after TAC surgery (Fig. 1). Cardiac functionality
was monitored via regular transthoracic echocardiography
(Supplementary Table 1). At 1 week post-TAC, we found a
significant upregulation of Tnfa and Il6, as previously
described7,16. Cells of the immune system are recruited to
and/or retained at their sites of action via chemokines. We found
a significant early expression of Ccl2 and Cxcl11 (ref. 17) as well
as Ccl4, Ccl5 and Cxcl10 (Fig. 1), the majority of which are
markers of a type 1 (M1/Th1)-polarized inflammatory
response18. Itgam (CD11b), a hallmark of the presence of
innate immune cells, such as macrophages or monocytes,
was also upregulated 1 week post-TAC, suggesting that type
1-polarized innate immune cells are recruited to the stressed
myocardium early on.

We observed significant upregulation of the T-cell-specific
marker Cd3e at 4 weeks post-operation, suggesting that T cells
expand or are recruited to the stressed left ventricle at this later
timepoint. Concurrent upregulation of Il4, a hallmark of type 2
(M2/Th2)-polarized responses, is compatible with a gradual shift
from an M1 to an M2/Th2 response as the myocardium
progresses toward HF, though this is speculative. Th2-polarized
T cells promote fibrosis in other pathological conditions19.
Transcripts of cytokines that characterize Th1 and Th17
responses, such as Ifng and Il17, or of the anti-inflammatory
cytokine Il10 were not significantly altered (Supplementary
Fig. 1a).

We asked whether the onset of inflammation correlated with T
cell infiltration and/or proliferation. Assuming a linear regression
model, we first examined the correlation between Cd3e expression
(indicative of T cell presence) and Il6 expression (indicative of
inflammation) in samples derived from TAC-operated mice, 4
weeks post-operation. The results (Supplementary Fig. 1b, red
line) show a significant positive slope, suggesting that such a
correlation exists. A likely interpretation would be that inflam-
mation drives the infiltration and/or proliferation of T cells into
the myocardium. Repeating the analysis for sham-operated
animals (Supplementary Fig. 1b, blue line) also yielded a
significant positive slope, however with lower mean il6 and
cd3e values. This suggests that, even in the absence of the aortic
constriction, the limited (but nonetheless present) inflammation
generated by the sham operation (which does involve surgery,
albeit without permanent constriction) may be leading to a
limited infiltration/proliferation of T cells, even if this is
significantly lower than in TAC (as shown in Fig. 1).

Immune response mediator absence in physiological hypertrophy.
The above show that pathological cardiac hypertrophy, which
leads to fibrosis and HF, is associated with inflammation. Yet
non-pathological forms of cardiac hypertrophy also exist. The
most physiologically relevant model for these is exercise training.
Mice subjected to a running program show ‘physiological’
hypertrophy in which the increase in cardiomyocyte size is
accompanied by an increased functionality of the cells and
absence of fibrosis20,21. We thus asked whether the immune
mediators that we identified in the TAC model of HF were also
present in exercise-trained mice. We found no significant
upregulation of immune response mediator transcripts in these
mice (Supplementary Fig. 2a). This finding strongly suggests that,
unlike pathological hypertrophy, physiological hypertrophy
features a complete absence not only of fibrosis, but also of
an innate and adaptive immune response. A more ‘artificial’,
non-pathological hypertrophy model, induced by cardiac-specific
overexpression of the constitutively active E40K mutant of the
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serine-threonine kinase Akt in the heart22, displayed an
incomplete array of pro-inflammatory mediators present in the
left ventricle of 8-week-old Akt transgenic mice (Supplementary
Fig. 2b). Altogether, these results support a positive association
between inflammation and the pathological nature of cardiac
hypertrophy.

T cell presence in the stressed myocardium in mice and humans.
Inhibition of inflammation as a strategy against HF has been
attempted before, but the targets utilized resulted to be inade-
quate for this end5,11. T cells are required for the maintenance of
long-term immune responses12 and thus could represent a better
therapeutic target. Driven by the finding of T cell-specific Cd3e
messenger RNA (mRNA) upregulation in TAC mice at 4 weeks
post-TAC, we further investigated the presence of T cells in
pathological hypertrophy. Examining mouse left ventricles by
immunohistochemistry with anti-CD3e (Fig. 2a), we found that
T cells were significantly more abundant in TAC versus sham
mice at 4 weeks (Fig. 2b), confirming the mRNA data. T cells
react in an antigen-specific manner, involving few specific clones
that subsequently expand in number. Thus, we hypothesized that
T cells should also be detectable in the heart at an early stage of
disease. We thus performed immunohistochemistry analysis on
mice at 1 week post-TAC, and indeed we were able to detect T
cells (Fig. 2c). We also performed lymphocyte-enriching gradient
purification on cardiac suspensions from hearts of mice at 1 week
post-TAC, and detected CD3e-expressing cells in the resultant
cell populations by flow cytometry (Fig. 2d). Therefore, T cells
were present in the hypertrophic myocardium even at an early
stage of the pathology.

Studies in the TAC model have identified that cardiac
dysfunction can be detected as early as 2 days post-TAC7.
T cell activation is often initiated at the lymph nodes that drain
the site of inflammation. We thus examined via flow cytometry
whether, at 2 days post-TAC, T cells were activated in the
heart-draining (mediastinal) lymph nodes. We also examined
non-draining (inguinal) lymph nodes as well as spleens of the
same animals. At day 2, a significant upregulation of the
activation marker CD25 could be seen among CD3þ T cells in
the heart-draining lymph nodes, though not in the more distal,
non-draining lymphoid compartments (Fig. 2e; gating strategy
shown in Supplementary Fig. 3a). T cell presence in the ailing
myocardium could create an opportunity to manipulate their
function for therapeutic purposes.

In order to confirm the relevance of our findings for human
disease, we examined T cell abundance in cardiac tissue derived
from HF patients suffering from primary cardiomyopathy. We
examined tissue from patients carrying lamin A/C mutations,
which, as previously described23, lead to dilated cardiomyopathy
and HF. A subset of these carried a second mutation in titin,
leading to a more severe dilated cardiomyopathy. We chose
these patients as their cardiomyopathy is caused by a
non-immunological cause, unlike inflammatory, autoimmune or
viral cardiomyopathies2. Detection of T cells in the left ventricle
of these patients would suggest that presence of T cells is
correlated not only with cardiomyopathies initiated by excessive
immune responses, but also with cardiomyopathies triggered by
non-immune causes. Cardiac samples were obtained during left
ventricular assist device (LVAD) placement surgery, attesting
to the advanced stage of their cardiac dysfunction23. Azan’s
trichrome collagen staining (Fig. 2f) confirmed presence of
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Figure 1 | The inflammatory signature in hypertrophic left ventricle of

mice. Gene expression analysis (TaqMan real-time qPCR) of mediators of

inflammation within the left ventricle of C57BL6/J mice. Relative mRNA

expression in sham-operated control mice (white bars) and TAC-operated

mice (black bars) at 1 and 4 weeks after surgery, internally normalized to 18 s

ribosomal RNA expression. Tnfa, Il6, Tgfb1, Ccl2, Ccl4, Ccl5, Cxcl10, Cxcl11 and the

innate cell marker Itgam (CD11b) were significantly increased in the TAC group

compared with sham, 1 week after TAC. Four weeks after the operation, Il4 and

the T cell marker Cd3e were significantly increased. Values are mean±s.e.m.

