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Abstract

The use of isotopically labeled tracer substrates is an experimental approach for measuring in vivo 
and in vitro intracellular metabolic dynamics. Stable isotopes that alter the mass but not the 

chemical behavior of a molecule are commonly used in isotope tracer studies. Because stable 

isotopes of some atoms naturally occur at non-negligible abundances, it is important to account for 

the natural abundance of these isotopes when analyzing data from isotope labeling experiments. 

Specifically, a distinction must be made between isotopes introduced experimentally via an 

isotopically labeled tracer and the isotopes naturally present at the start of an experiment. In this 

tutorial review, we explain the underlying theory of natural abundance correction of stable 

isotopes, a concept not always understood by metabolic researchers. We also provide a comparison 

of distinct methods for performing this correction and discuss natural abundance correction in the 

context of steady state 13C metabolic flux, a method increasingly used to infer intracellular 

metabolic flux from isotope experiments.
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1. Introduction

Metabolic fluxes are measurements of intracellular metabolic activity that are often more 

descriptive than measurements of intracellular metabolite concentrations (Nielsen, 2003; 

Sauer, 2006). Isotope labeling is used to quantify metabolic fluxes in vivo and in vitro 
(Cascante and Marin, 2008; Nielsen, 2003). In an in vitro isotope labeling experiment, an 

isotopically labeled tracer substrate is introduced to a live cell culture. The distribution of 

isotopic enrichment between cellular metabolites is then evaluated using mass spectrometry 

(MS) or nuclear magnetic resonance (NMR). Subsequently, metabolic fluxes are inferred by 

the relative distribution of isotopic enrichment through metabolic pathways (Chance et al., 

1983; Dauner and Sauer, 2000; Wittmann, 2002). The estimated flux measurements can then 

be used to assess the biochemical connectivity and kinetics of a metabolic network.

The traditional uses of isotope labeling experiments fall under mass isotopomer distribution 

analysis, a term that is sometimes used interchangeably with isotopomer enrichment assays 

and isotopomer spectral analysis (Buescher et al., 2015; Chubukov et al., 2013; Crown et al., 

2016; Hellerstein and Neese, 1999; Kelleher et al., 1994; Mehrmohamadi et al., 2014; 

Papageorgopoulos et al., 1999; Revelles et al., 2013; Shestov et al., 2016; Strong et al., 

1985; Wittmann, 2007). These assays can measure the kinetics of condensation reactions, 

such as polymeric protein and fatty acid synthesis, by adding tracers labeled with stable 

isotopes to catabolic biochemical pathways and tracing the transfer of isotopic labels 

between enriched precursors and their macromolecular products. The dynamics of molecular 

synthesis can then be inferred by a series of theoretical or experimental calibrations that 

compare the macromolecular isotopic signatures of the relevant cellular compounds to pre-

determined metabolic fluxes (Tserng and Kalhan, 1983).

When analyzing data from isotope labeling experiments, it is imperative to separate isotopic 

labelling that came from the addition of an isotopically labeled tracer and isotopic labelling 

that came from the natural abundance (NA) of stable isotopes (Rosenblatt et al., 1992). The 

mass spectra of metabolites can be significantly altered by atoms of stable isotopes that 

occur naturally at non-negligible abundances, such as carbon, hydrogen, nitrogen, oxygen, 

and sulfur (Berglund and Wieser, 2011). Accordingly, a number of methods for NA 

correction have been developed and widely implemented (Allen and Ratcliffe, 2009; 

Biemann, 1962; Brauman, 1966; Brunengraber et al., 1997; Dauner and Sauer, 2000; 

Dunstan, 1988; Fernandez et al., 1996; Jennings and Matthews, 2005; Lee et al., 1991; 

Millard et al., 2012; Moseley, 2010; Rosenblatt et al., 1992; Wahl et al., 2004; van Winden et 

al., 2002a; Wittmann, 2002; Yang et al., 2009) Functional enrichment assays that are only 

analyzed qualitatively and do not require high accuracy may not require NA correction in 

some circumstances. However, measurement errors (including those that arise from 

improper correction of NA) can yield misleading results in quantitative analyses such as 

mass isotopomer distribution analysis (Fernandez et al., 1996) and in the non-linear 

parameter estimation associated with 13C metabolic flux analysis (MFA) (Wittmann, 2002).

In two definitive papers on NA correction of stable isotopes, Rosenblatt (1992) and 

Fernandez et al. (1996) demonstrated the consequences of flawed NA correction on 

measurements of isotopomer distributions. Accordingly, they drew a clear distinction 
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between the incorrect “classical” method and the correct “skewed” method for NA 

correction. Wittmann et al. (2002) also demonstrated similar consequences in a 

mathematical analysis of MFA. While these articles (and others) make it clear that the 

classical correction approach should not be used, we found evidence that inadequate 

correction of NA method may continue in the published literature. A search for research 

articles published between 2009 and 2015 that cite either Biemann (1962) or Brauman 

(1966) (two papers that rely on classical-type correction approaches) returned a number of 

peer reviewed articles. While simply citing the classical method alone does not suggest 

inadequate correction of NA, several of these articles either did not also cite later methods 

that relied on the skewed approach or made it clear within the manuscript that a form of 

classical correction was performed (Olstad et al., 2007; Walls et al., 2014; Zheng et al., 

2015). In our experience, the underlying theory of NA correction is not always well 

understood by metabolic researchers. Thus, one of the primary motivations of this review is 

to clarify the difference between the older classical approach and the accepted optimal 

approach for NA correction as well as to demonstrate why understanding the distinction 

between these methods is important. We do so by explaining the complex mathematical 

concepts underlying this critical procedure in a way that is accessible to a broad audience. 

Moreover, given the massive amounts of data generated by the metabolomics community, 

scientists must be cognizant of the pitfalls of different quantitative approaches in order to 

guarantee the reproducibility of published research data.

In this work, we illustrate methods for NA correction, while demonstrating that inadequate 

correction of NA can result in erroneous estimates of isotopomer distribution and flux 

estimates. In particular, we review three related correction approaches: matrix-based 

classical correction (Biemann, 1962; Brauman, 1966), matrix-based “skewed” correction 

(Fernandez et al., 1996; van Winden et al., 2002a), and a least-squares implementation of the 

“skewed” correction method (Millard et al., 2012). We have adopted the terminology 

(“classical” and “skewed”) used by Rosenblatt et al. (1992) and Fernandez at al. (1996) 

when discussing the different approaches. We evaluate the performance of each method 

using synthetic datasets. We further evaluate these methods in the context of steady state 13C 

MFA implemented in OpenFLUX (Quek et al., 2009), which is based on the widely used 

elementary metabolite unit framework (Antoniewicz et al., 2007), using both liquid 

chromatography (LC) and gas chromatography (GC) MS based datasets.

2. Correcting mass isotopomer distributions

Isotope labeling experiments exploit the natural phenomenon of isotopic isomers. A 

metabolite can have distinct isotopic isomers (also known as isotopomers) with the same 

chemical formula but a different number and arrangement of isotopes of one or more 

elements. The collection of isotopomers of a metabolite can be further grouped into either 

positional or mass isotopomers. Positional isotopomers have identical global isotopic 

composition but differ in the position of their isotopes (e.g., [1-13C] glucose is a positional 

isotopomer of [6-13C] glucose). Mass isotopomers, also known as isotopologues, are 

isotopic isomers that differ in the number and arrangement of isotopes, resulting in different 

molecular weights (Brunengraber et al., 1997). A three carbon molecule will have up to 8 

positional isotopomers and 4 mass isotopomers based on the isotopic composition of 12C 
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and 13C (Figure 1). For each metabolite measured in a biomass sample, spectrometers 

distinguish mass isotopomers by the mass shift of spectral peaks relative to the nominal 

mass of the metabolite. The spectral peak of the lowest molecular weight is usually the 

nominal mass of the metabolite. The remaining satellite spectral peaks typically correspond 

to mass isotopomers containing heavier (but possibly lighter) isotopes that are identified as 

M0, M1, M2, etc. (where the number following the M indicates the atomic mass shift from 

the nominal mass of M0).

A mass isotopomer distribution (MID), which may also be referred to as a mass distribution 

vector or MDV, quantitates the relative abundance of mass isotopomers of a metabolite 

(Hellerstein and Neese, 1999; Lee et al., 1991; Yang et al., 2009). The fractional abundance 

of the i-th mass isotopomer in a MID, FAMi, can be calculated by

(1)

where i is the incremental increase in atomic mass, Imi is the measured spectral intensity 

obtained at a specific mass-to-charge ratio corresponding to an M0+i mass shift, and n is the 

total number of possible mass isotopomers for a given metabolite. The sum of all FAMi 

values in a MID is 1.