(n¼ 7–9). Two-way analysis of variance (ANOVA), Bonferroni post-test:

*P valueo0.05; **P valueo0.01; ***P valueo0.001.
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fibrosis in these specimens (Fig. 2g). Analysis of T cell abundance
via CD3e immunohistochemistry (Fig. 2h) in the same samples
revealed the presence of infiltrating T cells (Fig. 2i), similar to
hearts of mice at 4 weeks post-TAC. In addition to the above, we
also examined samples from patients suffering from aortic
stenosis, which leads to HF24 and represents the clinical
condition that is mechanistically closest to the TAC mouse
model. Left ventricles from patients with this form of

cardiomyopathy also demonstrated a similarly increased fibrosis
(Fig. 2j) and T cell presence (Fig. 2k). Taken together, while only
associative, these results further support a link between T cell
presence, cardiac fibrosis and pathological hypertrophy.

T cell costimulation blockade delays HF and reduces its severity.
We hypothesized that specific inhibition of T cell function would
have a beneficial effect on HF. CTLA4 is one of the inhibitory
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molecules through which naturally occurring regulatory T cells,
as well as pro-inflammatory T cells at the termination
of a response, suppress T cell activation under physiological
conditions25. It blocks the CD80/CD86 costimulation signals that
T cells must receive from antigen presenting cells (dendritic cells,
B cells or macrophages) in order to become fully activated14.
CTLA4-Ig fusion protein (abatacept, an FDA-approved drug for
rheumatoid arthritis, an autoimmune disease) is a stable, soluble
form of CTLA4. We, therefore, tested whether administration of
abatacept produced beneficial effects in the TAC model of HF.
We treated mice that had been TAC- or sham-operated with
three intraperitoneal injections per week of 200 mg of abatacept,
for 4 weeks, starting 2 days after the operation. As controls,
TAC- and sham-operated mice received PBS, at the same
timepoints. Cardiac function was monitored by transthoracic
echocardiography (see Supplementary Table 2). Day 2 post-
operation was chosen as the first timepoint of treatment as
significant cardiac dysfunction (increase in left ventricle
thickness) can already be detected at 2 days post-TAC via
clinically-relevant diagnostic techniques (echocardiography)7.

PBS-treated TAC-operated mice at 1 and 4 weeks post-
operation displayed a significant reduction in cardiac function,
expressed as percent fractional shortening (FS) or ejection
fraction (EF) compared with sham controls, while abatacept-
treated mice had no significant difference in FS or EF from sham
controls (Fig. 3a,b). Difference in FS was evident from the first
week post-TAC operation, up to the end of the experiment
(Fig. 3a); the difference in EF increased in significance with time
between the PBS- and abatacept-treated groups (Fig. 3b). Hence
by administering abatacept starting from 2 days after TAC
surgery, we were able to significantly reduce the extent and
delay the progression of degradation of cardiac function. The
beneficial effect of abatacept was also evident by analysing
other hemodynamic parameters, including end-diastolic and
end-systolic left ventricular internal diameter (LVIDd and
LVIDs) (Fig. 3c,d). Other measured parameters are reported in
(Supplementary Table 2). It should be noted that at 3 weeks
post-operation, a transient yet significant difference between
abatacept-treated and sham control animals could be seen. At the
end of the fourth week, we assessed the morphometric indicators
of cardiac hypertrophy: heart weight to body weight ratio
(Supplementary Fig. 3b), left ventricle to body weight
ratio (Supplementary Fig. 3c), heart weight to tibia length
ratio (Supplementary Fig. 3d; representative images in Fig. 3e).
Abatacept-treated TAC-operated mice displayed significantly
lower hypertrophy than PBS-treated controls, according to most
of these parameters. Analysis of myocardial ‘stress genes’,
hallmarks of cardiac hypertrophy and failure, in the left ventricles

by qPCR also showed a significant upregulation of b-Myosin
heavy chain (Mhy7) (Supplementary Fig. 3e), Brain Natriuretic
Peptide (Nppb) (Supplementary Fig. 3f) and Atrial Natriuretic
Factor (Nppa) (Supplementary Fig. 3g) mRNAs for the PBS- but
not for the abatacept-treated groups. Thus, abatacept treatment
significantly reduces the severity and delays the progression of the
cardiac dysfunction caused by the ventricular pressure overload.

We examined sections with Azan’s trichrome staining in
order to assess the levels of fibrosis26. A comparison of collagen
intensity in identical regions sampled for all treatment groups
identified significant increases in fibrosis levels for all
TAC-operated groups except for the mice treated with
abatacept (Fig. 3f). These results suggest that the beneficial
effect of abatacept is also reflected in protection from cardiac
fibrosis, a biological response invariably linked to HF27.

Abatacept is based on human CTLA-4 fused with human
immunogloblin, but it has been extensively shown to function in
mice, due to the high similarity of human and mouse CTLA-4
(refs 28,29). As human Ig administration could be immunogenic
in mice, we included a further set of non-operated mice that
received abatacept or an isotype control immunoglobulin (Ig), to
assess any effects of the human Ig used in the fusion protein.
Neither abatacept alone nor human IgG control injections led to
any significant effects in heart function in non-operated animals
(Supplementary Fig. 4a,b), suggesting that any alloreactivity to the
immunoglobulin had limited effects. Nonetheless, the potential
for alloreactivity of the IgG control, in the absence of the
immunosuppressive CTLA-4 domain, could possibly worsen the
TAC-induced inflammation. For this reason, we chose to use PBS
administration rather than IgG administration as a control for
our experiments, so as to avoid any deleterious effect on the
controls creating the appearance of a stronger therapeutic effect
in the abatacept-treated group. Indeed, when we assessed the
in vivo effect of abatacept in TAC-operated mice, we found that
its protective effect appeared to be even more significant when
compared with isotype control-treated rather than PBS-treated
TAC-operated mice (Supplementary Fig. 4c–f). This confirmed
the validity of our choice of controls.