MIDs enriched with heavy carbon can be used to evaluate hypotheses about physiological or 

cellular mechanisms. In particular, mathematical models can characterize the structure and 

kinetics of metabolic networks using constraints from experimental incorporation and 

distribution of stable isotopes of carbon across metabolites (Cobelli et al., 1987). Carbon is 

naturally found as two stable isotopes, 12C and 13C, which have relative abundances of 

98.9% and 1.1%, respectively (Table 1). The International Union of Pure and Applied 

Chemistry (IUPAC) maintains the Table of Isotopic Compositions of the Elements (TICE), 

which was recently revised to quantify uncertainty in measurements of isotopic standards 

(Meija et al., 2016). Carbon is also found as a radioactive isotope, 14C, which is present in 

trace amounts and often used for carbon dating (Firestone et al., 1999). Nonetheless, 13C is 

frequently used in isotope labeling experiments because it is easily distinguished from 12C 

via MS or NMR and its lack of radioactivity. Because 13C naturally occurs at a non-

negligible level, its NA can impact the interpretation of mass spectral data. Therefore, 

inadequate NA correction of stable isotopes can magnify the uncertainty in MID 

measurements and therefore yield misleading conclusions about cellular processes. While 

this work primarily addresses NA correction of stable isotopes in 13C based isotope labeling 

experiments, the results and conclusions can be generalized to experiments with other 

commonly used heavy stable isotopes such as 15N.

In an isotope labeling experiment, all measured mass isotopomers may contain interference 

from naturally occurring stable isotopes along with enrichment of stable isotopes from the 

labeled tracer substrate. Experimentally, it is the latter quantity that is of interest. While 

qualitative inspection of uncorrected MIDs may be sufficient for some empirical 
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investigations, more detailed analyses of measured MIDs will almost always require the 

correction of naturally occurring isotopes prior to quantitative processing (Figure 2). Visual 

comparison of labeled and unlabeled samples can provide information about whether 

observed isotopic enrichment is experimentally derived or represents contribution from NA. 

Nonetheless, simply subtracting an unlabeled MID from a labeled MID will not adequately 

correct for NA or quantify experimental enrichment (Buescher et al., 2015). Commonly used 

methods for the accurate correction of NA rely on metabolite-specific correction factors that 

can be represented in a correction matrix (CM) that separate NA from enrichment in 

measured MIDs (Biemann, 1962; Brauman, 1966; Dunstan, 1988; Fernandez et al., 1996; 

Millard et al., 2012; Moseley, 2010; Rosenblatt et al., 1992). Ideally, these correction factors 

are derived directly from measurements of compound-specific standards. However, such an 

approach requires the expensive and laborious collection of numerous standards for every 

metabolite measured in an experiment. An alternative approach is to calculate the expected 

NA distribution of these standards using elemental correction factors with a combinatorial 

probability function derived from the known NA of the constituent atoms in a metabolite 

(Table 1). Whether NA distributions are experimentally measured or theoretically computed, 

they can be augmented with calibration experiments to account for instrumentation noise 

(Fernandez et al., 1996; Jennings and Matthews, 2005). Ultimately, the choice of whether to 

correct or not for NA depends on several factors including the tool for detection of mass 

isotopmers, method for analysis of isotope labeling data, and the biological insight 

warranting an isotope labeling experiment.

The choice of specrometeric detection tool can dictate the extent of interference of NA on 

enrichment of stable isotopes from the labeled tracer. An analytical detection tool such as 

GCMS that requires dervitization to enable chromotagrpahic seperation chemically 

introduces often Si-containing bulky moieties to measured metabolites. These additional 

moieties often comprise the primariy source of NA in measured MIDs and likely warrant 

correction for NA regardless of the method for anlaysis of the MID. In contrast, detection 

tools that do not require deriatiztion agents such as LCMS generate MIDs where the primary 

soruce of NA is the metabolite carbon backbone. In such cases, low interfernece from NA 

may not necessarily warrant NA correction depending on the computational method used to 

analyze the MID.

In addition to spectrometric tools, analytical and computational tools for the analysis of 

distribution of isotopes in labeling experiments also dictate the necessity for NA correction. 

For direct interpretation of 13C labeling patterns, also called 13C tracer analysis, necessity 

for correction depends on the sensitivity of the tracer analysis to measurements error in the 

MIDs. Realtively simpy estimates of nutrient or pathway contribution to the production of a 

certain metabolite may be only marginally sensitive to small errors due to NA or tracer 

impurity as explained in Buescher et al. Yet, Fernandez et al. demonstrated an example 

where a simple estimate of the contribution of gluconeogenesis to gluose in perfused rat 

liver is significantly sensitive to NA error. For 13C metabolic flux analysis, there are also 

various software packages based on differing algorithms which vary in their treatment of NA 

(Quek et al., 2009; Sokol et al., 2012; Srour et al., 2011; Weitzel et al., 2013; Young, 2014; 

Zamboni et al., 2005). Some of these applications require NA correction of input data for at 

least the non-carbon elements while others can simulate internally the NA of the non-carbon 
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elements and the carbon backbone. Taking into account the numerous and varied 

spectrometric and computational tools available, it is imperative for researchers to 

investigate the sensitivtiy of their specific experimental and analytical approach to errors in 

MIDs due to NA and decide on whether to correct or not for NA accordingly.

2.1 Methods for the correction of natural abundance: a brief history

Biemann (1962) illustrated an early method for decomposing the spectrum of a mixture 

made up of two isotopomers of the same compound. This method was adapted to NA 

correction because an isotopically enriched compound consists of at least two isotopomers: a 

natural isotopomer and an enriched isotopomer. Accordingly, the Biemann approach was 

widely adapted for the deconvolution of NA from isotopic enrichments. In a stepwise 

fashion, the Biemann approach computed the contribution of naturally abundant isotopes to 

each mass spectral peak of a labeled compound based on the measured spectral peaks of an 

unlabeled standard. A few years later, Brauman (1966) formulated a complementary method 

that utilized matrix notation and a least-squares approach to infer the individual spectrum of 

isotopomers that make up a molecule. Brauman’s method demonstrated the concept of an 

abundance matrix, which is a metabolite specific matrix of correction factors that describe 

the contribution of naturally abundant isotopes to the measured spectral abundances (or 

intensities) of the metabolite (Jennings and Matthews, 2005). In the context of NA 

correction, abundance matrices are commonly termed correction matrices.

While they represent important and fundamental advances, the approaches of Biemann 

(1962) and Brauman (1966) made the same flawed assumption about the distribution of 

stable isotopes. Specifically, their methods assumed that for any metabolite, the MID of a 

labeled standard (with known enrichment of isotopes) is equivalent to the MID of an 

unlabeled standard (without any enriched isotopes) except for a mass shift corresponding to 

the number of enriched isotopes in the labeled standard. Therefore, they assumed that only a 

single measurement (or theoretical estimate) of an unlabeled standard was sufficient for NA 

correction (Figure 3A). Why this is incorrect is explained below. Throughout this review, we 

refer to correction methods that rely heavily on this assumption as classical approaches 

(Fernandez et al., 1996; Rosenblatt et al., 1992). A direct consequence of the classical 

assumption is often a systematic overestimation of the contribution of NA and 

underestimation of the contribution of experimental enrichment from a labeled substrate.

In reality, enrichment of stable isotopes from an isotopically labeled substrate results in a 

non-linear shift in the distribution of naturally abundant isotopes (Figure 3B), which the 

classical approach does not account for. Dunstan (1988) addressed this limitation by using a 

probability equation that more accurately modeled the multinomial distribution of stable 

isotopes in a MID. In addition, Rosenblatt et al. (1992) derived correction factors that took 

into account what they referred to as a “skew” in the distribution of naturally abundant 

isotopes due to experimental (in contrast to natural) isotopic enrichment. These correction 

factors were specific to the derivation of molar percent excess, a measure of the enrichment 

of a particular isotope above the measure of its NA. Lee et al. (1991) extended Brauman’s 

approach to account for the multinomial “skew” effect via a binomial probability equation 

for the correction of 13C NA (because carbon only occurs in one of two stable forms). Each 
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of these approaches relied on compound-specific NA distributions that were either measured 

experimentally or computed using theoretical elemental abundances from a multinomial 

probability equation.

Ideally, for every experiment, correction factors will be derived from measurements of pure 

and n-labeled standards for all measured mass isotopomers. These experiment specific 

measurements can adjust for fluctuations in the NA of stable isotopes that may arise from 

variations in both instrumentation and naturally abundant isotopic content in tracer 

compounds (Allen and Ratcliffe, 2009; Fernandez et al., 1996; Jennings and Matthews, 

2005). To do so, however, requires calibration procedures and measurements of a very large 

number of standards, which is an expensive and laborious process when performed 

routinely. To address these limitations, Fernandez et al. (1996) developed a computer 

program that used a theoretical correction matrix method that accounted for isotope 

distribution “skew” and developed an optimization function that adjusted for instrumentation 

error using one unlabeled standard for each metabolite. The optimization function 

minimized the difference between the measured and predicted mass spectra of the unlabeled 

standard (Fernandez et al., 1996). This approach was a considerable improvement over 

laboriously measuring multiple standards for each metabolite. Later, Jennings and Matthews 

(2005) developed a similar approach that relied on the measurement of a single unlabeled 

standard to derive “skew” based correction factors while also leveraging Brauman’s least 

squares approach to account for both instrumental and chemical noise.

2.2 The correction matrix method

The correction matrix method is an algebraic approach for NA correction using correction 

factors derived either experimentally or theoretically. To illustrate this procedure, we use 

pyruvate (C3H3O3) as an example for a measured metabolite. The observed MID (MIDobs) 

of pyruvate is equal to the product of the correction matrix for pyruvate and the corrected 

MID (MIDcorr) (Figure 4A):

(2)

Thus, the corrected MID of pyruvate is calculated by multiplying the observed MID by the 

inverse of the CM:

(3)

where  consists of pyruvate specific correction factors that describe how the 

spectral peaks of naturally abundant 13C contribute to spectral peaks that overlap (or 

convolve) the spectral peaks of the corrected MID of pyruvate. The corrected MID 

represents to the relative abundance of 13C from experimental enrichment only.

There is an important and fundamental difference in the way that CMs are constructed in the 

classical and skewed correction approaches. As mentioned above, the classical approach 
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makes the assumption that MIDs of singly, doubly, triply, and, more generally, n-labeled 

standards – S(1), S(2), S(3), and S(n) respectively – are equivalent to the MID of an 

unlabeled pure standard, S(0), except shifted by 1, 2, 3, or n atomic mass units, respectively 

(Figure 3A). In reality, a stable isotope labeling experiment will result in a non-linear shift in 

the distribution of naturally abundant isotopes, a phenomenon referred to as “skew” in the 

literature. This non-linear shift arises because the experimental introduction of 13C from a 

tracer substrate lowers the probability that higher mass isotopomers arise from NA in a non-

linear manner. The MID of a labeled standard is not, therefore, equivalent to the MID of its 

unlabeled counterpart offset by the appropriate mass shift (Figure 3B). Returning to the 

example of pyruvate, the probability that one of the carbons in an unlabeled standard of 

pyruvate will be 13C due to NA is significantly higher than the probability that the sole 

unlabeled carbon in a doubly-labeled standard of pyruvate will be 13C due to NA. The 

classical approach incorrectly treats these probabilities as equivalent.

When correcting for NA of 13C in pyruvate using the skewed approach, CMC3 accounts for 

the non-linear shift in the distribution of 13C from NA via correction factors derived from 

the fractional abundance values corresponding to the MIDs of four standards (Figure 3B and 
Figure 4A,C): S(0), S(1), S(2), and S(3). These correction factors may either be measured 

experimentally or theoretically derived by simulating the fractional abundance of their 

corresponding mass isotopomers (Allen and Ratcliffe, 2009; Dunstan, 1988; Fernandez et 

al., 1996; Lee et al., 1991; van Winden et al., 2002a).

Accordingly, using the skewed approach, MIDs of unlabeled and 13C labeled standards are 

used to construct a CM as follows:

(4)

An element-wise expansion of the right-hand side of Eqn. 4 illustrates the underlying logic 

of this approach:

(5)

The M0 spectral peak of an observed MID is an isotopomer containing only 12C isotopes. 

The probability of this isotopomer naturally occurring is represented as S(0)m0, which 

corresponds to the relative abundance of the M0 base peak of an unlabeled standard, S(0). 

The M1 spectral peak of an observed MID is an isotopomer containing one 13C isotope 
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because of either NA or because of experimental enrichment. The probability of this 

isotopomer naturally occurring corresponds to the relative abundances of the M1 peak of an 

unlabeled standard, S(0)m1, and the M0 peak of a singly-labeled standard, S(1)m0.. The 

remaining correction factors are derived in a similar fashion.

A metabolite specific CM can be constructed with the measured MIDs of unlabeled and 

labeled standards (Eqn 4). Alternatively, an equivalent metabolite specific CM can be 

computed by matrix multiplication of the elemental CM for each constituent element in the 

metabolite. In the case of 13C labeled pyruvate, there would be three elemental CMs, CMC3, 

CMH3, and CMO3, which contain correction factors for carbon, hydrogen and oxygen, 

respectively:

(6)

(7)

(8)

Elemental correction matrices can be constructed using combinatorial probability equations 

rather than from explicit measurements of all relevant standards. In particular, the 

probability of each elemental isotopomer (an isotopomer that consists only of atoms of the 

same element) can be computed as follows:

(9)

where N is the number of atoms of the element (e.g., carbon, hydrogen, or oxygen) in the 

fragment, n is the number of naturally occurring isotopes, I1, …, In, of the element, p(Ii) is 

the NA of the i-th isotope, and f(Ii) is the frequency of the i-th isotope in a fragment. For 
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example, the probability that an elemental isotopomer consisting of 16O3 17O2 18O1 will 

naturally occur in a compound containing exactly 6 atoms of oxygen is computed as follows:

where 0.99757, 0.00380, and 0.00205 are the NA probabilities for 16O, 17O and 18O 

isotopes, respectively (Table 1).

Using the probability for each elemental isotopomer, the MID for each theoretical standard 

can easily be derived analytically. An expression is derived based on all possible isotopic 

combinations sorted by mass. As such, the MID of the O3 fragment is expressed as follows:

where N is the total number of oxygen atoms in the fragment, i is the mass shift of the 

standard peak, and j, and k are the number of atoms of 17O, and 18O respectively in a 

possible elemental fragment. Here, the multinomial coefficient represents the number of 

possible isotopomers of identical mass at each peak m0+i. For example, the second peak of 

the theoretical elemental standard for O3 is expressed as follows:

In a similar fashion, labeled standards can be analytically expressed for the carbon elemental 

matrices as follows:

where n indicates the number of 13C incorporated from labeling.

As previously discussed, manual measurement of the MIDs of standards needed to correct 

all metabolites measured in an experiment can be expensive and labor intensive. It is usually 

more practical to rely on theoretical CMs based on the fractional abundance values that are 

well approximated from multinomial probability theory (Allen and Ratcliffe, 2009; Dauner 

and Sauer, 2000; Dunstan, 1988; Fernandez et al., 1996; Lee et al., 1991; Rosenblatt et al., 

1992; van Winden et al., 2002a). This alternate approach requires precise knowledge of the 
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exact molecular formula of all metabolites measured as well as the NA of heavy (or light) 

stable isotopes of all elements present in measured metabolites. It should be noted that the 

methods described above are not able to simultaneously correct for the simultaneous 

labeling of two different elements (e.g., exposing cells simultaneously to both 2H and 13C) 

using unit-resolved isotopologue peaks as measured by typical LCMS and GCMS methods. 

Correction via a CM will result in partial correction only. However, simultaneous NA 

correction for the labeling by different elements can be performed for isotope-resolved 

isotopologue measurements by ultra-high resolution MS (Carreer et al., 2013).

2.3 Iterative correction methods

Mass spectral data from tracer experiments are often imperfect. Missing peaks and low 

spectral intensity can result in negative fractional abundance values when these 

measurements undergo correction via the correction matrix method. One approach for 

handling negative values is to flatten the unrealistic negative values to zero, then renormalize 

the MIDs using the total area under the positive mass spectral peaks of the corrected MID. 

To directly address the problem of missing values, Moseley (2010) suggested pre-processing 

the raw measurement by interpolating the missing fractional abundance using the expected 

isotopic profile of each metabolite. After processing for missing values, the method relies on 

an iterative approach that utilizes a series of algebraic equations to correct individual mass 

isotopomer peaks in increasing mass order.