We next wondered whether abatacept treatment would be able
to block the progression of cardiac dysfunction if administered
only at a late timepoint, when the disease is more advanced.
We thus repeated the in vivo treatment with abatacept, albeit
commencing the first treatment at 2 weeks post-TAC, instead of
2 days post-TAC. As it can be seen (Fig. 3g,h) treatment at a late
timepoint was able to significantly block further reduction of FS
and EF in treated animals. A significant protective effect was also
observed in LVIDs, though not LVIDd (Supplementary Fig. 4g,h).
These results demonstrate that even late treatment with the drug

Figure 2 | T cells in the ailing left ventricle. (a) Representative immunohistochemical (IHC) staining of left ventricles for CD3e (brown) in sham/TAC

mice at 4 weeks. Original magnification 10� ; bars¼ 200mm. (b) Summary of CD3e IHC. Mean±s.e.m. (n¼ 6). Unpaired t-test. (c) Staining for CD3e

(brown) in TAC-operated mice, 1 week post-operation. Original magnification 10� ; bar¼ 200mm. (d) Representative fluorescence-activated cell sorting

(FACS) analysis of CD3eþ cells from cardiac single cell suspension of TAC-operated mice 1 week post-operation. (e) FACS analysis of mediastinal

(heart-draining) lymph nodes, inguinal lymph nodes and spleens 2 days post-operation. Mean fluorescence intensities of CD25 on CD3eþ cells.

Mean±s.e.m.; sham (white bars), TAC (black bars) (n¼4). Unpaired t-test. (f) Representative Azan’s trichrome collagen staining (blue) of cardiac

biopsies from healthy ventricle tissues (n¼ 3), patients with severe dilated cardiomyopathy (DCM) due to mutation in lamin A/C, before placement of a

left ventricular assist device (HF LVAD 1M) (n¼4), and patients with more severe DCM due to mutation in lamin A/C and mutation in titin, before

placement of a LVAD (HF LVAD 2M) (n¼ 2) patients. Original magnification, 20� ; bar¼ 100mm. (g) Statistical analysis of collagen deposition in ten

identical regions of interest (ROIs), applied to all samples. Mean±s.e.m. Fisher’s exact test for presence versus absence of fibrosis. Amount of collagen

was also positively associated with disease severity (one-way analysis of variance (ANOVA); post-test for linear trend: Po0.001). (h) Representative

staining for CD3e (brown) on the same samples as f. Bar¼ 100 mm. (i) Statistical analysis of CD3e IHC analysis. Mean±s.e.m. One-way ANOVA with

Dunn’s post-test. (j) Statistical analysis of collagen deposition in cardiac biopsies from healthy ventricle tissues (n¼ 3) and patients with HF from aortic

stenosis (n¼ 2) stained as in f. Mean±s.e.m. Healthy tissues (white bar), HF (black bars). Fisher’s exact test for presence versus absence of fibrosis. (k)

Statistical analysis of CD3e IHC analysis on the same samples as j. Healthy tissues (white bar), HF (black bars). Values are mean±s.e.m. Mann–Whitney

test. For all tests *P valueo0.05; **P valueo0.01; ***P valueo0.001.
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may have substantial beneficial effects in limiting the progression
of HF.

Abatacept inhibits T cell and macrophage activation. Extensive
studies have shown that CTLA4-Ig inhibits T cell function by
blocking the costimulatory receptors on antigen presenting cells,

which are required for the full activation of pro-inflammatory
T cells14,30. The CTLA-4 molecule represents one of the main
available mechanisms through which already initiated T cell
responses can be physiologically downregulated31,32. Indeed, we
found that in vitro abatacept administration to splenocytes
inhibited T cell responses (Supplementary Fig. 5a). We, therefore,
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sought to dissect how abatacept was affecting T cell activation in
pathological cardiac hypertrophy. For this, we examined via flow
cytometry the expression of activation marker CD25 in T cells at
an early timepoint (1 week post-TAC), which is likely to be
within the relevant time window for activation events. Abatacept
significantly reduced the percentage of CD25þ cells among
T cells, not only in the heart-draining (mediastinal) lymph nodes,
but also in inguinal lymph nodes and spleen (Fig. 4a). This
suggests that abatacept exerted a systemic dampening of T cell
activation. CD25 expression on the T cells infiltrating the heart
could not be reliably assessed due to the low number of T cells
found in the heart at 1 week post-TAC, which renders flow
cytometric analysis of subpopulations technically challenging.
Reduced T cell activation is likely to lead to reduced proliferation
and lower T cell numbers at later timepoints. Indeed, at 4 weeks
after surgery, the myocardium of abatacept-treated mice
displayed significantly fewer infiltrating T cells than PBS-treated
mice (Fig. 4b).

Abatacept has also been shown to inhibit T cell-dependent
monocyte/macrophage activation and function33 and B-cell
function34, as these cells physiologically provide costimulation
to T cells via CD80/CD86. We thus wondered whether abatacept
administration in TAC-operated animals led to inhibitory effects
on macrophage activation, which has been shown to contribute to
cardiac pathology35. We assessed via immunohistochemistry
the expression of AIF-1 (Iba-1), a marker of T cell-derived
macrophage activation36,37, in the hearts of operated mice, at
1 week post-surgery. In TAC-operated mice, abatacept treatment
led to a significant reduction in AIF-1 signal compared to
PBS-treated controls (Fig. 4c). Sham-operated mice had negligible
signals of AIF-1þ cells (Supplementary Fig. 5b). At 4 weeks
post-surgery, the difference in AIF-1þ macrophages between the
TAC-operated groups was minimal (Supplementary Fig. 5c),
most likely as the overall levels of AIF-1þ macrophages,
or indeed total CD11bþ innate immune cells (Fig. 1) in
TAC-operated mice is reduced at this late stage of the pathology.

We next examined the maturation state of macrophages38 in
the left ventricles of abatacept or control-treated TAC mice at 1
week post-operation, by flow cytometric analysis. We considered
the percentage of Ly6CþF4-80þ (immature macrophages) or
Ly6C-F4-80þ (mature macrophages) out of CD11bþCD45þ

live single cells (gating strategy shown in Supplementary Fig. 5d).
We found that hearts of abatacept-treated animals had
significantly higher percentage of immature macrophages
(Fig. 4d) and significantly lower percentage of mature
macrophages (Fig. 4e), compared with controls.

The above findings suggest that abatacept inhibits T cell activation
and infiltration/proliferation, but also targets the activation and
maturation state of macrophages in the myocardium.

The abatacept effect is dependent on IL-10 produced by B cells.
The effect of abatacept on T cell activation occurs via the
removal of pro-inflammatory, costimulatory signals32 on antigen
presenting cells39. Yet it can additionally be dependent on the
production of anti-inflammatory signals, actively inhibiting
the pathogenic response30,40. To investigate this, we examined
the presence of immune mediators via real-time qPCR in the
left ventricles of treated TAC-operated animals. At 1 week
post-operation, a timepoint when abatacept already leads to
cardioprotective effects, mRNA expression for the pro-
inflammatory cytokine IL-6 was significantly upregulated in
both abatacept- and PBS-treated TAC-operated mice (Fig. 4f: il6).
However, only in abatacept-treated mice could we observe a
significant upregulation of mRNA for the cytokine IL-10 (Fig. 4f:
il10). IL-10 is one of the most potent anti-inflammatory cytokines
utilized by the immune system to shut down unwanted or
no-longer-needed responses and it has been shown to mediate
cardio-protective effects in HF41, its effect on cardiomyocyte
function being opposite to that of IL-6 (ref. 9). Direct in vitro
administration of abatacept on cultured neonatal cardiomyocytes
did not have any effects on their hypertrophic state
(Supplementary Fig. 6a). These findings collectively suggest that
abatacept could be mediating anti-inflammatory and subsequent
anti-hypertrophic effects via the action of IL-10. As Il10
was upregulated in abatacept-treated TAC mice, we assessed
which subset of immune cells could function as IL-10 sources.
We examined the expression of intracellular IL-10 by flow
cytometry in splenocytes exposed in vitro to abatacept. We found
that abatacept induced IL-10 mostly on antigen-presenting cells,
the vast majority of which were B cells, while a few IL-10
producing T cells could also be identified (Supplementary
Fig. 6b,c).