Millard et al. (2012) later developed the IsoCor software program, which relies on an 

iterative implementation that explicitly addresses the problem of negative fractions after NA 

correction. Because not all isotopologue can be measured with unit-resolved MS, the non-

linear approach of IsoCor for correcting NA has a theoretical advantage over linear matrix-

based correction. This approach uses a non-linear least-squares optimization algorithm to 

minimize residuals due to experimental noise along with the skewed correction matrix 

method. The least-squares optimization is implemented via the limited-memory Broyden-

Fletcher-Goldfarb-Shanno algorithm (Byrd and Segre, 2016), which is a numerical 

optimization algorithm with an explicit lower boundary of zero to eliminate any potential 

negative fractions. Thus IsoCor provides an alternative method for avoiding potential 

negative fractions in corrected MIDs. Nonetheless, the method employs skewed based CMs 

for performing the actual correction on the observed measurements and for simulating the 

expected measurements using inverse CMs. Therefore, IsoCor varies from the skewed 

matrix correction method by the inclusion of an iterative least-squares optimization function 

which attempts to improve model fitting and ensure the positivity of all fractional 

abundances via explicit lower boundary constraints.

2.4 Correction for high-resolution isotopologue data

The choice of the MS instrument generating isotopologue peaks can also dictate the 

appropriate method for correcting NA. So far we have only discussed NA correction in the 

context of unit mass (single dalton) resolved isotopologue data available from typical LCMS 

and GCMS instruments. Ultra-high accurate and resolved Fourier Transform MS 

instruments can, however, unambiguously distinguish mass-to-charge peaks accurately up to 

four decimal places resulting in hundreds to thousands of peaks for many compounds. High-
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resolution isotopic clusters can therefore resolve differences between incorporation of 

different elements such as 13C and 15N. Such high resolution of isotopologue data 

warranted computationally tractable approaches for denoising and NA correction. (Carreer et 

al., 2013; Moseley, 2010). These data can also be corrected for NA using the linear matrix-

based approaches described in this article if CMs are constructed from molecular formulas 

of the ions detected. For instance, isotopically-resolved molecular ions related to carbon 

must be corrected with CMs constructed by molecular formulas that exclude NA from other 

incorporated elements such as heavy nitrogen.However, for the remainder of this article, we 

discuss matrix-based approaches for NA correction mainly in the context of unit-resolved 

isotopologue data.

2.5 Additional factors that may impact natural abundance correction

Because tracer substrates are unlikely to be labeled with 100 percent purity, correction 

matrices should account for purity of the enriched element. In 13C isotope labeling 

experiments, the elemental CM for carbon should accordingly compensate for tracer purity 

in each theoretical n-labeled standard. To do so, theoretical computations of n-labeled 

standards (columns in Eqn. 4 and 6) are simply convolved n times with a vector indicating 

the tracer purity. For instance, the MID for a two-carbon singly-labeled standard enriched 

with 13C at 95% purity would be computed as follows:

where t(12C) and t(13C) indicate the isotopic abundance of carbon isotopes in the tracer 

substrate. Because it is theoretically labeled with an impure 13C tracer, this singly-labeled 

standard would have a non-zero isotopologue peak of approximately 0.049 below its 

expected nominal mass.

Variation in the MID of standards can also arise from variation in elemental isotopic 

abundances. These variations are due to chemical and physical fractionations which are 

influenced by the source of a biological material (Coplen et al., 2009; Meija et al., 2016). 

Fernandez et al. accounted for such variations by estimating experiment-specific elemental 

isotopic abundances with non-linear parameter fitting using unlabeled standards from 

control samples. In a similar fashion, IsoCor inherently corrects for these variations by 

implementing non-linear least-squares optimization to minimize variation between measured 

MIDs and the simulated MIDs (Millard et al., 2012). These variations correspond to 

measurement noise including instrumentation error and variation in natural abundance of 

isotopes. For linear matrix-based correction for NA, elemental isotopic abundances must be 

measured a priori and would be best estimated with parameter fitting similar to the work of 

Fernandez et al.
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3. Comparison of correction methods

In this tutorial review, we evaluated the performance of the classical matrix method, skewed 

matrix method, and the least-squares skewed-based IsoCor method, which we refer to as the 

classical, skewed and least-squares skewed correction (LSC) methods, respectively. The 

method we refer to as the skewed approach in this paper properly accounts for the non-linear 

shift in the distribution of naturally abundant isotopes (or “skew”) and is the accepted 

method for correction for NA. As previously discussed, the classical method is known to 

overestimate NA in a MID the consequence of which is demonstrated in Figure 3, where 

classical correction yields a corrected MID with no M3 abundance and skewed correction 

yields a small but non-negligible M3 abundance in the corrected MID. While we could have 

reasonably left the erroneous classical method out of this review, we chose to include it in 

order to evaluate its performance when systematically compared to the skewed matrix and 

LSC approaches under varying noise levels.

First, the three correction methods were applied to measurements of three unlabeled 

standards. No observable qualitative or quantitative differences were found in the corrected 

MIDs of unlabeled standards of aspartate, lactate, or glutamate when measured by LC-MS 

or GC-MS (Supplemental Figure S1), suggesting the three approaches perform equally well 

for MIDs containing only NA in the absence of experimental enrichment. The apparent 

accuracy of the sub-optimal classical method when correcting an unlabeled standard is not 

surprising given that classical correction factors are based on NA probabilities derived from 

an unlabeled standard.

We next evaluated the performance of each correction method when applied to a set of 

hypothetical glutamate MID measurements (Figure 5). When the fractional abundance of 

each mass isotopomer in the observed MID were equal, no qualitative or quantitative 

differences were observed in the corrected MIDs (Figure 5A). However, when at least one 

fractional abundance in the observed MID was very small, differences between skewed and 

classical correction as well as differences between skewed and LSC correction were 

apparent (Figure 5B-D). The observed differences between skewed and classical are not 

unexpected for reasons discussed previously. The observed differences between skewed and 

LSC correction, which raise questions about which method is most appropriate for routine 

usage, are likely a direct result of the explicit lower boundary set by LSC to eliminate 

potential negative fractions. To systematically evaluate the effects of these correction 

differences in realistic experimental conditions, we corrected simulated MIDs for which the 

expected MID was known a priori in the presence of increasing amounts of random noise. 

This approach also enabled us to evaluate how differences in correction impact parameter 

estimation as performed by 13C based MFA.

We developed a metabolic model of glucose metabolism for cancer breast cell lines to 

evaluate how well each method corrects for NA in the presence of both experimental noise 

and enrichment from commonly used 13C tracers. The workflow of the experimental 

approach is outlined in Figure 7 and the metabolic network is illustrated in Figure 6. The 

network includes reactions involved in glycolysis and the tricarboxylic acid (TCA) cycle in 

breast cancer cell lines (Wynn et al., 2016). The input fluxes are glucose and glutamine, and 
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the output fluxes are alanine, alpha-ketoglutarate, aspartate, glutamine, lactate, and 

oxaloacetate. An arbitrary, yet physiologically meaningful, set of fluxes was pre-defined for 

this model (Supplemental Table 1). The expected enrichment at isotopic steady state after 

the addition of [1,2-13C] glucose and [U-13C] glutamine was calculated based on the carbon 

transitions and predetermined flux values listed in Supplemental Table 1 (Figure 7, Step 1). 

The tracers were assumed to be pure with 100% positional labeling and multiplicative 

Gaussian noise was added to each MID (see Methods).

At the end of Step 2 in Figure 7, analogous sets of LC-MS- and GC-MS-based MIDs, each 

consisting of 1,000 experimental replicates, were generated after convolution first with NA 

and then with noise from a Gaussian distribution. These MIDs were then processed in four 

parallel treatment conditions (Figure 7, Step 3): (i) Observed: no NA correction, (ii) 

Classical: NA correction via the classical method, (iii) Skewed: NA correction via the 

skewed method, and (iv) LSC: NA correction via IsoCor. For each metabolite, we randomly 

sampled 4 replicate MIDs from the total set of 1000 simulated to mimic an actual 

experimental setup where only a small number of biological samples are usually available.

Under identical experimental conditions, metabolite measurements produced via LC-MS 

and GC-MS analyses will be different. Because of the presence of a derivatizing agent, the 

fractional abundance values produced by GC-MS come from heavier compounds with 

substantially more NA from stable isotopes. Moreover, the fragmentation of the compounds 

by GC-MS provides some positional labeling information that is not available from an LC-

MS analysis. Therefore, we simulated experimentally observed MIDs produced by both LC-

MS and GC-MS (Figure 7, Step 2) for 8 metabolites, which contained a total of 44 and 55 

fractional abundance values, respectively (Supplemental Table 2 and Supplemental Table 3).