We thus examined whether IL-10 was necessary for the
protective effects of abatacept. We analysed the effect of abatacept
on mice deficient for IL-10 (Il10 KO) subjected to TAC. The
hallmark of abatacept function is the suppression of T cell
responses14,30. Interestingly, in Il10 KO TAC-operated mice,
abatacept could no longer inhibit T cell presence in the heart
(Fig. 5a), demonstrating that IL-10 is required for the T cell-
attenuating, anti-inflammatory effect of the drug. Subsequently,
we asked whether IL-10 was necessary for the abatacept-mediated
effects on cardiac hypertrophy. Echocardiographic analysis of
TAC-operated, Il10 KO mice confirmed that IL-10 was required
for the beneficial effect of abatacept on the heart (Fig. 5b–e).
Finally, apoptosis of cardiomyocytes is a hallmark of pathological
hypertrophy26. While abatacept significantly reduced the extent
of cardiomyocyte apoptosis in wild-type TAC-operated mice, this
did not occur in Il10 KO mice, which were refractive to treatment
(Fig. 5f).

Figure 3 | Abatacept blunts progression of cardiac dysfunction in pressure-overloaded mice. Mice underwent TAC or sham operation; 2 days

post-operation, the mice were treated with three intraperitoneal injections per week of 200mg of abatacept or PBS, for 4 weeks. (a) Fractional shortening

(%FS), (b) ejection fraction (%EF), (c) left ventricle internal dimension in diastole (LVIDd) and (d) left ventricle internal dimension in systole (LVIDs) in

TAC- and sham-operated mice at baseline and at time points 1, 3 and 4 weeks after operation, with and without abatacept administration. Data show the

mean %FS, %EF, LVIDd and LVIDs for each experimental group at all time-points±s.e.m. (n¼ 7–9). Two-way analysis of variance (ANOVA) with

Bonferroni post-test: P values shown in the panel. Abatacept ameliorates pressure overload-induced cardiac fibrosis in mice. (e) Representative

macroscopic images of the heart of untreated, PBS-treated and abatacept-injected mice 4 weeks post-sham- or TAC (scale bar¼ 2mm). (f) Cardiac

sections of untreated, PBS-treated or abatacept-treated, TAC- or sham-operated mice, at 4 weeks post-operation were stained with Azan’s trichrome

(n¼ 2). Five identical regions of interest (ROIs) were applied to all samples. The collagen staining intensity was quantified by image acquisition software;

plot points indicate the % of collagen pixels in each ROI. Red bars indicate the mean % collagen in each experimental group. ROIs with a collagen signal

higher than zero were considered fibrotic. Fisher’s exact tests for the presence or absence of fibrosis were applied to sham versus TAC-operated groups for

each treatment category. The dotted red line separates fibrotic from non-fibrotic ROIs. *P valueo0.05. (g,h) Mice underwent TAC, 2 weeks post-operation,

the mice were treated with three intraperitoneal injections per week of 200mg of abatacept or PBS, for 2 weeks. (g) Fractional shortening (%FS) and

(h) ejection fraction (%EF) were measured at baseline and at 2 and 4 weeks after operation. Data show mean of %FS and %EF for each experimental group

at all time-points±s.e.m. (n¼ 7). Two-way ANOVA with Bonferroni post-test: ***P valueo0.001.
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We thus sought to confirm whether the IL-10 producing cells
identified above (that is, mostly B cells, and—to a lesser extent—T
cells) could be sufficient to rescue the loss of the protective
effect in Il10 KO animals. To achieve this, we first transferred
2� 106 wild-type (Il10-sufficient) B cells or 2� 106 wild-type
(Il10-sufficient) T cells into Il10 KO recipients. We then

performed TAC surgery followed by abatacept or control
treatment, starting from day 2 post-operation. Transfer of Il10
wild-type B cells was sufficient to rescue the loss of the abatacept-
mediated protective effect in Il10 KO TAC-operated mice
(Fig. 5g,h: closed squares). On the other hand, transfer of Il10
wild-type T cells could not rescue the protective effect (Fig. 5g,h:

Il6

Sha
m

 a
ba

ta
ce

pt

TAC a
ba

ta
ce

pt

Sha
m

 P
BS

TAC P
BS

0

5

10

15 * *
ns

ns
ns

TAC abatacept TAC PBS

TAC abatacept TAC PBS

0.000

0.005

0.010

0.015
**

A
IF

-1
 d

en
si

ty

Inguinal lymph node

Sha
m

TAC a
ba

ta
ce

pt

TAC P
BS

0

5

10

15

C
D

25
+
 o

ut
 o

f C
D

3e
+
 c

el
ls

** ***

Mediastinal lymph node

Sha
m

TAC a
ba

ta
ce

pt

TAC P
BS

0

5

10

15

C
D

25
+
 o

ut
 o

f C
D

3e
+
 c

el
ls

**

Spleen

Sha
m

TAC a
ba

ta
ce

pt

TAC P
BS

0

5

10

15
*

*

C
D

25
+
 o

ut
 o

f C
D

3e
+
 c

el
ls

a

b

c

d e

f

TAC abatacept TAC PBS

50

55

60

65

70 **

%
 F

4-
80

+
 L

y6
C

+
 o

ut
of

 C
D

11
b+

 c
el

ls

TAC abatacept TAC PBS

0

5

10

15

20

25 *

%
 F

4-
80

+
 L

y6
C

-o
ut

of
 C

D
11

b+
 c

el
ls

TAC abatacept TAC PBS

0

5

10

15 *

N
um

be
r 

of
 C

D
3e

+
 c

el
ls

/fi
el

d

TAC abatacept TAC PBS

Sha
m

 a
ba

ta
ce

pt

TAC a
ba

ta
ce

pt

Sha
m

 P
BS

TAC P
BS

Il10

0

2

4

6

8 **

R
el

at
iv

e 
m

R
N

A
ex

pr
es

si
on

 o
f I

l1
0

R
el

at
iv

e 
m

R
N

A
ex

pr
es

si
on

 o
f I

l6

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14680

8 NATURE COMMUNICATIONS | 8:14680 | DOI: 10.1038/ncomms14680 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


open squares). From this we conclude that IL-10 produced by B
cells in response to abatacept must be involved in the mechanism
of the abatacept-mediated cardioprotective effect. To assess
whether this B cell-mediated effect was dependent on the drug’s
effect on T cells or whether it could be a direct effect on B cells,
we assessed the capacity of splenocytes to produce IL-10 after
abatacept administration in vitro, in the presence or absence of
T cells. We found that the production of IL-10 was unaffected by
the absence of T cells (Supplementary Fig. 6d,e), suggesting that
the B cell-mediated effect may be direct.