3.1 Evaluating the natural abundance correction accuracy of each method

The performance of each correction method was evaluated by computing the deviation in 

observed and corrected MIDs from the set of expected MIDs ( ). Here, the expected 

MIDs ( ) correspond to fractional abundances of the true mass isotopomer distributions 

that were simulated by our pipeline (Figure 7, Step 1); observed MIDs (MOBS) correspond 

to fractional abundance of the expected MIDs that have been convolved with natural 

abundance and Gaussian noise (Figure 7, Step 2); while the corrected MIDs (MCORR) 

correspond to the fractional abundance of observed MIDs after correction with for natural 

abundance (Figure 7, Step 3). Accordingly, the variance-weighted sum of squared residuals 

(WSSR) was computed as follows:

(10)

where n is the number of backbone carbons for the i-th metabolite, and k is the total number 

metabolites measured. Thus, Mi,j is the j-th fractional abundance of the i-th metabolite. The 

WSSR follows a chi-square distribution if the MID residuals follow a normal distribution 
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and estimates for the variance of the residuals are known. For each fractional abundance, 

each weight is inversely proportional to the variance of its residuals. The WSSR statistic was 

used in a chi-squared goodness of fit test (Sokal et al., 1995) at a significance level of 0.05 to 

evaluate how closely the corrected MIDs compared to the expected MIDs.

In general, an adequate correction model will correct a set of MIDs only for presence of NA. 

Therefore, we also evaluated the performance of each correction model by comparing the 

magnitude of correction performed to the residuals expected due to NA alone. This was 

accomplished by evaluating the squared magnitude of correction (SMOC), the expected 

SMOC (the overall error in the observed MID, including deviation from the expected MID 

due to NA as well as other sources, such as noise), and the expected error in the observed 

MIDs that came only from NA (ERRORNA). These statistics were computed as follows:

(11)

(12)

(13)

where  indicates the convolution of the expected MID with NA.

For both the LC-MS (Figure 8A) and GC-MS (Figure 8B) datasets at all noise levels, the 

WSSR for MIDs corrected by the skewed and LSC methods were below the goodness-of-fit 

cutoff (Figure 8A-B), indicating that NA corrections performed by these methods performed 

adequately under all conditions tested. In contrast, at noise levels below 10%, classical 

correction was not adequate (Figure 8A-B). In these cases, classical correction overestimated 

NA and, accordingly, overcorrected the MIDs (Figure 8C-D). The over-correction is 

demonstrated by the classical correction SMOC, which was always larger than the 

associated ERRORNA (blue line in Figures 8C-D).

In the extreme case where random error is much larger than error from NA (e.g., 10% noise), 

it is not unexpected that all correction methods meet the goodness-of-fit cutoff (Figure 8A-

B). This is because WSSR measures how well each method corrects NA while controlling 

for variance (i.e. noise) as a weighting factor. After all, the correction methods were not 

designed to correct for gross random errors. As demonstrated in Figure 8C-D, the expected 

SMOC is a measure of the observed error from both NA (blue lines) and random Gaussian 

noise (expected SMOC above blue line). If the expected SMOC is mostly due to random 
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noise, as in LC-MS MIDs with 10% noise, all correction methods as well as not correcting 

at all yielded WSSRs below the goodness-of-fit cutoff (Figure 8A). For analysis of 

compounds with GC-MS, a compound must be volatile and thermally stable, which typically 

requires chemical derivatization. The NA of derivatization residue must be considered in the 

correction for NA. This additional NA results in an expected SMOC that is mostly due to 

NA. Therefore, not correcting at all for NA in GC-MS MIDs (observed in Figure 8B) did not 

pass the goodness-of-fit cutoff at 10% noise.

3.2 Comparing the impact of each correction method on 13C metabolic flux analysis

We next evaluated how each correction method impacted the estimation of metabolic fluxes 

using both LC-MS- and GC-MS-based 13C steady state MFA, which we describe briefly 

below. The same in silico generated MIDs that were corrected and analyzed in Figure 8 were 

used as input for a set of MFA simulations. Briefly, after correction (Figure 7, Step 3), 4 

randomly sampled replicates of LC-MS MIDS generated for each metabolite (Supplemental 

Table 2) were used as input to 13C MFA (Figure 7, Step 4). This process was repeated with 

the in silico generated GC-MS MIDs (Supplemental Table 3).

13C metabolic flux analysis (MFA) is a computational approach for estimating absolute 

metabolic flux in a network by solving a constrained least squares optimization problem 

where the difference between experimentally measured MIDs and predicted MIDs is 

minimized (Wiechert, 2001). While 13C MFA is well reviewed elsewhere (Quek et al., 2010; 

Schmidt et al., 1997; Wiechert, 2001; Zamboni et al., 2009), we provide a brief introduction.

MFA is a powerful tool for estimating intracellular metabolic fluxes (Libourel and Shachar-

Hill, 2008; Wittmann, 2002; Young et al., 2008; Zamboni and Sauer, 2009). MFA relies on 

non-linear optimization, steady-state mass balance equations, and a set of measured 

extracellular fluxes. Steady-state MFA attempts to find the set of fluxes that satisfy S × v = 

0, where S is the stoichiometric matrix and v is the vector of fluxes in a network. The final 

output of MFA is often a metabolic flux map consisting of a diagrammed biochemical 

network that contains an estimate of the absolute steady state flux of each reaction in the 

diagram. As in flux balance analysis (Orth et al., 2010), a related constraint-based 

stoichiometric approach, MFA does not require knowledge of the enzyme kinetics catalyzing 

metabolic reactions (Edwards and Palsson, 2000).

Even when extracellular flux constraints are added, the systems modeled by MFA are 

typically underdetermined because there are more fluxes than metabolites in a metabolic 

model. In 13C MFA, 13C based isotope labeling experiments add additional experimental 

constraints to the underdetermined metabolic model in order to reduce the degrees of 

freedom and improve inference of the metabolic fluxes (Bonarius et al., 1998; Wiechert, 

2001). Accordingly, 13C MFA constrains the MFA approach with an isotopomer matrix that 

describes the distribution of isotopes from isotopically enriched substrates into the metabolic 

network (Antoniewicz et al., 2007; Bonarius et al., 1998; Christensen and Nielsen, 1999; 

Marx et al., 1996; Sokol et al., 2012; Srour et al., 2011; Weitzel et al., 2013; Wiechert et al., 

1999; van Winden et al., 2002b; Zupke and Stephanopoulos, 1995). In the case of 13C 

isotope labeling experiments, the matrix represents the carbon atom transitions involved in 

all modeled metabolic reactions (Schmidt et al., 1997).
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13C MFA requires knowledge of atom transitions involved in a network, measurements of 

MIDs after the introduction of a labeled tracer, and, typically, a system at isotopic steady 

state (as is necessary in steady-state 13C MFA). Importantly, if it were possible to know all 

metabolic fluxes at steady state a priori, a unique mathematical solution exists for 

calculating the isotopic distribution produced by any tracer combination added to the 

network. The objective of 13C MFA is to solve the underdetermined inverse problem of 

identifying a set of unknown intracellular fluxes from a small subset of measured MIDs (i.e. 

a sample of isotopic distribution) (Antoniewicz et al., 2006; Schmidt et al., 1997). In 

practice, the objective of 13C MFA is to identify the optimal fluxes that reproduce the 

measured data supplied as input to the simulation (Wiechert and de Graaf, 1997).

In our investigations, we used steady-state 13C MFA, which relies on the use of tracer 

substrates containing one or more carbons labeled as 13C and measurements taken at 

isotopic steady state. We generated mass isotopomer data in silico and used 13C MFA to test 

the effect of pre-correcting the MIDs for all atoms with the three correction methods. 

Simulations were performed on a biologically realistic network of central carbon 

metabolism (Figure 5). For simulations with MIDs that did not correct for the carbon 

backbone, observed (uncorrected), the existence of NA in the labeled substrate tracers of the 

network (glucose and glutamine) were assumed. We undertook our analysis using 

OpenFLUX, which is built upon the widely used elementary metabolite unit framework 

(Antoniewicz et al., 2007). While we relied on OpenFLUX because of its ease of use and 

open source code base, other tools for performing MFA exist (Srour et al., 2011; Weitzel et 

al., 2013; Young, 2014; Zamboni et al., 2005).

The metabolic network model (Figure 5) contains nine free fluxes that represent the minimal 

set of fluxes from which the remaining network fluxes can be computed from the system of 

equations defining the network (Zamboni and Sauer, 2009). Four of the nine fluxes are 

strictly unidirectional based on thermodynamic considerations (R5, R8, R14, and R20). The 

other five fluxes are the reverse reactions of bidirectional fluxes (R4, R10, R16, R18, and 

R23). The uptake rate of the tracers ([1,2-13C]glucose and [U-13C]glutamine) along with the 

secretion rates of lactate, alpha-ketoglutarate, and oxaloacetate were used as model 

constraints.

OpenFLUX (Quek et al., 2009) provides an optimal estimate for each network flux that is 

bounded by a 95% confidence interval (Antoniewicz et al., 2006). In general, it is 

challenging for MFA to resolve the forward and reverse fluxes of bidirectional reactions. 

However, it is often capable of estimating the net flux through these bidirectional reactions. 

Therefore, in the metabolic network (Figure 5), we evaluate the performance of MFA 

estimation of the reverse reactions of bidirectional fluxes by estimating the accuracy of 

estimates of the corresponding net fluxes of their reactions. In the subsequent analysis, the 

net flux R3/R4 is determined by the predefined flux of the uptake of glucose tracer substrate 

into the network, because the concentration of fructose 1,6-bisphosphate (FBP) must be 

balanced by the uptake rate of glucose tracer, R1 flux, and the net flux R3/R4 (Figure 5). 
Therefore, we exclude the free flux R4 (phosphoenolpyruvate to fructose bis-phosphate) 

from the subsequent analysis.
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3.3 Evaluating the impact of natural abundance correction by each method on flux 
estimates

MFA with MIDs that were classically corrected performed worse than MFA with MIDs that 

were skewed corrected. For LC-MS-based MFA, classical correction predicted 95% 

confidence intervals that correctly estimate the optimal value for seven of the eight free 

fluxes (Figure 9 and Supplemental Figure 2). However, MFA with skewed and LSC 

corrected MIDs yielded better optimal estimates of fluxes. In addition, the 95% confidence 

intervals for MFA using classical MIDs was consistently larger than the intervals predicted 

by MFA with skewed or LSC corrected MIDs. For isotope labeling experiments with low 

NA, as in the case of LC-MS measurements, even MFA with MIDs not corrected at all 

(Observed), slightly outperformed classical correction (Figure 9A). However, for isotope 

labeling experiments with high NA, as in the case of GC-MS measurements, correction was 

imperative for accurate estimate of fluxes with MFA (Figure 9B). In our analysis, MFA with 

observed GC-MS MIDs did not correctly predict any of the free fluxes. This is likely due to 

derivatization, a required process for GC-MS, which results in higher NA error in MIDs.

3.4 Evaluating the impact of natural abundance correction by each method on MID 
estimates

While MFA is a powerful tool for estimating intracellular flux, an important limitation of 

MFA is that a simulation may converge to a faulty but optimal set of flux estimates with 

small (but misleading) confidence intervals (Antoniewicz et al., 2006; Srour et al., 2011). In 

the MFA simulations, input MIDs that were not corrected converged to faulty flux estimates 

with tight confidence intervals (Figure 9; see, for example, flux estimates for Alanine 

transaminase and Malate dehydrogenase for the LC-MS and GC-MS simulations, 

respectively). Even with appropriately corrected MIDs, this scenario can arise because of 

poor assumptions about the network structure (Libourel and Shachar-Hill, 2008; Zamboni et 

al., 2009) or because of gross measurement errors (Antoniewicz et al., 2006). For these 

reasons, it is recommended that the adequacy of a network model used in MFA be also 

assessed via a chi-squared goodness of fit test at a significance level of 0.05 (Antoniewicz et 

al., 2006).

In the context of MFA, the goodness of fit test also relies on a variance-weighted SSR 

(WSSRMFA) as its statistic, but compares the optimal MIDs predicted by MFA (Figure 7, 

Step 4) to the corrected MIDs used as input to MFA (Figure 7, Step 3). Ideally, the optimal 

MIDs predicted by MFA (Figure 7, Step 4) are compared to the actual expected MIDs 

(Figure 7, Step 2), which is only possible for theoretical simulations, such as described here, 

for which the expected measurements are known a priori:

(14)

The goodness of fit statistic follows a chi-square distribution with the number of degrees of 

freedoms equal to the number of individual mass isotopomer fractional abundance values 
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used as input minus the number of free fluxes in the system. For the LC-MS- (44 fractional 

abundances) and GC-MS-based (55 fractional abundances) MFA simulations, the weighted 

SSR follows a chi-square distribution of 27 and 38 degrees of freedom, respectively, because 

the model has eight dependent MID fractional abundances, and nine free fluxes.

The ability of a given correction method to correct a MID prior to MFA simulations (Figure 

8) corresponded with its impact on MFA model adequacy (Supplemental Figure 3). As 

before, in the LC-MS- and GC-MS-based MFA simulations (Figure 9), the skewed and LSC 

methods performed comparably, and their respective WSSRMFA were not rejected by the 

goodness-of-fit cutoff in any test condition (Supplemental Figure 3).

In summary, for the LC-MS and GC-MS tests at all noise levels tested, the skewed and LSC 

methods had variance-weighted SSRs below the significance cut-off. Together, the results of 

our critical analysis suggest that for the correction of MIDs generated by LC-MS or GC-MS 

the skewed correction, as implemented in INCA (Young, 2014), or the LSC method, as 

implemented in IsoCor (Millard et al., 2012), is a very reliable correction method.

4. Discussion

In this tutorial review, we have discussed the theoretical basis of three methods for the 

correction of NA of stable isotopes. We evaluated how well each method corrects for NA 

and how the use of each method may impact flux estimation by steady state 13C MFA 

analysis. Our comparative analyses relied on MIDs that were theoretically simulated as if 

they were measured be either LCMS or GC-MS. The expected MIDs were convolved with 

NA and noise and later corrected for NA of stable isotopes by either of three corrections 

methods. We used four in silico generated replicate MIDs to simulate a realistic 

experimental setup in which the number of biological replicates is typically limited to three 

or four samples by time and resources. In the case of steady state 13C MFA using a realistic 

metabolic network (Figure 6), the four replicate MIDs used in our all comparisons were 

randomly selected from a set of 1000 LC-MS or GC-MS simulated MIDs that included NA 

of constituent atoms with varying levels of Gaussian noise. The same analyses were repeated 

with the full set of 1000 replicates. No differences in results or conclusions between the n=4 

and n=1000 analyses were found (data not shown).

The classical correction method (Figure 3A) is based on the erroneous assumption that the 

MIDs of labeled standards are identical (but shifted in mass) to a corresponding unlabeled 

standard. The skewed correction method (Figure 3B) does not make this assumption and, 

instead, relies on either the direct measurements of standards for all measured mass 

isotopomers in an experiment (an impractical approach in most cases) or theoretically 

calculated equivalent measurements derived from multinomial probability theory – the later 

approach provides a very good approximation of the non-linear distribution on stable 

isotopes. Both the classical and skewed matrix methods evaluated rely on a CM (Figure 4) to 

transform observed MIDs into corrected MIDs (Eqn. 2 and 3). We compared these two 

methods to IsoCor, which is based on a skewed correction approach, but with a least-squares 

optimization function that ensures the positivity of all fractional abundances after correction.
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Several studies (Dunstan, 1988; Fernandez et al., 1996; Rosenblatt et al., 1992; van Winden 

et al., 2002a) have demonstrated the inadequacy of the classical correction method for 

decomposition of NA in isotope labeling experiments. Nonetheless, there is reason to believe 

that the classical correction method is still used by some researchers (Olstad et al., 2007; 

Walls et al., 2014; Zheng et al., 2015). A search of the literature over the past five years for 

papers that cite classical methodologies revealed research papers that cite and likely use this 

method, suggesting either that some acceptance of the use the classical method continues or 

that some researchers do not fully appreciate the difference between this method and later 

methods. Our results reaffirm that the classical correction method should be avoided, 

particularly when downstream quantitative analysis will be used.

For the correction of either LC-MS or GC-MS data, the algebraically simple skewed 

correction method and the open-source IsoCor’s iterative least squares correction approach 

consistently performed well (Figures 8 and 9). Error analysis revealed that classical 

correction overestimates the bias due to NA (Figure 8). We also evaluated how errors with 

classical correction can be magnified in downstream analyses such as MFA. In an analysis 

of 13C MFA performed with classically-corrected MIDs, predicted flux and MID estimates 

failed the goodness-of-fit test in all but at an extremely high noise level of 10% -- a 

condition that should be rare in controlled experiments (Figure 9 and Supplemental Figure 

3). Together our analyses suggest failing to correct or relying on the classical-correction for 

NA correction will produce highly inaccurate estimates of metabolic fluxes under most 

experimental conditions.