Our results, taken together, suggest that abatacept may protect
against the progression of HF by inhibiting the pathogenic
immune response mediated by T cells and macrophages,
while also directly inducing the beneficial production of
anti-inflammatory cytokine IL-10 by B cells.

Discussion
In this report we demonstrate how abatacept, an FDA-approved
drug that inhibits T cell costimulation, reduces severity and
delays progression of pressure overload-induced cardiac
hypertrophy and fibrosis. Importantly, we were able to
demonstrate that the drug could significantly limit the progres-
sion of pathology even when administration commenced at a late
stage of disease. This was possible because HF pathogenesis is
associated with an innate and adaptive immune response.
Abatacept blunted this response, and hence inhibited cardiac
pathology, via a mechanism dependent on IL-10.

The cardiac inflammation associated with HF is triggered by
pro-inflammatory cytokine secretion by stressed cardiomyo-
cytes3,6,7. These cytokines can be used to distinguish between
physiological and pathological hypertrophy42. We show that
immune cell presence can also be used in the same manner.
Targeting T cell-mediated responses made it possible to interfere
with cardiac remodelling. This is in contrast to unsuccessful
attempts to limit pathology by targeting cytokines, which have
proven to be more elusive targets5,11.

A main clinical feature of pathological cardiac hypertrophy is
fibrosis. Fibrosis formation in other contexts requires the
combined action of Th2 cells and innate immune cells19,43. In
the TAC model we identified an initial M1-polarized innate
response, which we speculate subsequently switches to an
M2/Th2 polarization. This agrees with studies reporting worse
HF in BALB/c compared with C57BL/6 mice, attributed to a
Th2-bias of the former strain13,44. We demonstrated the presence
of T cells in cardiac biopsies from human HF patients. Moreover,
recent evidence shows that genetic deficiency of T cells improves
symptoms in the TAC mouse model45,46. These findings,
collectively, make a strong case for attempting to regulate
T cell-mediated responses in order to combat HF.

Immunosuppressive regulatory T cells (Treg) can block
deleterious or unwanted responses25. Intriguingly, evidence has
linked Treg deficiency with chronic HF47. We detected the
presence of Tregs, via the expression of their genetic marker
Foxp3, in TAC mice, but only at 8 weeks post-surgery
(Supplementary Fig. 6f). This may be an indication of a natural
immunosuppressive attempt that occurs too late to block the
pathogenic immune response48. There have been attempts to
utilize Treg adoptive cell therapy in models of HF49,50. However,
cell therapy is a promising procedure that still needs refinement
before it can move to clinical use. Treg can also be activated via
super-activating anti-CD28 antibodies, which have been utilized
in models of cardiac repair after myocardial infarction51,52. Yet
past clinical trials with super-activating anti-CD28 have activated
pro-inflammatory memory T cells, with near-lethal consequences
for the patients53. Searching for a more readily translatable
solution, we utilized abatacept, a fusion protein based on
CTLA-4. Treg suppress via surface-bound CTLA-4 as well as
soluble IL-10 or TGFb, inhibiting the function of both innate and
adaptive immune cells25. CTLA-4 inhibits T cell function by
blocking the ability of T cells to become costimulated. CTLA4-Ig
fusion abatacept is easily administered and already in clinical use
to suppress autoimmune responses14.

We chose to utilize the TAC mouse model of HF15, which leads
to Heart Failure with reduced Ejection Fraction. As no model
reflecting the characteristics of Heart Failure with preserved
Ejection Fraction has been fully consolidated, TAC remains the
most commonly used model for the experimental study of
HF54,55. It should be noted that any inflammation induced by
TAC surgery per se rather than the constriction may not be fully
controlled by the sham operation. Having stated this, as
Supplementary Fig. 1b suggests, the surgery-induced
inflammation in the sham controls is not negligible.

We demonstrated that abatacept reduced the severity of cardiac
pathology and delayed the progression of symptoms of overload-
derived cardiac pathology. Our aim was to demonstrate that
immunity has a contributing (and targetable) role in the
development and maintenance of HF. The presence of T cells
in biopsies from patients suffering from either lamin A/C
cardiomyopathy (associated with Heart Failure with reduced
Ejection Fraction, similarly to the TAC model, yet caused by
genetic defects), or aortic stenosis (driven by pressure overload,
similarly to the TAC model, yet frequently associated with Heart
Failure with preserved Ejection Fraction) offers hope for the
theoretical applicability of our approach in the clinic. Translation
to the human setting will need further exploration.

Abatacept is known to inhibit T cell activation and
proliferation14 by blocking costimulatory ligands CD80 and
CD86 on antigen presenting cells (dendritic cells, B cells

Figure 4 | Abatacept administration suppresses the immune response in TAC-operated mice. (a) Mediastinal (heart-draining), inguinal lymph nodes

and spleens were collected 1 week after TAC or sham-operation, stained and analysed by flow cytometry. Percentage of CD25þ out of CD3eþ cells are

plotted as mean±s.e.m.; sham (white bars), TAC abatacept (grey bars) and TAC PBS (black bars) (n¼ 3). One-way analysis of variance (ANOVA) with

Tukey’s post-test: *P valueo0.05; **P valueo0.01, ***P valueo0.001. (b) Statistical analysis of immunohistochemical staining of left ventricles for the

T cell marker CD3e in TAC mice at 4 weeks post-operation, treated with abatacept or PBS, and representative images of the staining (brown colouration;

original magnification 40� ; scale bar¼ 50mm). Number of CD3eþ cells is plotted as mean±s.e.m.; TAC abatacept (white bars); TAC PBS (black bars).

Unpaired t-test; *P valueo0.05 (n¼ 2). (c) Statistical analysis of immunohistochemical staining of left ventricles for the macrophage marker AIF-1 in TAC

mice at 1 week post-operation, treated with abatacept or PBS, and representative images of the staining (brown colouration; original magnification 20� ;

scale bar¼ 100mm). AIF-1 density plotted as mean±s.e.m.; TAC abatacept (white bars); TAC PBS (black bars). Unpaired t-test; **P valueo0.01 (n¼ 2).

(d,e) Cardiac single cell suspensions of TAC operated mice, 1 week after the operation, were stained and analysed by flow cytometry. Percentage of

F4-80þ Ly6Cþ out of CD11bþ CD45þ live cells (d) and F4-80þ Ly6C- out of CD11bþ CD45þ live cells (e) are plotted as mean±s.e.m.; TAC abatacept

(black circles); TAC PBS (black squares). Unpaired t-test; *P valueo0.05; **P valueo0.01 (n¼4, 3). (f) Gene expression analysis (TaqMan real-time

qPCR) of the left ventricle of C57BL6/J mice, 1 week after TAC or sham operation, with abatacept or PBS treatment. Bars show relative mean Il6 and Il10

expression, internally normalized to 18 s ribosomal RNA expression. Values are mean±s.e.m. (n¼ 5, 8). One-way ANOVA, Dunn’s post-test:

*P value o0.05; n.s., not significant.
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and macrophages)39,56–58. Despite early contrasting data,
abatacept has been shown not to act via induction of signals in
dendritic cells59,60. Yet, as it interacts with macrophages and
B cells, it is not surprising that it can directly inhibit
monocyte/macrophage activation and function33,61 and B-cell

function34,39,57,58. The functions of macrophages and B cells
affected by abatacept are related to T cell-dependent
responses33,34,39, possibly as these functions involve CD80/CD86.

In agreement to the known mechanisms above, we found that
abatacept inhibited T cell responses in vivo (Fig. 4a,b), including
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in heart-draining lymph nodes, where T cell activation appears to
be initiated (Fig. 2e). We also observed an inhibition of cardiac
macrophage activation and maturation (Fig. 4c–e). Further, we
identified the induction of anti-inflammatory cytokine IL-10
(Fig. 4f), which was necessary for the protective effects to occur
and which could be produced by B cells after in vitro treatment
with the drug (Supplementary Fig. 6c). Il10-sufficient B cells

appeared to be sufficient to rescue the loss of cardioprotective
effects in Il10 KO TAC-operated animals treated with abatacept
(Fig. 5g,h). The schematic outline of this combined inhibition of
pro-inflammatory T cell/macrophage functions and induction
of anti-inflammatory signals in B cells is given in Fig. 6. As shown,
T cell45,46 and monocyte/macrophage35 pro-inflammatory function
is cardiotoxic. Upon abatacept administration, the mechanisms
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Figure 6 | Abatacept blunts cardiac dysfunction by suppressing the immune response. Schematic cartoon of the mechanism of action of abatacept in

heart failure. In pathological hypertrophy, T cells are activated (through their TCR) and receive costimulation via CD28 from CD80/CD86-expressing

antigen presenting cells (macrophages, B cells, dendritic cells). The full activation of T cells, identified by high levels of CD25, enhances the chronicity of the

cardiac inflammatory response. This also involves the proinflammatory action of cardiac macrophages. As a result, there is increased cardiomyocyte

apoptosis, fibrosis and reduced heart functionality. During abatacept treatment, the drug blocks CD80/CD86-mediated costimulation by macrophages and

B cells, leading to inhibition of T cell activation, proliferation and/or infiltration. The effects on macrophages (which may be both direct and indirect) lead to

lower maturation and infiltration. Direct effects on B cells lead to production of anti-inflammatory cytokine IL-10, which may also be produced to a lesser

extent by T cells. As a consequence of the effect on T cells, B cells and macrophages, the progression of cardiac pathology is blocked, even if the drug is

administered at a late stage. The protective effect is dependent on IL-10 presence.

Figure 5 | Abatacept attenuates HF through the action of IL-10. (a) Immunohistochemical staining of left ventricles for CD3e in TAC-operated Il10 KO

mice treated with abatacept or PBS, 4 weeks post-operation. Mean±s.e.m. (n¼ 2). Unpaired t-test; ns, not significant. Representative staining for CD3e

(brown; original magnification 20� ; scale bar¼ 100 mm). (b–e) Heart functionality is not preserved in Il10 KO TAC-operated mice after abatacept

treatment. TAC/sham-operated mice, starting 2 days post-operation, were treated with three intraperitoneal injections per week of abatacept or PBS, for

4 weeks. (b) Fractional shortening (%FS). (c) Ejection fraction (%EF). (d) Left ventricle internal dimension in diastole (LVIDd). (e) Left ventricle internal

dimension in systole (LVIDs). Mean±s.e.m. (n¼ 5–9). Two-way analysis of variance (ANOVA) with Bonferroni post-test; open circle, P valueo0.05 versus

TAC WT abatacept; open four pointed star, P valueo0.01 versus TAC WT abatacept; *P valueo0.001 versus TAC WT abatacept; þP valueo0.05 versus

sham not-treated; closed circle, P valueo0.01 versus sham not-treated; #P valueo0.001 versus sham not-treated; yP valueo0.01 versus TAC WT PBS.

(f) Abatacept treatment in the presence but not absence of IL-10 reduces cardiomyocyte apoptosis in TAC-operated mice. TUNEL assay staining in

slides for cardiomyocyte apoptosis on hearts of treated mice 4 weeks post-TAC, in wild-type and Il10 KO mice. Mean±s.e.m. of TUNEL-positive cells

(n¼ 2); white bars, abatacept-treated TAC-operated mice; black bars, PBS-treated TAC-operated mice. Two-way ANOVA with Bonferroni post-test;

*P valueo0.05. (g,h) Wild-type B cell but not T cell transfer in Il10 KO TAC-operated mice restores abatacept therapeutic effects. Il10 KO mice received

wild-type T or B cells. Subsequently, they underwent TAC or sham operation and then treated with abatacept as in b–e. (g) %FS and (h) %EF at baseline

and 1 week after operation. Mean %FS and %EF for each experimental group at all time-points±s.e.m. (n¼ 3–7). Two-way ANOVA with Bonferroni post-

test, *statistics for Il10 KO TAC abatacept; þWT B cells; #statistics for WT TAC abatacept; ystatistics for sham not treated.
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described above may be acting in parallel. Several caveats must be
mentioned: the finding that immune-mediated events can drastically
change the outcome of disease does not render inflammation the
only aspect that can regulate HF pathology. Second, it should be
noted that IL-6 is produced by stressed cardiomyocytes, initiating
the inflammatory response that accompanies HF3,6,7,9. Our data
suggest that inhibition of T cell and macrophage function, which lie
downstream of the initial inflammation, triggers compensating
anti-inflammatory IL-10 expression but may not be significantly
affecting the IL-6 production by cardiomyocytes. Finally, abatacept
has been shown to induce regulatory T cells62, yet we did not
observe any significant induction of Foxp3 mRNA expression in our
system (Supplementary Fig. 6g).

The benefit conferred by abatacept treatment may be that it
targets T cell costimulation and thus their optimal activation.
T cell activation could be relevant for the chronicity12 of the
underlying cardiac disease. As a drug already in clinical use,
abatacept may be more translationally relevant than other means
of targeting T cells currently being explored for the treatment of
HF. Further, targeting costimulation requires the targeting of
CD80/CD86-bearing macrophages and B cells, which contributes
to the therapeutic effect, affecting T cell-associated B cell and
macrophage responses.