Some software implementations of 13C MFA only expect NA correction to be pre-performed 

on non-carbon backbone atoms because the interference from NA in the carbon backbone is 

simulated directly in the iterative optimization function. In contrast, our MFA-based 

analyses relied on the pre-correction of all atoms prior to simulation. In the case of 

OpenFlux, the user may choose to correct for NA prior to simulation or to allow OpenFlux 

to simulate NA (Quek et al., 2009). To confirm using OpenFLUX for 13C MFA simulations 

when all atoms were pre-corrected is a valid approach for evaluating how different 

correction methods impact downstream flux estimates, we performed the following test. 

OpenFlux MFA simulations were run using MIDs that were corrected for all atoms 

(including the carbon backbone) by the skewed approach or corrected for all atoms except 

the carbon backbone (see Methods). While the latter approach produced confidence intervals 

that were somewhat smaller than when all atoms were pre-corrected via the skewed 

approach (Supplemental Figure 4), only small differences in estimated flux values was 

observed between these two approaches. Moreover, the WSSRMFA for the two approaches 

were very similar and both were below the goodness fit cut-off.

In this work, we have provided a review of the theory of NA correction of stable isotopes 

using both mathematical and intuitive explanations. In addition, our critical analyses have 

reaffirmed the accuracy of skewed-based correction of NA. We also reaffirmed that classical 

correction, which evidence suggests is still used within the scientific community to some 

extent, is inadequate for the correction of NA and estimation of isotopic enrichment. The use 

of classical correction, therefore, should be avoided.
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5. Methods

5.1 Computer implementation

A program that implements both the classical and skewed matrix methods was written in 

MATLAB. The program handles negative fractions by setting them to zero and subsequently 

renormalizing the MIDs. The core functions used for skewed correction are available as part 

of the Isotopomer Network Compartmental Analysis (INCA) suite (Young, 2014). LSC tests 

were performed using IsoCor (Millard et al., 2012), which was run in Python 2.7.2. The 

Matlab based OpenFLUX (Quek et al., 2009) package was used for all MFA simulations. 

All MATLAB scripts including OpenFLUX were run in MATLAB R2012a, and all 

computer simulations were run either on Intel i5 CPU @ 2.40 GHz running Windows 7 or 

Intel Nehalem/i7 Core processors running Red Hat Linux.

5.2 Generation of in silico mass isotopomer data

Arbitrary steady state fluxes (Figure 6, and Supplemental Table 1) were predefined and used 

to calculate the MIDs expected after exposure to 13C based tracers. We refer to these 

enriched MIDs as the expected MIDs. Because all network fluxes were defined a priori, the 

unique steady state isotopic distribution after the introduction of a tracer could be directly 

calculated (Antoniewicz et al., 2006; Schmidt et al., 1997). Briefly, the predefined flux map 

( ) and the input substrate tracer ( ) were used to compute  (the expected MIDs) 

from the following equation:

where F is a non-linear function that maps an input substrate’s known MID (  ) to a 

simulated MID in the network metabolite vector  using the flux vector ; here we have 

adopted the notation used by Quek et al. (Quek et al., 2009). Two functions in OpenFLUX 

(Quek et al., 2009) were used to perform this task: fluxGenerator( _free) computes the 

network fluxes ( ) given a selected subset of independent (free) fluxes, while 

mdvGenerator( ) computes the MIDs ( ) using the network fluxes.

The expected MIDs were convolved with NA of stable isotopes based on multinomial 

probabilities. These probabilities correspond to the fractional abundance of stable isotopes of 

the elements (Supplemental Table 1). Eqn. 2 was used to incorporate NA into the expected 

MIDs to simulate experimentally measured data, which we refer to as the observed MIDs.

5.3 Addition of noise to simulated measurements

For the in silico experiments based on a metabolic model (Figure 6), MIDs were convolved 

with NA based on the relative abundance of stable isotopes of each element in the molecular 

formula of the compounds. Multiplicative Gaussian noise was added to each MID 1,000 

times to generate 1,000 experimentally observed sets of uncorrected MIDs for each 

metabolite. In particular, for every MID of n fractional abundances, n biases were generated 
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from a normal distribution of mean 1 and a fixed standard deviation (with base-10 

logarithmically increasing standard deviation ranging from 0.001 to 0.10), then the fractional 

abundances were multiplied by the random biases. Three distinct noise levels were tested: 

0.1%, 1.0%, and 10% noise, with 1,000 experimental replicates at each noise level. All 

MIDs were normalized so that the sum of all fractions equaled one. Thus, a standard 

deviation of 0.10 is equivalent to contamination with 10% noise (Figure 7, Step 2). For 

analysis in this article, we sampled four of the 1000 experimental replicates. We performed 

similar analyses on the full set of 1000 replicates, which yielded the same results and 

conclusions, and therefore are not shown.

5.4 OpenFlux simulations

In this work, all atoms in the MIDs were corrected prior to OpenFlux simulations unless 

otherwise indicated (e.g., all but CBB in Supplemental Figure 4). When all atoms were 

corrected, simulations were run assuming no NA was present in the simulated tracer. Thus, 

we assumed the tracer added was completely pure with 0% NA (e.g., the substrate vector 

describing known 13C labeling in [1,2-13C] glucose was defined as [1 1 0 0 0 0] rather than 

[0.99, 0.99 0.0107 0.0107 0.0107 0.0107]). The observed MIDs of metabolites selected as 

input to 13C MFA simulations were either left uncorrected or corrected by the classical, the 

skewed, or the LSC method. However, we also ran MFA simulations with all atoms except 

the carbon backbone corrected (Supplemental Figure 4). In this case, simulations were run 

assuming the existence of NA in the tracer substrate, but we corrected for the carbon in the 

tracer fragment from the derivatizing agent for GC-MS MIDs.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mass and positional isotopomers of a three carbon molecule containing 12C and 13C 
isotopes
For a three carbon molecule that contains 12C and/or 13C there are 2n positional 

isotopomers, where n is the number of carbons in the molecule. In this example, there are 

eight unique positional isotopomers. A mass isotopomer or an isotopologue is made up of 

one or more isotopomers of the same mass. A metabolite can have up to n + 1 mass 

isotopomers. Here, there are four mass isotopomers with four distinct molecular weights that 

sequentially differ by one atomic mass unit. The isotopomer composed of only 12C 

corresponds to the nominal mass of the molecule and also represents the mass isotopomer 

with the lowest molecular weight (M0). The higher mass isotopomers (M1, M2, and M3) 

represent, respectively, molecules with one, two, or three 13C atoms with a mass shift of one, 

two, or three atomic mass units. Blue circles indicate 12C and red circles indicate 13C.
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Figure 2. Workflow of a 13C labeling experiment
A typical workflow of a 13C isotope labeling experiment is presented. Cells are first grown 

in media containing at least one 13C labeled substrate. After the experiment, samples are 

analyzed via mass spectrometry. The spectral data are processed and mass isotopomer 

distributions (MIDs) of metabolites of interest are produced. The observed MIDs are 

corrected for natural abundance (NA) of stable isotopes by a computer program to generate 

corrected MIDs that can be used for downstream quantitative analysis.
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Figure 3. Correcting for natural abundance by the classical and skewed correction methods
An observed (uncorrected) MID of a three-carbon metabolite with four measured mass 

isotopomers is used as an example. The observed MID is assumed to have enrichment from 

a tracer substrate as well as inherent natural abundance (NA). (A) In the classical correction 

method, the MID of a pure standard, S(0), is measured (or computed). S(0) consists of mass 

isotopomer that are 1, 2, or 3 atomic mass units heavier than the nominal mass of the pure 

metabolite (and are identified as S(0)m1, S(0)m2, and S(0)m3, respectively) which represent 

the proportion of 13C from NA. Sequentially, the observed MID is adjusted based on the 

MID of S(0). Step 1: The unlabeled standard is used to compute the proportions of the M1, 
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M2, and M3 abundance that can be attributed to the pool of naturally abundant isotopomers. 