IL-10 is directly cardioprotective and antifibrotic19,41. IL-10 was
necessary for the cardioprotective effects of abatacept, and for the
suppression of T cell expansion (Fig. 5a). Yet IL-10 acts
downstream of the administration of abatacept. Thus, the
regulation of IL-10 induction will be dependent on localization
and abundance of the targets of the drug. Abatacept, even when B
cells and macrophages are its direct targets, is known to affect only
T cell-associated responses33,34,39. Abatacept did affect T cell
activation systemically (as shown in Fig. 4a) but, extrapolating from
the data in autoimmune pathologies cited above, it may not affect T
cell-independent innate immune responses, even if its action is
dependent on IL-10. IL-10 is a very potent anti-inflammatory
cytokine; clinical trials for its use have yet to succeed63. Its direct
administration could possibly block T-independent responses
resulting in more severe immunosuppression. Thus, we speculate
that abatacept, given its proven clinical safety profile, may be more
translationally relevant compared with IL-10 administration, as a
potential HF therapy tool.

Taken together, our findings demonstrate how an
FDA-approved drug inhibiting pro-inflammatory T cell function,
along with effects on macrophages and B cells, yields significant
therapeutic benefits in a model of HF. This occurs as an adaptive
immune response may be causatively linked to the pathogenesis
of pressure overload-induced HF. An immune response driven by
cardiac pressure overload could be an unwanted consequence of
an immune system evolved to deal with pathogen infections.
It may be that the body cannot distinguish between infection- and
pressure overload-induced stress signals, and hence initiates a
deleterious response. Fortuitously, the link between immunity
and HF also creates an opportunity: validated therapies for
treating immune-mediated ailments exist and are already in
clinical use. They could be repurposed as potential tools in the
fight against HF, paralleling the rationale of recent promising
studies in other pathologies64.

Methods
Animals. All procedures were performed in compliance with national and
EU legislation, and Humanitas Clinical and Research Center and Norwegian
University of Science and Technology regulations.

Transverse aortic constriction (TAC). Procedures were performed according to
ref. 15. In detail, TAC was performed on 8–10-week-old male C57BL/6 J mice
(Charles River, France) and on 8–10-week-old male C57BL6/J Il10 KO mice

(Jackson Laboratories, US). All animals were screened before operation via echo-
cardiography to establish their baseline. Mice were anaesthetized by intraperitoneal
injection of a mixture ketamine (100 mg kg� 1) and xilazine (10 mg kg� 1). The
chest cavity was opened by a small incision at the level of the first intercostal space.
After isolation of the aortic arch, a 8–0 Prolene suture was placed around the aorta
and a 27G needle was laced in between. The needle was immediately removed to
produce an aorta with a stenotic lumen. The chest cavity was then closed with one
6–0 nylon suture and all layers of muscle and skin closed with 6–0 continuous
absorbable and nylon sutures, respectively. A sham group, undergoing surgery
without aortic banding, was used as control.

Echocardiography. A Vevo 2100 high-resolution in vivo imaging system (Visual-
Sonics Fujifilm) with a MS550S probe ‘high frame’ scanhead was used for echo-
cardiographic analysis. Mice were anesthetized with 1.0% isoflurane for M-mode
imaging. Pressure gradients (60 to 90 mm Hg), an index of biomechanical stress, were
determined by echo Doppler on all animals that underwent TAC surgery.

Abatacept treatment. Starting 2 days or 2 weeks after TAC/sham surgery, mice
were intraperitonally injected with either 100ml PBS, 200mg Human IgG Isotype
Control (Novus) or 200 mg CTLA-4 Ig (Abatacept) in 100 ml of PBS, three times a
week, for up to 4 weeks. Abatacept is a human CTLA-4-Ig fusion, though due to
the high (75%) similarity between human and mouse CTLA-4, it also functions
in mouse28,29,65,66,67. These studies demonstrated in vivo efficacy (in different
pathological contexts) using a dose range 100-400 mg per mouse, in most cases
administered every 2 days. These studies, collectively, identify a range of abatacept
dosing that is functional in mouse. As 200 mg per mouse every 2 days was both the
median dose of the published mouse studies, as well as (at about 8 mg kg� 1) very
similar to the human dose used in Rheumatoid Arthritis patients (8–10 mg kg� 1),
we selected this dose as the most ‘translationally relevant’.

Adoptive transfer of wild-type T and B cells in IL10 KO mice. Wild-type B and
T cells were isolated from 10–12-week-old male C57BL6/J male mice, respectively,
with B Cell Isolation Kit and Pan T Cell Isolation Kit II (Miltenyi Biotec) on an
AutoMACS. Purity was assessed by staining with anti-mouse CD3e (145-2C11,
BioLegend) or anti-mouse CD19 (eBio1D3, eBioscience), and analysed by flow
cytometry. C57BL6/J Il10 KO male mice, before basal echocardiography screening,
were injected intravenously with 2� 106 WT T or B cells. Mice underwent TAC
surgery and were injected with abatacept starting on day 2 after surgery.

Human biopsies. The severe cardiomyopathy patient samples (HF LVAD) were
obtained from patients suffering from lamin A/C mutations, causing dilated
cardiomyopathy and HF (HF LVAD 1M). A subset of these carried a
second mutation in titin (HF LVAD 2M), leading to a more severe dilated
cardiomyopathy. All samples were obtained after informed consent according to
the study protocols approved by the ethics committee of the University Hospital of
Verona23. Aortic stenosis ventricular samples were also obtained after informed
consent according to the study protocols approved by Humanitas Research
Hospital ethics committee.

Quantitative reverse transcription PCR analysis. Left ventricles were snap
frozen in liquid nitrogen after collection and stored at � 80 �C. Tissues were
homogenized in 1 ml of PureZol RNA isolation reagent (Biorad) with GentleMACS
and GentleMACS M Tubes (Miltenyi Biotec). After isolation of the aqueous phase
with chloroform, RNA was extracted using RNeasy Mini Kit (Qiagen). The same
amount of RNA was retrotranscribed with the High Capacity cDNA Reverse
Transcription kit (Applied Biosystems). Real-time qPCR reactions were performed
using TaqMan Probes and TaqMan Universal Master Mix on a REALTIME
AB 7900HT cycler (all Applied Biosystems). The following TaqMan gene
expression assays were used: Rn18S (Mm03928990_g1) as internal control,
Cd3e (Mm005996484_g1), Foxp3 (Mm00475162_g1), Itgam (Mm00434455_m1),
Tnfa (Mm00443260_g1), Il4 (Mm00445259_m1), Il17 (Mm00439618_m1),
Ifng (Mm01168134_m1), Tgfb1 (Mm01227699_m1), Il10 (Mm00439614_m1),
Il6 (Mm00446190_m1), Il1b (Mm00434228_m1), Ccl2 (Mm00441242_m1), Ccl4
(Mm00443111_m1), Ccl5 (Mm01302427_m1), Cxcl10 (Mm00445235_m1), Cxcl11
(Mm00444662_m1). Expression of genes encoding for Brain Natriuretic Peptide
(Nppb), Atrial Natriuretic Factor (Nppa) and Myosin heavy chain b (Myh7)
expression was tested with primers (IDT) using Sybr Select Master Mix (Applied
Biosystems) on a ViiA7 (Applied Biosystems) instrument. The sequences are listed
in Supplementary Table 3.

Transgenic Akt (Akt Tg) mice. Male Akt Tg mice22, which constitutively
overexpress the active E40K Akt mutant (Akt-E40K) were used at 8 weeks of age.

Exercise-trained mice. BKS.Cg-m þ /þ Lepdb/þ db mice67 are heterozygous for
the leptin receptor mutation but display a wild-type metabolic phenotype when fed
on a normal diet. We utilized 8-week-old male mice that were arbitrarily assigned
to one of two groups: sedentary and exercise trained 70 min per day, 5 days per

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14680

12 NATURE COMMUNICATIONS | 8:14680 | DOI: 10.1038/ncomms14680 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


week, for 8 weeks. The training was performed as running on an inclined (25�)
treadmill, starting with 10 min warm-up at B50% running speed before 60 min
interval training alternating between 4 min at 85–90% of maximal oxygen uptake
and 2 min at B50% running speed. Training speed was adjusted at least weekly in
order to keep the same relative training intensity. Before and after the intervention
period, the mice performed an individualized ramp (90–120 s on each step)
treadmill protocol on an inclined (25�) treadmill in a metabolic chamber to
determine maximal oxygen uptake. Due to the difference in genetic background
(BKS), all analyses of these mice were performed comparing them to their
matching controls, so as to avoid genetic background-specific effects.

Immunohistochemical analysis. Mouse heart samples were fixed in 4% formalin
at 4 �C, paraffin-embedded and sectioned at 4 mm. The slides were stained with
Azan’s trichrome for collagen (BioOptica). Slide images were digitalized and five
fields for mouse sections and ten fields for human biopsies analysed to quantify
fibrosis, with an image analysis program (ImageJ). Cardiac fibrosis was assessed by
measuring the Azan’s trichrome-stained area as a percentage of total myocardial
area. For immunohistochemistry analysis sample sections on slides were
deparaffinized and hydrated through a descending scale of alcohols. Antigen
retrieval was performed using DIVA (Biocare Medical) for mouse samples and
W-Cap (Biocare Medical) or EDTA 0,5M pH8 (Sigma Aldrich) for human
samples. Sections were cooled and then washed with PBS (Lonza) containing
0.05% Tween 20 (Sigma). Endogenous peroxidase was blocked by incubation
with Peroxidase I (Biocare Medical) for 20 min at room temperature (RT) and
nonspecific sites were blocked with Rodent Block and Background Sniper (Biocare
Medical) for mouse and human samples respectively 20 min at RT. The sections
were then incubated for 1 h at RT with rat anti-human CD3 (Serotec) diluted
1:1,000 or AIF-1 (Wako) diluted 1:250 or polyclonal rabbit anti-human CD3
(Dako) diluted 1:50, washed, and incubated for 30 min at RT with rat-on-mouse
HRP polymer (Biocare Medical) or with Mach1 HRP polymer (Biocare Medical) or
with Envisionþ System anti-rabbit HRP (Dako). Finally, sections were incubated
with DAB (Biocare Medical), counterstained with haematoxylin, dehydrated
through an ascending scale of alcohols and xylene, and mounted with coverslips
using Eukitt (Fluka). All samples were observed and photographed with a
microscope Olympus BX53 with a digital camera.

TUNEL assay on mouse heart samples. Sample sections on slides were
deparaffinized and hydrated through a descending scale of alcohols and TUNEL
assay was performed (Click-it plus TUNEL assay C10617, Life technology).

In vitro stimulation of splenocytes with abatacept. Total splenocytes were
purified from spleens of 8-week-old C57BL/6 J mice. T cells were depleted using
magnetic beads on an AutoMACS (Miltenyi Biotec). Total splenocytes or
T cell-depleted splenocytes were stimulated with 2 mg ml� 1 of anti-CD3 and/or
5 mg ml� 1 LPS (Sigma Aldrich) and cultured with 20 mg ml� 1 abatacept, IgG
isotype control or nothing. After 48 or 72 h of culture, Brefeldin A (eBioscience)
was added during the last 4 h of culture and splenocytes were prepared for
fluorescence-activated cell sorting analysis.

Neonatal cardiomyocytes treated with abatacept in vitro. Hearts were collected
from 1–2-day-old CD1 pups and digested with collagenase. Cardiomyocytes
were then separated from fibroblasts by preplating twice for 1 h and through
centrifugation. Cardiomyocytes were than plated over gelatin, serum-starved
and treated with 100 mM phenylephrine. Four hours after the addition of
phenylephrine, 20mg ml� 1 of abatacept were added to the culture for 44 h.
Cardiomyocytes were harvested in PureZOL (Biorad) for RNA extraction and gene
expression analysis.

Flow cytometry. Single cell suspensions from spleens and lymph nodes were
obtained via passing through 70 mm cell strainers in cold PBS� /� . Hearts were
collected and digested with Liberase TM (Roche). Erythrocytes were removed with
lysis buffer (BD Biosciences) from spleen and heart cell suspensions. Cells were
stained at the following dilutions of stock reagents: Live/dead Aqua Fluorescent
Reactive Dye 1:1,000 (Life Techonologies), anti-mouse CD16/32 1:100 (2.4G2,
BD Pharmigen), anti-mouse 1:100 CD45 (30-F11, eBioscience), anti-mouse 1:100
CD3e (145-2C11, BioLegend), anti-mouse 1:100 CD19 (eBio1D3, eBioscience),
anti-mouse 1:100 CD11b (M1/70, Biolegend), 1:100 CD11c (Bu15, eBioscience),
F4/80 1:100 (CI:A3-1, Serotec) in Supplementary Fig. 5d, F4/80 1:100 (BM8,
eBioscience) in Fig. 5d,e and Supplementary Fig. 5c, IL-10 1:80 (JES5-16E3,
eBioscience), FoxP3 1:100 (FJK-165, eBioscience), Ly6C 1:100 (HK1.4, eBioscience)
or anti-CD25 1:100 (PC61.5, eBioscience). An eBioscience intracellular staining kit
was used were applicable. Samples were acquired on a fluorescence-activated cell
sorting Canto II (BD) and analysed with FlowJo10.

Statistics. Statistical analysis was performed in GraphPad Prism. All data sets
were tested for normal distribution with normality tests before proceeding with
parametric or non-parametric analysis. Grubb’s test was performed in order to

exclude spurious outliers. Statistical significance was tested using unpaired t-test,
one-way analysis of variance (ANOVA) with Tukey post-test and two-way
ANOVA with Bonferroni post-test for data sets with normal distributions.
Statistical significance was tested with Mann–Whitney test and one-way ANOVA
with Dunn’s post-test for data sets without a normal distribution. Fisher’s exact
tests were used in the analysis of collagen deposition, testing for the presence or
absence of collagen stain.

Data availability. All the relevant data are available within the manuscript and
from the authors upon request.
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