The observed M0 absolute value (which is also the expected M0 absolute value) is 

multiplied by the relative proportion of m1 to m0, m2 to m0, and m3 to m0 in the S(0) MID, 

and the resulting contributions are removed from the observed M1, M2, and M3 abundances, 

respectively. Step 2: Next, S(0) is used to compute the proportion of M2 and M3 abundances 

that can be attributed to the pool of naturally abundant isotopomers in a similar fashion. Step 
3: Finally, a proportion of M3 due to natural abundance is computed. After subtraction of 

each sequentially adjusted proportion from the observed MID, the remaining fractional 

abundances represent the corrected MID. (B) In the skewed correction method, the S(0) 

MID is measured (or computed) along with the MIDs of n-labeled standards. In this 

example, the standards include singly-, doubly-, and triply-labeled standards, or S(1), S(2), 

and S(3), respectively. The MID profiles of each labeled standard are different. For example, 

the S(2)m1 to S(2)m0 proportion is much lower than the corresponding S(0)m1 to S(0)m0 

proportion. Similar to the classical method, the contribution from isotopomers that are 

singly, doubly, and triply labeled with naturally abundant stable isotopes are removed from 

the observed mass isotopomers to yield the corrected MID. The classical correction, 

however, overestimates the presence of naturally abundant heavy stable isotopes in labeled 

metabolites. In this example, the overestimation by the classical method eliminated the M3 

abundance in the corrected MID. While the fractional abundance values of a MID typically 

sum to 1, in these examples we scaled the M0 nominal mass abundance to 1 to better 

illustrate the correction process.
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Figure 4. Correcting for natural abundance of stable isotopes in pyruvate via correction matrices
(A) The expression for the correction of natural abundance (NA) of stable isotopes in 

pyruvate (C3H3O3) is written in vector form. CMC3H3O3. The correction matrix (CM) for 

pyruvate, is the product of the individual elemental matrices for carbon ( ), hydrogen 

( ), and oxygen ( ). The correction factors in CMC3 can be calculated directly 

from theoretical probabilities or experimentally derived from measured standards. The form 

that CMC3 will take in both (B) the classical and (C) the skewed correction methods is 

summarized. The non-zero entries in the theoretical CMs represent the conditional 

probability of naturally finding the combination of 12C and 13C atoms indicated. For the 

classical approach, the columns of a CM correspond to the MIDs produced by an unlabeled 

standard. For the skewed approach, the columns of a CM correspond to the MIDs produced 

by standards of increasing isotopic content. The first column represents the MID of an 

unlabeled standard, while the second column represents the MID of a singly labeled 

standard, and so on. Each S(n)mi entry in the standards-based correction matrices represent 

the measured abundance for the Mi fraction of the MID of an n-labeled standard. The 

equivalent diagonal values characteristic of classical CMs come from the erroneous 

assumption that the presence of n atoms of 13C will arise from NA with the same likelihood 

across standards, regardless of the number of intentionally labeled carbons in the standard. 

More generally, the assumption can be stated as MIDS(0) = MIDS(1) = … = MIDS(n), where n 
is the number of atoms of the isotopically enriched element to be corrected in the metabolite, 

and MIDS(n) is the MID of the n-labeled standard.
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Figure 5. Correction of hypothetical mass isotopomer distributions of glutamate
Four hypothetical measured (observed) mass isotopomer distributions (MIDs) of glutamate 

were corrected for natural abundance by classical, skewed, or LSC. The molecular formulas 

used for correction of glutamate and an assumed derivatizing agent were C5H8NO4 and 

C14H34Si3, respectively. In (A) all fractional abundances in the MID were assumed 

equivalent. In (B-D), MIDs were selected with small observed values for the M1, M2, and 

M4 fractions.
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Figure 6. Network of glucose metabolism used for metabolic flux analysis
A network based on central carbon metabolism that encompassed glycolysis, the TCA cycle, 

and various amino acid drains as well as anapelrotic and gluconeogenetic fluxes was 

constructed and used for MFA. In reversible reactions, the larger arrowhead indicates the 

forward direction. The carbon atom transitions associated with this network are included in 

Supplemental Table 1. Free (independent) fluxes are highlighted in red. Abbreviations: 

AcCoA - acetyl-CoA; AKG - α-ketoglutarate; ALA - alanine; ASP - aspartate; CIT/ICIT – 

citrate/isocitrate pool; CO2 - carbon dioxide; FBP - fructose 1,6-bisphosphate; G6P/F6P, 

glucose-6-phosphate/fructose-6-phosphate pool; GLN, glutamine; GLU, glutamate; GLUC, 

glucose; LAC, lactate; MAL, malate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, 

pyruvate; SUC, succinate.
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Figure 7. Workflow of in silico experiment designed to evaluate the performance of three 
methods for the correction of natural abundance of stable isotopes
Step 1: From the network defined in Figure 6 and Supplemental Table 1, the expected steady 

state isotopic distribution after the addition of two tracer substrates ([1,2-13C] glucose and 

[U-13C] glutamine) was calculated. Step 2: From the computed isotopic tracer distribution, 

expected MIDs from either LC-MS or GC-MS (the latter assumed fragmentation and 

derivatization by silylation reagent N-tert-butyldimethylsilyl- N-methyltrifluoroacetamide, 

MTBSTFA) were generated. Theoretical natural abundance (NA) of stable isotopes (Table 1) 
were added to the MIDs. Next, Gaussian noise was added to each MID 4 times to simulate 4 

replicates of experimentally observed measurements. The simulated LC-MS and GC-MS 

data utilized MIDs from metabolites listed in Supplemental Table 2 and Supplemental Table 

3, respectively. Step 3: For NA correction, each MID replicate (n=4) was treated under four 

distinct correct conditions: not corrected (Observed), corrected by the classical matrix 

method (Classical), corrected by the skewed matrix method (Skewed), and corrected by the 

least-squares skewed correction (LSC) correction method. Step 4: Each set of uncorrected or 

corrected MIDs (n=4 for each of the 4 cohorts) was used as input to 13C metabolic flux 

analysis (MFA). The MFA-estimated output fluxes for each dataset are identified as νObs, 

νClassical, νSkewed, and νLSC. The MFA-predicted output MIDs are computed from these 

optimal fluxes. At the end of Step 3 and Step 4, MID errors were calculated and the 

variance-weighted sum of squares residual (SSR) was calculated and used in a goodness-of-

fit chi-square test to assess the adequacy of the correction methods (Step 3) and flux 

parameter estimation (Step 4).
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Figure 8. Error analysis of MIDs corrected by different methods
(A-B) The variance-weighted SSR measures the deviation of uncorrected and corrected 

MIDs from the expected (A) LC-MS or (B) GC-MS MIDs. In all cases, four correction 

treatments were tested: (i) observed (no correction), (ii) classical correction, (iii) skewed 

correction, and (iv) LSC correction. All tests were repeated under three distinct noise levels. 

The dashed line indicates the goodness of fit cut-off at a significance level of 0.05. (C-D) 

The squared magnitude of correction (SMOC) metric describes the deviation in the set 

expected or corrected MIDs from the set of observed MIDs for (C) LC-MS and (D) GC-MS 

data sets. This is a test of whether the corrected MIDs appropriately estimate the bias in the 

observed MIDs due to natural abundance. Four types of MIDs were compared (i) expected 

(the magnitude of correction that would correct for NA and random error), (ii) classical 

correction, (iii) skewed correction, and (iv) LSC correction. All tests were repeated under 

three distinct noise levels. The blue line indicates the expected error in the observed MIDs 

that came only from NA (ERRORNA).
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Figure 9. Estimates of metabolic fluxes by MFA using MIDs corrected by different methods
13C MFA using differently corrected or uncorrected input MIDs results in differing flux 

estimates in nmol per min per mg of utilized glucose. True flux values are indicated by a 

blue line. MFA using expected MIDs (i.e. no NA incorporation) estimates the true fluxes 

correctly. For isotope labeling experiments with low NA, as in the case of LC-MS (A), MFA 

with MIDs that are observed (uncorrected) or corrected using either of the classical, skewed, 

or LSC approaches estimates the true fluxes within the 95% confidence intervals of each 

model. However, MFA with skewed- and LSC-corrected MIDs estimate optimal fluxes 

(mean of bars) that are closet to the true value and display smaller confidence intervals than 

MFA with MIDs that are classically corrected. For isotope labeling experiments with high 

NA, as in the case of GC-MS (B), MFA with skewed- and LSC- corrected MIDs approaches 

vastly outperform MFA with classically-corrected or observed (uncorrected) MIDs. Top 

right corner of each plot indicates the reaction number. Error bars are based on four 

simulations for each test condition.
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Table 1

The natural abundance of stable isotopes utilized by all correction methods tested.

Element Stable Isotopes natural abundance of isotopes (in order listed)

Hydrogen (H) 1H, 2H 0.999885 0.000115

Carbon (C) 12C, 13C 0.9893 0.0107

Nitrogen (N) 14N, 15N 0.99632 0.00368

Oxygen (O) 16O, 17O, 18O 0.99757 0.00038 0.00205

Silicon (Si) 28Si, 29Si, 30Si 0.922297 0.046832 0.030872

Sulphur (S) 32S, 33S, 34S, 36S 0.9493 0.0076 0.0429 0.0002
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